organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o417-o418

2-Amino-7,7-di­methyl-5-oxo-4-[3-(tri­fluoro­meth­yl)phen­yl]-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur 416 004 (MS), India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 11 February 2013; accepted 15 February 2013; online 20 February 2013)

In the title mol­ecule, C19H17F3N2O2, the fused cyclo­hexene and pyran rings adopt sofa and flattened boat conformations, respectively. The four essentially planar atoms of the pyran ring [maximum deviation = 0.008 (2) Å] form a dihedral angle of 88.13 (9)° with the benzene ring. The F atoms of the trifluoro­methyl group were refined as disordered over three sets of sites in a 0.507 (7):0.330 (7):0.163 (3) ratio. In the crystal, mol­ecules are connected into inversion dimers via pairs of N—H⋯N hydrogen bonds and these dimers are further linked by N—H⋯O hydrogen bonds into a two-dimensional network parallel to (100).

Related literature

For the biological activity of 4H-pyran derivatives, see: Bhattacharyya et al.(2012[Bhattacharyya, P., Pradhan, K., Paul, S. & Das, A. S. (2012). Tetrahedron Lett. 53, 4687-4691.]); Khaksar et al. (2012[Khaksar, S., Rouhollahpour, A. & Talesh, S. M. (2012). J. Fluorine Chem. 141, 12-15.]); Fotouhi et al. (2007[Fotouhi, L., Heravi, M. M., Fatehi, A. & Bakhtiari, K. (2007). Tetrahedron Lett. 48, 5379-5381.]). For related structures, see: Wang (2011[Wang, X. (2011). Acta Cryst. E67, o832.]); Anthal et al. (2012[Anthal, S., Brahmachari, G., Laskar, S., Banerjee, B., Kant, R. & Gupta, V. K. (2012). Acta Cryst. E68, o2592-o2593.]); Kant et al. (2013[Kant, R., Gupta, V. K., Kapoor, K., Patil, D. R., Mulik, A. G. & Deshmukh, M. B. (2013). Acta Cryst. E69, o105.]). For ring conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17F3N2O2

  • Mr = 362.35

  • Monoclinic, C 2/c

  • a = 23.7543 (6) Å

  • b = 9.3871 (2) Å

  • c = 15.8857 (4) Å

  • β = 94.704 (2)°

  • V = 3530.33 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.766, Tmax = 1.000

  • 40937 measured reflections

  • 3467 independent reflections

  • 2538 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.126

  • S = 1.03

  • 3467 reflections

  • 258 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21A⋯N20i 0.86 2.17 3.025 (3) 171
N21—H21B⋯O2ii 0.86 2.10 2.934 (2) 163
Symmetry codes: (i) -x, -y+2, -z+2; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Polyfunctionalized 4H-pyran derivatives are used as anti-coagulants, anticancer agents, spasmolytics, anti-anaphylactics, anti-microbial and immunomodulating activities (Khaksar et al., 2012; Bhattacharyya et al., 2012). Furthermore, these compounds can be employed as pigments, photoactive materials and used as biodegradable agrochemicals (Fotouhi et al., 2007). In this paper, we report the crystal structure of the title compound, (I).

In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in related structures (Wang et al.,2011; Anthal et al., 2012; Kant et al.,2013). The cyclohexene ring (C5/C6/C7/C8/C8A/C4A) and and pyran ring (O1/C2/C3/C4/C4A/C8A) exhibit sofa and boat conformations, respectively, with asymmetry parameters (ΔCs(C7) = 9.78 & ΔCs(C4) = 2.36, ΔCs(C2-C3)= 9.4)(Duax & Norton, 1975) with atom C7 forming the flap in the cyclohexene ring. The four essentially planar atoms (C2/C3/C4A/C8A) of pyran ring (maximum deviation = -0.008 (2)Å for C8A) form a dihedral angle of 88.13 (9)° with benzene the ring. The F atoms of the trifluoromethyl group were refined as disordered over three sets of sites in a 0.507 (7) : 0.330 (7) : 0.163 (3) ratio. In the crystal, molecules are connected into dimers via N21—H21A···N20i hydrogen bonds and these dimers are further connected by N21—H21B···O2ii (Table 1) hydrogen bonds into a two-dimensional network (Fig. 2) parallel to (100).

Related literature top

For the biological activity of 4H-pyran derivatives, see: Bhattacharyya et al.(2012); Khaksar et al. (2012); Fotouhi et al. (2007). For related structures, see: Wang (2011); Anthal et al. (2012); Kant et al. (2013). For ring conformations, see: Duax & Norton (1975).

Experimental top

In a 50 ml round bottom flask charged with 1mmole of dimedone, 1 mmole of 3-(trifluoromethyl)benzaldehyde and 1 mmole of malononitrile were added. Then 5 ml of aqueous ethanol (1:1) and 20 mol% of NH4Cl was added and the reaction mixture stirred for 30-45 min. at 323-328 K. The reaction was monitored by TLC. After completion of the reaction, the mixture was poured onto crushed ice and stirred. The solid precipitated was filtered and recrystallized from ethanol to afford pure product as crystal suitable for X-ray diffraction.

m.p.: 503-504 K, Yield: 82%.

1H NMR (300MHz,DMSO-d6): δ 0.94(s, 3H, CH3), 1.02(s, 3H, CH3), 2.05-2.20(m,2H, CH2), 2.44-2.49(m, 2H, CH2), 4.18(s, 1H, CH), 6.73(s, 2H,NH2), 6.81-6.87(m, 2H, Ar-H), 6.92-6.95(m, 1H, Ar-H), 7.18-7.25(m, 1H, Ar-H).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with C—H distances of 0.93–0.98 Å, N—H distances of 0.86 Å and with Uiso(H) = 1.2Ueq(C/N) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii. The F atoms are disorded over three sets of sites.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the a axis. The dashed lines show intermolecular N—H···O and N—H···N hydrogen bonds. The disorder is not shown.
2-Amino-7,7-dimethyl-5-oxo-4-[3-(trifluoromethyl)phenyl]-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile top
Crystal data top
C19H17F3N2O2F(000) = 1504
Mr = 362.35Dx = 1.363 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 18267 reflections
a = 23.7543 (6) Åθ = 3.4–29.1°
b = 9.3871 (2) ŵ = 0.11 mm1
c = 15.8857 (4) ÅT = 293 K
β = 94.704 (2)°Block, colorless
V = 3530.33 (15) Å30.3 × 0.2 × 0.2 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3467 independent reflections
Radiation source: fine-focus sealed tube2538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 2929
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.766, Tmax = 1.000l = 1919
40937 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0389P)2 + 5.1587P]
where P = (Fo2 + 2Fc2)/3
3467 reflections(Δ/σ)max = 0.001
258 parametersΔρmax = 0.26 e Å3
10 restraintsΔρmin = 0.32 e Å3
Crystal data top
C19H17F3N2O2V = 3530.33 (15) Å3
Mr = 362.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.7543 (6) ŵ = 0.11 mm1
b = 9.3871 (2) ÅT = 293 K
c = 15.8857 (4) Å0.3 × 0.2 × 0.2 mm
β = 94.704 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3467 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2538 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 1.000Rint = 0.065
40937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06110 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
3467 reflectionsΔρmin = 0.32 e Å3
258 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.08902 (7)0.55303 (15)1.02901 (8)0.0401 (4)
C20.06233 (9)0.6806 (2)1.01297 (12)0.0324 (5)
O20.06995 (8)0.41341 (18)0.74350 (9)0.0506 (5)
C30.04766 (9)0.7238 (2)0.93258 (12)0.0308 (5)
C40.06583 (9)0.6445 (2)0.85626 (12)0.0319 (5)
H40.03350.64050.81380.038*
C4A0.08096 (9)0.4945 (2)0.88253 (12)0.0313 (5)
C50.08182 (9)0.3842 (2)0.81766 (13)0.0358 (5)
C60.09581 (11)0.2348 (2)0.84666 (15)0.0431 (6)
H6A0.11170.18360.80110.052*
H6B0.06120.18690.85880.052*
C70.13766 (10)0.2287 (2)0.92539 (14)0.0394 (5)
C80.11327 (11)0.3177 (2)0.99442 (14)0.0402 (6)
H8A0.08210.26631.01610.048*
H8B0.14210.33091.04070.048*
C8A0.09300 (9)0.4593 (2)0.96338 (13)0.0319 (5)
C90.11372 (10)0.7223 (2)0.81771 (12)0.0337 (5)
C100.16874 (10)0.7180 (2)0.85477 (13)0.0377 (5)
H100.17720.66170.90230.045*
C110.21092 (11)0.7965 (3)0.82186 (15)0.0454 (6)
C120.19901 (13)0.8810 (3)0.75148 (17)0.0575 (7)
H120.22750.93350.72920.069*
C130.14458 (14)0.8865 (3)0.71472 (16)0.0636 (8)
H130.13600.94400.66770.076*
C140.10264 (11)0.8071 (3)0.74738 (14)0.0498 (7)
H140.06610.81070.72140.060*
C150.26941 (13)0.7941 (4)0.8631 (2)0.0643 (8)
C190.01734 (9)0.8518 (2)0.91848 (12)0.0328 (5)
N200.00772 (9)0.9545 (2)0.90387 (12)0.0495 (6)
N210.05451 (9)0.7470 (2)1.08480 (11)0.0446 (5)
H21A0.03810.82881.08390.054*
H21B0.06580.70831.13230.054*
C220.19433 (11)0.2886 (3)0.90370 (18)0.0583 (7)
H22A0.18870.38050.87790.088*
H22B0.21090.22540.86520.088*
H22C0.21900.29750.95440.088*
C230.14521 (13)0.0752 (3)0.95659 (17)0.0592 (8)
H23A0.15800.01710.91220.089*
H23B0.10980.03950.97270.089*
H23C0.17260.07271.00440.089*
F1A0.2811 (5)0.8968 (12)0.9208 (6)0.089 (2)0.507 (7)
F2A0.2806 (3)0.6766 (7)0.9151 (5)0.0813 (17)0.507 (7)
F3A0.3113 (2)0.7874 (11)0.8116 (4)0.091 (2)0.507 (7)
F1B0.2694 (8)0.861 (2)0.9364 (9)0.089 (2)0.330 (7)
F2B0.2877 (5)0.6587 (9)0.8792 (8)0.0813 (17)0.330 (7)
F3B0.3049 (4)0.8668 (14)0.8182 (7)0.091 (2)0.330 (7)
F1C0.2904 (6)0.9254 (11)0.8551 (10)0.089 (2)0.163 (3)
F2C0.2730 (6)0.7466 (19)0.9427 (6)0.0813 (17)0.163 (3)
F3C0.2982 (6)0.7011 (16)0.8215 (10)0.091 (2)0.163 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0604 (11)0.0333 (8)0.0262 (7)0.0141 (7)0.0006 (7)0.0023 (6)
C20.0373 (13)0.0274 (10)0.0326 (11)0.0049 (9)0.0042 (9)0.0011 (9)
O20.0679 (12)0.0506 (10)0.0325 (9)0.0070 (9)0.0012 (8)0.0119 (8)
C30.0333 (12)0.0291 (10)0.0299 (11)0.0049 (9)0.0027 (8)0.0011 (8)
C40.0365 (13)0.0338 (11)0.0246 (10)0.0056 (9)0.0024 (8)0.0015 (8)
C4A0.0303 (12)0.0325 (11)0.0311 (11)0.0007 (9)0.0023 (8)0.0036 (9)
C50.0316 (12)0.0403 (12)0.0358 (12)0.0004 (10)0.0042 (9)0.0079 (10)
C60.0495 (15)0.0323 (12)0.0480 (13)0.0001 (11)0.0073 (11)0.0114 (10)
C70.0436 (14)0.0307 (11)0.0450 (13)0.0061 (10)0.0101 (10)0.0006 (10)
C80.0524 (15)0.0311 (11)0.0377 (12)0.0061 (11)0.0075 (10)0.0026 (10)
C8A0.0344 (13)0.0288 (11)0.0328 (11)0.0009 (9)0.0055 (9)0.0025 (9)
C90.0438 (14)0.0323 (11)0.0255 (10)0.0066 (10)0.0057 (9)0.0034 (9)
C100.0438 (14)0.0376 (12)0.0322 (11)0.0059 (10)0.0058 (10)0.0014 (10)
C110.0484 (15)0.0464 (14)0.0431 (13)0.0029 (12)0.0151 (11)0.0079 (11)
C120.063 (2)0.0597 (17)0.0531 (16)0.0032 (14)0.0267 (14)0.0068 (13)
C130.078 (2)0.0712 (19)0.0429 (15)0.0045 (16)0.0142 (14)0.0259 (14)
C140.0539 (17)0.0607 (16)0.0345 (13)0.0068 (13)0.0022 (11)0.0116 (12)
C150.0492 (18)0.077 (2)0.0679 (19)0.0027 (16)0.0137 (14)0.0023 (17)
C190.0381 (13)0.0354 (12)0.0248 (10)0.0012 (10)0.0023 (9)0.0033 (9)
N200.0636 (15)0.0412 (12)0.0423 (11)0.0166 (11)0.0040 (10)0.0042 (9)
N210.0708 (15)0.0362 (10)0.0270 (9)0.0175 (10)0.0058 (9)0.0005 (8)
C220.0380 (15)0.0703 (18)0.0675 (17)0.0098 (14)0.0094 (12)0.0119 (15)
C230.080 (2)0.0344 (13)0.0647 (17)0.0141 (13)0.0142 (15)0.0008 (12)
F1A0.061 (5)0.119 (6)0.085 (3)0.017 (3)0.006 (3)0.031 (5)
F2A0.057 (3)0.098 (3)0.089 (5)0.029 (2)0.005 (3)0.004 (3)
F3A0.0386 (17)0.154 (7)0.0855 (18)0.008 (3)0.0329 (12)0.012 (4)
F1B0.061 (5)0.119 (6)0.085 (3)0.017 (3)0.006 (3)0.031 (5)
F2B0.057 (3)0.098 (3)0.089 (5)0.029 (2)0.005 (3)0.004 (3)
F3B0.0386 (17)0.154 (7)0.0855 (18)0.008 (3)0.0329 (12)0.012 (4)
F1C0.061 (5)0.119 (6)0.085 (3)0.017 (3)0.006 (3)0.031 (5)
F2C0.057 (3)0.098 (3)0.089 (5)0.029 (2)0.005 (3)0.004 (3)
F3C0.0386 (17)0.154 (7)0.0855 (18)0.008 (3)0.0329 (12)0.012 (4)
Geometric parameters (Å, º) top
O1—C21.369 (2)C11—C121.381 (4)
O1—C8A1.373 (2)C11—C151.487 (4)
C2—N211.327 (3)C12—C131.375 (4)
C2—C31.358 (3)C12—H120.9300
O2—C51.220 (3)C13—C141.379 (4)
C3—C191.409 (3)C13—H130.9300
C3—C41.515 (3)C14—H140.9300
C4—C4A1.504 (3)C15—F3C1.320 (8)
C4—C91.522 (3)C15—F1B1.321 (8)
C4—H40.9800C15—F3B1.336 (7)
C4A—C8A1.334 (3)C15—F2C1.337 (8)
C4A—C51.462 (3)C15—F3A1.339 (5)
C5—C61.505 (3)C15—F1C1.340 (8)
C6—C71.534 (3)C15—F1A1.344 (5)
C6—H6A0.9700C15—F2B1.360 (7)
C6—H6B0.9700C15—F2A1.389 (5)
C7—C221.524 (3)C19—N201.147 (3)
C7—C231.529 (3)N21—H21A0.8600
C7—C81.530 (3)N21—H21B0.8600
C8—C8A1.484 (3)C22—H22A0.9600
C8—H8A0.9700C22—H22B0.9600
C8—H8B0.9700C22—H22C0.9600
C9—C141.379 (3)C23—H23A0.9600
C9—C101.389 (3)C23—H23B0.9600
C10—C111.380 (3)C23—H23C0.9600
C10—H100.9300
C2—O1—C8A118.60 (15)C9—C14—C13121.4 (2)
N21—C2—C3128.71 (19)C9—C14—H14119.3
N21—C2—O1110.26 (17)C13—C14—H14119.3
C3—C2—O1121.03 (18)F3C—C15—F1B142.4 (12)
C2—C3—C19119.51 (18)F3C—C15—F3B72.2 (8)
C2—C3—C4122.53 (18)F1B—C15—F3B105.9 (9)
C19—C3—C4117.84 (17)F3C—C15—F2C104.9 (10)
C4A—C4—C3108.37 (16)F3B—C15—F2C132.9 (9)
C4A—C4—C9113.05 (18)F1B—C15—F3A127.9 (8)
C3—C4—C9110.95 (17)F2C—C15—F3A124.6 (7)
C4A—C4—H4108.1F3C—C15—F1C110.4 (10)
C3—C4—H4108.1F1B—C15—F1C71.1 (10)
C9—C4—H4108.1F2C—C15—F1C113.6 (10)
C8A—C4A—C5119.27 (19)F3A—C15—F1C71.6 (8)
C8A—C4A—C4121.77 (18)F3C—C15—F1A136.9 (9)
C5—C4A—C4118.96 (17)F3B—C15—F1A83.9 (6)
O2—C5—C4A120.4 (2)F2C—C15—F1A66.4 (10)
O2—C5—C6122.18 (19)F3A—C15—F1A109.1 (5)
C4A—C5—C6117.37 (18)F1B—C15—F2B107.4 (12)
C5—C6—C7113.39 (18)F3B—C15—F2B111.8 (7)
C5—C6—H6A108.9F2C—C15—F2B61.1 (8)
C7—C6—H6A108.9F3A—C15—F2B80.2 (5)
C5—C6—H6B108.9F1C—C15—F2B139.6 (8)
C7—C6—H6B108.9F1A—C15—F2B119.8 (9)
H6A—C6—H6B107.7F3C—C15—F2A72.0 (8)
C22—C7—C23109.8 (2)F1B—C15—F2A82.3 (11)
C22—C7—C8110.7 (2)F3B—C15—F2A128.6 (6)
C23—C7—C8108.87 (19)F3A—C15—F2A102.1 (4)
C22—C7—C6109.1 (2)F1C—C15—F2A137.0 (7)
C23—C7—C6110.5 (2)F1A—C15—F2A98.3 (7)
C8—C7—C6107.79 (19)F3C—C15—C11107.1 (7)
C8A—C8—C7112.50 (18)F1B—C15—C11108.2 (9)
C8A—C8—H8A109.1F3B—C15—C11111.4 (6)
C7—C8—H8A109.1F2C—C15—C11114.0 (7)
C8A—C8—H8B109.1F3A—C15—C11116.4 (4)
C7—C8—H8B109.1F1C—C15—C11106.6 (6)
H8A—C8—H8B107.8F1A—C15—C11115.0 (6)
C4A—C8A—O1123.33 (18)F2B—C15—C11111.7 (6)
C4A—C8A—C8125.43 (19)F2A—C15—C11113.6 (4)
O1—C8A—C8111.23 (17)N20—C19—C3177.4 (2)
C14—C9—C10118.1 (2)C2—N21—H21A120.0
C14—C9—C4120.2 (2)C2—N21—H21B120.0
C10—C9—C4121.58 (18)H21A—N21—H21B120.0
C11—C10—C9120.7 (2)C7—C22—H22A109.5
C11—C10—H10119.6C7—C22—H22B109.5
C9—C10—H10119.6H22A—C22—H22B109.5
C10—C11—C12120.4 (2)C7—C22—H22C109.5
C10—C11—C15120.4 (2)H22A—C22—H22C109.5
C12—C11—C15119.2 (2)H22B—C22—H22C109.5
C13—C12—C11119.2 (2)C7—C23—H23A109.5
C13—C12—H12120.4C7—C23—H23B109.5
C11—C12—H12120.4H23A—C23—H23B109.5
C12—C13—C14120.2 (2)C7—C23—H23C109.5
C12—C13—H13119.9H23A—C23—H23C109.5
C14—C13—H13119.9H23B—C23—H23C109.5
C8A—O1—C2—N21170.12 (19)C7—C8—C8A—O1159.98 (19)
C8A—O1—C2—C39.9 (3)C4A—C4—C9—C14138.3 (2)
N21—C2—C3—C193.7 (4)C3—C4—C9—C1499.8 (2)
O1—C2—C3—C19176.4 (2)C4A—C4—C9—C1046.0 (3)
N21—C2—C3—C4172.3 (2)C3—C4—C9—C1076.0 (2)
O1—C2—C3—C47.7 (3)C14—C9—C10—C110.0 (3)
C2—C3—C4—C4A21.0 (3)C4—C9—C10—C11175.90 (19)
C19—C3—C4—C4A163.03 (19)C9—C10—C11—C120.2 (3)
C2—C3—C4—C9103.7 (2)C9—C10—C11—C15178.5 (2)
C19—C3—C4—C972.3 (2)C10—C11—C12—C130.3 (4)
C3—C4—C4A—C8A19.2 (3)C15—C11—C12—C13178.1 (3)
C9—C4—C4A—C8A104.2 (2)C11—C12—C13—C140.8 (4)
C3—C4—C4A—C5160.06 (18)C10—C9—C14—C130.5 (4)
C9—C4—C4A—C576.5 (2)C4—C9—C14—C13175.4 (2)
C8A—C4A—C5—O2178.7 (2)C12—C13—C14—C90.9 (4)
C4—C4A—C5—O20.7 (3)C10—C11—C15—F3C97.7 (9)
C8A—C4A—C5—C60.7 (3)C12—C11—C15—F3C83.9 (9)
C4—C4A—C5—C6178.6 (2)C10—C11—C15—F1B69.1 (11)
O2—C5—C6—C7149.3 (2)C12—C11—C15—F1B109.3 (10)
C4A—C5—C6—C732.8 (3)C10—C11—C15—F3B174.8 (7)
C5—C6—C7—C2265.0 (3)C12—C11—C15—F3B6.8 (8)
C5—C6—C7—C23174.1 (2)C10—C11—C15—F2C17.9 (10)
C5—C6—C7—C855.3 (3)C12—C11—C15—F2C160.5 (9)
C22—C7—C8—C8A71.6 (3)C10—C11—C15—F3A138.6 (6)
C23—C7—C8—C8A167.6 (2)C12—C11—C15—F3A43.0 (6)
C6—C7—C8—C8A47.7 (3)C10—C11—C15—F1C144.1 (8)
C5—C4A—C8A—O1174.82 (19)C12—C11—C15—F1C34.3 (9)
C4—C4A—C8A—O14.5 (3)C10—C11—C15—F1A91.9 (6)
C5—C4A—C8A—C86.5 (3)C12—C11—C15—F1A86.5 (6)
C4—C4A—C8A—C8174.2 (2)C10—C11—C15—F2B49.0 (7)
C2—O1—C8A—C4A11.7 (3)C12—C11—C15—F2B132.6 (6)
C2—O1—C8A—C8169.41 (19)C10—C11—C15—F2A20.3 (5)
C7—C8—C8A—C4A18.8 (3)C12—C11—C15—F2A161.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21A···N20i0.862.173.025 (3)171
N21—H21B···O2ii0.862.102.934 (2)163
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H17F3N2O2
Mr362.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)23.7543 (6), 9.3871 (2), 15.8857 (4)
β (°) 94.704 (2)
V3)3530.33 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.766, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
40937, 3467, 2538
Rint0.065
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.126, 1.03
No. of reflections3467
No. of parameters258
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21A···N20i0.862.173.025 (3)171
N21—H21B···O2ii0.862.102.934 (2)163
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1, z+1/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a national facility under project No. SR/S2/CMP-47/2003.

References

First citationAnthal, S., Brahmachari, G., Laskar, S., Banerjee, B., Kant, R. & Gupta, V. K. (2012). Acta Cryst. E68, o2592–o2593.  CSD CrossRef IUCr Journals Google Scholar
First citationBhattacharyya, P., Pradhan, K., Paul, S. & Das, A. S. (2012). Tetrahedron Lett. 53, 4687–4691.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFotouhi, L., Heravi, M. M., Fatehi, A. & Bakhtiari, K. (2007). Tetrahedron Lett. 48, 5379–5381.  Web of Science CrossRef CAS Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Patil, D. R., Mulik, A. G. & Deshmukh, M. B. (2013). Acta Cryst. E69, o105.  CSD CrossRef IUCr Journals Google Scholar
First citationKhaksar, S., Rouhollahpour, A. & Talesh, S. M. (2012). J. Fluorine Chem. 141, 12–15.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. (2011). Acta Cryst. E67, o832.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o417-o418
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds