organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Di­methyl­amino)­methyl­­idene]propane­di­nitrile

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur 416 004, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 14 February 2013; accepted 20 February 2013; online 23 February 2013)

In the title moleclue, C6H7N3, the mean plane of the dimethyl­amino group [maximum deviation = 0.006 (2) Å] forms a dihedral angle of 7.95 (18)° with the mean plane of the propane­dinitrile fragment [maximum deviation = 0.008 (2) Å]. In the crystal, weak C—H⋯N hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For applications of enamines, see: Omran et al. (1997[Omran, F. A., Awadi, N. A., Khair, A. A. E. & Elnagdi, M. H. (1997). Org. Prep. Proced. Int. D29, 285-292.]); Saleh et al. (1999[Saleh, B. A., Abdelkhalik, M. M., Enzy, A. A. & Elnagdi, M. H. (1999). J. Chem. Res. (S), pp. 654-655.]). For related structures, see: Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Patil, D. R., Salunkhe, D. K. & Deshmukh, M. B. (2012). Acta Cryst. E68, o3121.]); Karlsen et al. (2002[Karlsen, H., Kolsaker, P., Rømming, C. & Uggerud, E. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 404-409.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N3

  • Mr = 121.15

  • Monoclinic, P 21 /c

  • a = 4.0368 (3) Å

  • b = 15.5642 (10) Å

  • c = 10.8500 (7) Å

  • β = 97.488 (6)°

  • V = 675.89 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.637, Tmax = 1.000

  • 15029 measured reflections

  • 1320 independent reflections

  • 875 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.206

  • S = 1.05

  • 1320 reflections

  • 84 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N8i 0.93 2.51 3.399 (4) 161
C4—H4B⋯N9ii 0.96 2.62 3.569 (4) 170
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

[(Dimethylamino)methylidene]propanedinitrile (I) is a potentially versatile substance which can be used for the synthesis of number of heterocyclic compounds and drug intermediates (Omran et al., 1997; Saleh et al., 1999).

In (I)(Fig.1), all bond lengths and angles are normal and correspond to those observed in related structures (Kant et al., 2012; Karlsen et al., 2002). The dihedral angle between dimethylamino group (N3/C2/C4/C5 with a maximum deviation of 0.006 (2)Å for N3) and propanedinitrile fragment (C1/C6/C7/N8/N9 with a maximum deviation of 0.008 (2)Å for C6) is 7.95 (18)°. In the crystal, weak C2—H2···N8i and C4—H4B···N9ii hydrogen bonds link molecules to form a three-dimensional supramolecular structure (Fig. 2, Table 1.).

Related literature top

For applications of enamines, see: Omran et al. (1997); Saleh et al. (1999). For related structures, see: Kant et al. (2012); Karlsen et al. (2002).

Experimental top

In a 50 ml round bottomed flask charged with 3 mmol of malononitrile and 3 mmol of dimethyl formamide dimethylacetal was stirred for 2 - 3hrs at room temp. The reaction was monitored by TLC. After completion of the reaction, a precipitate was formed. Finally, the product was filtered and washed with pet ether. Yield: 75%, m.p. 361–363 K. Diffraction quality single crystals were grown by slow evaporation of an ethanol solution of the title compound at room temperature

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure with dashed lines showing weak intermolecular C—H···N hydrogen bonds.
2-[(Dimethylamino)methylidene]propanedinitrile top
Crystal data top
C6H7N3F(000) = 256
Mr = 121.15Dx = 1.191 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3950 reflections
a = 4.0368 (3) Åθ = 3.8–29.2°
b = 15.5642 (10) ŵ = 0.08 mm1
c = 10.8500 (7) ÅT = 293 K
β = 97.488 (6)°Block, colourless
V = 675.89 (8) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1320 independent reflections
Radiation source: fine-focus sealed tube875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.8°
ω scansh = 44
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1919
Tmin = 0.637, Tmax = 1.000l = 1313
15029 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1075P)2 + 0.0919P]
where P = (Fo2 + 2Fc2)/3
1320 reflections(Δ/σ)max = 0.001
84 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C6H7N3V = 675.89 (8) Å3
Mr = 121.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.0368 (3) ŵ = 0.08 mm1
b = 15.5642 (10) ÅT = 293 K
c = 10.8500 (7) Å0.3 × 0.2 × 0.2 mm
β = 97.488 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1320 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
875 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 1.000Rint = 0.067
15029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
1320 reflectionsΔρmin = 0.16 e Å3
84 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3330 (6)0.77364 (16)0.7562 (2)0.0501 (7)
C20.2937 (6)0.69295 (15)0.7036 (2)0.0510 (7)
H20.16980.69140.62510.061*
N30.4033 (5)0.61815 (13)0.74689 (19)0.0565 (6)
C40.3449 (7)0.54179 (18)0.6690 (3)0.0752 (9)
H4A0.20190.55620.59410.113*
H4B0.24010.49830.71320.113*
H4C0.55420.52060.64830.113*
C50.5891 (7)0.6056 (2)0.8695 (3)0.0726 (9)
H5A0.79390.63770.87590.109*
H5B0.63860.54570.88210.109*
H5C0.45770.62530.93160.109*
C60.5281 (6)0.79802 (16)0.8689 (2)0.0568 (7)
C70.1665 (6)0.84244 (17)0.6873 (2)0.0578 (7)
N80.6838 (6)0.82284 (18)0.9572 (2)0.0805 (8)
N90.0355 (6)0.89864 (16)0.6341 (2)0.0789 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0514 (13)0.0581 (15)0.0392 (13)0.0003 (11)0.0003 (10)0.0009 (11)
C20.0508 (13)0.0622 (17)0.0391 (13)0.0035 (11)0.0017 (10)0.0040 (11)
N30.0647 (13)0.0565 (13)0.0466 (13)0.0020 (10)0.0009 (10)0.0064 (10)
C40.090 (2)0.0557 (17)0.077 (2)0.0048 (14)0.0003 (16)0.0040 (15)
C50.0853 (19)0.0757 (19)0.0537 (18)0.0151 (15)0.0032 (14)0.0126 (15)
C60.0573 (15)0.0640 (17)0.0477 (15)0.0020 (12)0.0016 (12)0.0023 (13)
C70.0643 (16)0.0599 (16)0.0469 (16)0.0022 (13)0.0018 (12)0.0053 (13)
N80.0883 (17)0.0896 (19)0.0576 (16)0.0012 (14)0.0125 (13)0.0126 (14)
N90.0944 (18)0.0635 (15)0.0717 (18)0.0074 (13)0.0155 (14)0.0030 (14)
Geometric parameters (Å, º) top
C1—C21.380 (3)C4—H4B0.9600
C1—C61.417 (3)C4—H4C0.9600
C1—C71.424 (3)C5—H5A0.9600
C2—N31.311 (3)C5—H5B0.9600
C2—H20.9300C5—H5C0.9600
N3—C51.453 (3)C6—N81.143 (3)
N3—C41.460 (3)C7—N91.139 (3)
C4—H4A0.9600
C2—C1—C6128.4 (2)N3—C4—H4C109.5
C2—C1—C7116.5 (2)H4A—C4—H4C109.5
C6—C1—C7115.0 (2)H4B—C4—H4C109.5
N3—C2—C1130.2 (2)N3—C5—H5A109.5
N3—C2—H2114.9N3—C5—H5B109.5
C1—C2—H2114.9H5A—C5—H5B109.5
C2—N3—C5123.9 (2)N3—C5—H5C109.5
C2—N3—C4119.6 (2)H5A—C5—H5C109.5
C5—N3—C4116.5 (2)H5B—C5—H5C109.5
N3—C4—H4A109.5N8—C6—C1175.8 (3)
N3—C4—H4B109.5N9—C7—C1178.6 (3)
H4A—C4—H4B109.5
C6—C1—C2—N35.6 (4)C1—C2—N3—C52.7 (4)
C7—C1—C2—N3176.8 (2)C1—C2—N3—C4176.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N8i0.932.513.399 (4)161
C4—H4B···N9ii0.962.623.569 (4)170
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H7N3
Mr121.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.0368 (3), 15.5642 (10), 10.8500 (7)
β (°) 97.488 (6)
V3)675.89 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.637, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15029, 1320, 875
Rint0.067
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.206, 1.05
No. of reflections1320
No. of parameters84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N8i0.932.513.399 (4)161
C4—H4B···N9ii0.962.623.569 (4)170
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x, y1/2, z+3/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.

References

First citationKant, R., Gupta, V. K., Kapoor, K., Patil, D. R., Salunkhe, D. K. & Deshmukh, M. B. (2012). Acta Cryst. E68, o3121.  CSD CrossRef IUCr Journals Google Scholar
First citationKarlsen, H., Kolsaker, P., Rømming, C. & Uggerud, E. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 404–409.  CrossRef Google Scholar
First citationOmran, F. A., Awadi, N. A., Khair, A. A. E. & Elnagdi, M. H. (1997). Org. Prep. Proced. Int. D29, 285–292.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaleh, B. A., Abdelkhalik, M. M., Enzy, A. A. & Elnagdi, M. H. (1999). J. Chem. Res. (S), pp. 654–655.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds