organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Oxo-3-phenyl-1,3-thia­zolidin-2-yl­­idene)malono­nitrile

aDepartment of Chemistry, American University in Cairo, PO Box 74, New Cairo 11835, Egypt, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 16 January 2013; accepted 22 January 2013; online 6 February 2013)

In the title compound, C12H7N3OS, the essentially planar thia­zole ring (r.m.s. deviation = 0.022 Å) forms dihedral angles of 84.88 (9) and 1.8 (3)° with the phenyl ring and the –C(CN)2 group (r.m.s. deviation = 0.003 Å), respectively. The mol­ecule has approximate local Cs symmetry. In the crystal, molecules are linked via C—H⋯N hydrogen bonds, forming chains propagating along [101]. The crystal studied was found to be an inversion twin with a refined 0.63 (1):0.37 (1) domain ratio.

Related literature

For background to 1,3-thia­zolidin-4-ones and their properties, see: Singh et al. (1981[Singh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175-203.]); Liesen et al. (2010[Liesen, A. P., Aquino, T. M., Carvalho, C. S., Lima, V. T., Araujo, J. M., Lima, J. G., Faria, A. R., Melo, E. J. T., Alves, A. J., Alves, E. W., Alves, A. Q. & Goes, A. S. (2010). Eur. J. Med. Chem. 45, 3685-3691.]); Kocabalkanli et al. (2001[Kocabalkanli, A., Ates, A. & Otuk, G. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 35-39.]); Kumar et al. (2007[Kumar, A., Rajput, C. S. & Bhati, S. K. (2007). Bioorg. Med. Chem. 15, 3089-3096.]). For further synthetic details, see: Mohareb et al. (2012[Mohareb, R. M., El-Sayed, N. & Abdelaziz, M. A. (2012). Molecules, 17, 8449-8463.]). For a related structure, see: Pomés Hernández et al. (1996[Pomés Hernández, R., Duque Rodríguez, J., Novoa de Armas, H. & Toscano, R. A. (1996). Acta Cryst. C52, 1731-1733.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7N3OS

  • Mr = 241.27

  • Monoclinic, C c

  • a = 17.0305 (8) Å

  • b = 9.5638 (6) Å

  • c = 7.1651 (4) Å

  • β = 104.199 (4)°

  • V = 1131.37 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.20 × 0.13 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 2136 measured reflections

  • 2136 independent reflections

  • 1397 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.086

  • S = 1.01

  • 2136 reflections

  • 156 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 835 Friedel pairs

  • Flack parameter: 0.37 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯N2i 0.93 2.62 3.504 (5) 159
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SCALEPACK and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3-Thiazolidin-4-ones are heterocyclic compounds that have an atom of sulfur and nitrogen at positions 1 and 3, respectively and a carbonyl group at position 4. Their presence in penicillin was the first recognition of their occurrence in nature (Singh et al., 1981). They have found uses as antibacterial (Liesen et al., 2010), antimicrobial (Kocabalkanli et al., 2001) and anti-inflammatory agents (Kumar et al., 2007). In continuation of our studies on this family of compounds, we now report the synthesis and crystal structure of the title compound, (I).

The heterocyclic ring (C1/C2/S1/C3/N1) in (I) is close to planar (r.m.s. deviation = 0.022 Å) and subtends dihedral angles with the phenyl ring and the C(CN)2 group (r.m.s. deviation = 0.003 Å) of 84.88 (9) and 1.8 (3)°, respectively. An alternative analysis of the heterocyclic ring as a shallow envelope sees the S atom in the flap position displaced by 0.090 (5) Å from the other atoms (r.m.s. deviation = 0.004 Å). The molecule has approximate local Cs symmetry.

There is a short intermolecular contact [2.903 (2) Å] from the O atom of the carbonyl group to the centre of a nearby heterocyclic ring (symmetry: x, 1 - x, z - 1/2), but given the non-aromatic nature of the ring, this can hardly be regarded as a bond. No other significant intermolecular contacts occur in the crystal.

For a related structure, in which the thiazole ring was also found to be almost planar, see Pomés Hernández et al. (1996).

Related literature top

For background to 1,3-thiazolidin-4-ones and their properties, see: Singh et al. (1981); Liesen et al. (2010); Kocabalkanli et al. (2001); Kumar et al. (2007). For further synthetic details, see: Mohareb et al. (2012). For a related structure, see: Pomés Hernández et al. (1996).

Experimental top

To a solution of malononitrile (0.66 g, 0.01 mol) dissolved in dimethylformamide (15 ml), potassium hydroxide pellets (0.56 g, 0.01 mol) and phenylisothiocyanate (1.35 g, 0.01 mol) were added. The reaction mixture was covered and stirred at room temperature overnight. N'-(2-chloroacetyl)-2-cyanoacetohydrazide (1.75 g, 0.01 mol) (Mohareb et al., 2012) was stirred in the following day, and the solution was covered for another night, after which the reaction mixture was poured onto ice, neutralized with dil. HCl and the precipitated solid filtered off. Yellow blocks were obtained by slow evaporation of an ethanol solution.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(C) was applied.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.
2-(4-Oxo-3-phenyl-1,3-thiazolidin-2-ylidene)malononitrile top
Crystal data top
C12H7N3OSF(000) = 496
Mr = 241.27Dx = 1.416 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1133 reflections
a = 17.0305 (8) Åθ = 2.9–27.5°
b = 9.5638 (6) ŵ = 0.27 mm1
c = 7.1651 (4) ÅT = 298 K
β = 104.199 (4)°Block, yellow
V = 1131.37 (11) Å30.20 × 0.13 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1397 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 3.6°
ω scansh = 2122
2136 measured reflectionsk = 1211
2136 independent reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0223P)2 + 0.0674P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.17 e Å3
2136 reflectionsΔρmin = 0.18 e Å3
156 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.008 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 835 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.37 (1)
Crystal data top
C12H7N3OSV = 1131.37 (11) Å3
Mr = 241.27Z = 4
Monoclinic, CcMo Kα radiation
a = 17.0305 (8) ŵ = 0.27 mm1
b = 9.5638 (6) ÅT = 298 K
c = 7.1651 (4) Å0.20 × 0.13 × 0.05 mm
β = 104.199 (4)°
Data collection top
Nonius KappaCCD
diffractometer
1397 reflections with I > 2σ(I)
2136 measured reflectionsRint = 0.029
2136 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.17 e Å3
S = 1.01Δρmin = 0.18 e Å3
2136 reflectionsAbsolute structure: Flack (1983), 835 Friedel pairs
156 parametersAbsolute structure parameter: 0.37 (1)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40086 (17)0.3723 (3)0.3314 (5)0.0435 (8)
C20.31911 (18)0.3591 (4)0.3709 (4)0.0542 (9)
H2A0.28270.31040.26570.065*
H2B0.29690.45110.38300.065*
C30.43425 (18)0.2567 (3)0.6297 (4)0.0357 (7)
C40.48151 (17)0.1984 (3)0.7933 (4)0.0395 (8)
C50.4414 (2)0.1387 (4)0.9303 (5)0.0487 (8)
C60.5676 (2)0.1857 (3)0.8434 (5)0.0444 (8)
C70.54465 (17)0.3210 (3)0.4754 (4)0.0368 (7)
C80.58860 (18)0.4396 (4)0.5395 (4)0.0465 (8)
H80.56500.51430.58840.056*
C90.6685 (2)0.4455 (5)0.5297 (5)0.0669 (11)
H90.69940.52420.57460.080*
C100.7026 (2)0.3359 (5)0.4543 (5)0.0689 (13)
H100.75630.34110.44700.083*
C110.6581 (2)0.2197 (5)0.3901 (5)0.0657 (12)
H110.68160.14560.33940.079*
C120.5784 (2)0.2111 (4)0.3998 (4)0.0534 (10)
H120.54800.13180.35570.064*
S10.32943 (5)0.26310 (9)0.59038 (11)0.0515 (3)
O10.41623 (12)0.4253 (2)0.1924 (3)0.0585 (7)
N10.46104 (13)0.3139 (3)0.4828 (3)0.0363 (6)
N20.40992 (18)0.0906 (3)1.0384 (5)0.0703 (9)
N30.63584 (18)0.1710 (3)0.8969 (4)0.0671 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0331 (18)0.039 (2)0.0570 (19)0.0008 (15)0.0092 (15)0.0014 (17)
C20.036 (2)0.071 (3)0.0535 (19)0.0005 (17)0.0065 (14)0.0031 (18)
C30.0287 (16)0.0350 (19)0.0452 (17)0.0036 (15)0.0126 (13)0.0012 (14)
C40.0327 (18)0.042 (2)0.0459 (19)0.0010 (14)0.0142 (15)0.0074 (15)
C50.0362 (19)0.050 (2)0.0577 (19)0.0011 (16)0.0074 (16)0.0099 (17)
C60.040 (2)0.048 (2)0.0461 (17)0.0002 (16)0.0109 (14)0.0044 (17)
C70.0283 (17)0.045 (2)0.0386 (17)0.0005 (15)0.0110 (13)0.0027 (15)
C80.042 (2)0.051 (2)0.0490 (18)0.0055 (17)0.0144 (14)0.0015 (16)
C90.047 (2)0.095 (3)0.060 (2)0.020 (2)0.0139 (18)0.007 (2)
C100.030 (2)0.122 (4)0.057 (2)0.003 (2)0.0147 (16)0.012 (2)
C110.046 (2)0.098 (3)0.057 (2)0.026 (2)0.0199 (19)0.003 (2)
C120.049 (2)0.057 (3)0.052 (2)0.0062 (18)0.0080 (17)0.0045 (15)
S10.0288 (4)0.0603 (6)0.0661 (5)0.0030 (5)0.0131 (3)0.0097 (5)
O10.0528 (15)0.0679 (18)0.0571 (13)0.0059 (12)0.0178 (10)0.0173 (13)
N10.0280 (14)0.0374 (16)0.0442 (14)0.0027 (11)0.0103 (11)0.0005 (12)
N20.0528 (19)0.085 (3)0.076 (2)0.0039 (18)0.0208 (15)0.030 (2)
N30.040 (2)0.092 (3)0.067 (2)0.0083 (17)0.0091 (15)0.0192 (18)
Geometric parameters (Å, º) top
C1—O11.202 (3)C7—C121.372 (4)
C1—N11.412 (4)C7—C81.374 (4)
C1—C21.492 (4)C7—N11.439 (3)
C2—S11.792 (3)C8—C91.381 (4)
C2—H2A0.9700C8—H80.9300
C2—H2B0.9700C9—C101.372 (6)
C3—N11.361 (4)C9—H90.9300
C3—C41.367 (4)C10—C111.361 (5)
C3—S11.739 (3)C10—H100.9300
C4—C61.426 (4)C11—C121.378 (5)
C4—C51.444 (5)C11—H110.9300
C5—N21.142 (4)C12—H120.9300
C6—N31.140 (4)
O1—C1—N1122.6 (3)C7—C8—C9118.7 (3)
O1—C1—C2126.5 (3)C7—C8—H8120.7
N1—C1—C2110.9 (3)C9—C8—H8120.7
C1—C2—S1108.3 (2)C10—C9—C8120.5 (4)
C1—C2—H2A110.0C10—C9—H9119.8
S1—C2—H2A110.0C8—C9—H9119.8
C1—C2—H2B110.0C11—C10—C9120.1 (4)
S1—C2—H2B110.0C11—C10—H10119.9
H2A—C2—H2B108.4C9—C10—H10119.9
N1—C3—C4126.1 (3)C10—C11—C12120.4 (4)
N1—C3—S1112.7 (2)C10—C11—H11119.8
C4—C3—S1121.2 (2)C12—C11—H11119.8
C3—C4—C6127.1 (2)C7—C12—C11119.2 (4)
C3—C4—C5117.8 (3)C7—C12—H12120.4
C6—C4—C5115.1 (3)C11—C12—H12120.4
N2—C5—C4179.5 (4)C3—S1—C292.06 (15)
N3—C6—C4174.6 (3)C3—N1—C1115.8 (2)
C12—C7—C8121.1 (3)C3—N1—C7124.7 (2)
C12—C7—N1119.5 (3)C1—N1—C7119.4 (2)
C8—C7—N1119.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N2i0.932.623.504 (5)159
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H7N3OS
Mr241.27
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)17.0305 (8), 9.5638 (6), 7.1651 (4)
β (°) 104.199 (4)
V3)1131.37 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.20 × 0.13 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2136, 2136, 1397
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.086, 1.01
No. of reflections2136
No. of parameters156
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18
Absolute structureFlack (1983), 835 Friedel pairs
Absolute structure parameter0.37 (1)

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N2i0.932.623.504 (5)159
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors would like to thank the American University in Cairo for providing financial support to complete this work.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKocabalkanli, A., Ates, A. & Otuk, G. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 35–39.  Web of Science CrossRef CAS Google Scholar
First citationKumar, A., Rajput, C. S. & Bhati, S. K. (2007). Bioorg. Med. Chem. 15, 3089–3096.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiesen, A. P., Aquino, T. M., Carvalho, C. S., Lima, V. T., Araujo, J. M., Lima, J. G., Faria, A. R., Melo, E. J. T., Alves, A. J., Alves, E. W., Alves, A. Q. & Goes, A. S. (2010). Eur. J. Med. Chem. 45, 3685–3691.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMohareb, R. M., El-Sayed, N. & Abdelaziz, M. A. (2012). Molecules, 17, 8449–8463.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPomés Hernández, R., Duque Rodríguez, J., Novoa de Armas, H. & Toscano, R. A. (1996). Acta Cryst. C52, 1731–1733.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds