organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o326-o327

2-{(E)-4-[4-(Tri­fluoro­meth­yl)phen­­oxy]but-2-en­yl­oxy}phenyl N-methyl­carbamate

aCollege of Plant Science & Technology of Huazhong Agricultural University, Wuhan 430070, People's Republic of China, and bKey Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
*Correspondence e-mail: jning502@yahoo.com.cn

(Received 20 December 2012; accepted 14 January 2013; online 2 February 2013)

In the title compound, C19H18F3NO4, which was designed and synthesized as a dual-site inhibitor of insect AChE (acetyl­cholinesterase), the dihedral angle between the methyl­carbamate group and the benzene ring is 72.47 (6)°. In the crystal, inversion dimers are linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For background to multivalent ligand-receptor inter­actions and their pharmaceutical applications, see: Carlier et al. (1999[Carlier, P. R., Chow, E. S. H., Han, Y., Liu, J., Yazal, J. E. & Pang, Y. R. (1999). J. Med. Chem. 42, 4225-4231.]); Hu et al. (2002[Hu, M. K., Wu, L. J., Hsiao, G. & Yen, M. H. (2002). J. Med. Chem. 45, 2277-2282.]); Kitov et al. (2000[Kitov, P. I., Sadowska, J. M., Mulvey, G., Armstrong, G. D., Ling, H., Pannu, N. S., Read, R. J. & Bundle, D. R. (2000). Nature, 403, 669-672.]); Kopytek et al. (2000[Kopytek, S. J., Standaert, R. F., Dyer, J. C. D. & Hu, J. C. (2000). Chem. Biol. 7, 313-321.]); Kryger et al. (1999[Kryger, G., Silman, I. & Sussman, J. (1999). Structure, 7, 297-306.]); Lee & Lee (1995[Lee, Y. C. & Lee, R. T. (1995). Acc. Chem. Res. 28, 321-327.]); Luedtke et al. (2003[Luedtke, N. W., Lui, Q. & Tor, Y. (2003). Biochemistry, 42, 11391-11403.]); Mammen et al. (1998[Mammen, M., Choi, S. K. & Whitesides, G. M. (1998). Angew. Chem. Int. Ed. 37, 2754-2794.]); Pang et al. (1996[Pang, Y. P., Quiram, P., Jelacic, T., Hong, F. & Brimijoin, S. (1996). J. Biol. Chem. 271, 23646-23649.]). For agrochemical applications of the cluster effect, see: Ma et al. (2010[Ma, H. J., Xie, R. L., Zhao, Q. F., Mei, X. D. & Ning, J. (2010). J. Agric. Food Chem. 58, 12817-12821.]); Zhao et al. (2008[Zhao, Q. F., Yang, G. Q., Mei, X. D., Yuan, H. Z. & Ning, J. (2008). J. Pestic. Sci. 33, 371-375.], 2009[Zhao, Q. F., Yang, G. Q., Mei, X. D., Yuan, H. Z. & Ning, J. (2009). Pestic. Biochem. Physiol. 95, 131-134.]). For the structure of AChE from Torpedo californica (TcAChe), see: Sussman et al. (1991[Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. & Silman, I. (1991). Science, 253, 872-879.]); Harel et al. (1993[Harel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P. H., Silman, I. & Sussman, J. L. (1993). Proc. Natl. Acad. Sci. USA, 90, 9031-9035.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18F3NO4

  • Mr = 381.34

  • Monoclinic, P 21 /c

  • a = 12.413 (3) Å

  • b = 9.3936 (19) Å

  • c = 16.202 (3) Å

  • β = 111.65 (3)°

  • V = 1755.9 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.05 mm−1

  • T = 173 K

  • 0.47 × 0.30 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.639, Tmax = 0.780

  • 11613 measured reflections

  • 3163 independent reflections

  • 2615 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.107

  • S = 1.07

  • 3163 reflections

  • 274 parameters

  • 60 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 2.22 3.072 (2) 163
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Multivalent ligand-receptor interactions, known as the cluster effect, are defined as specific simultaneous associations of multiple ligands present on a molecular construct that bind to multiple receptors presented on a biological entity (Mammen et al., 1998; Lee et al., 1995). In biological systems, multivalent ligands often possess increased functional affinity for their targets compared with that of monovalent ligands (Kitov et al., 2000; Kopytek et al., 2000; Luedtke et al., 2003). Acetylcholinesterase (AChE; EC 3.1.1.7) is a key enzyme in the nervous system, terminating nerve impulses by catalyzing the hydrolysis of the neurotransmitter acetylcholine. X-ray crystallographic structural analysis of the AChE from Torpedo californica (TcAChe) has demonstrated that the active site lies near the bottom of a deep, narrow gorge that reaches half way into the protein and that 14 aromatic residues line a substantial portion of the surface of the gorge (Sussman et al., 1991). This cavity was named the 'active site gorge' with peripheral sites existing at the gorge mouth and Trp279 being the main site (Harel et al., 1993). On the basis of the structure of AChE, many potential dual-site binding inhibitors of AChE have been synthesized (Pang et al., 1996; Carlier et al., 1999; Hu et al., 2002) and demonstrated in drugs in order to treat or alleviate Alzheimer's disease (Kryger et al., 1999). In the area of pesticide, dual- or multiple-site inhibitors of insect AChE were designed and synthesized in our research group (Zhao et al.., 2008; Zhao et al., 2009). Recently, we synthesized novel carbamate derivatives as potential dual-binding site acetylcholinesterase inhibitors (Ma et al., 2010). The crystal structure of the title compound (I) is shown in Fig. 1.

Related literature top

For background to multivalent ligand-receptor interactions and their pharmaceutical applications, see: Carlier et al. (1999); Hu et al. (2002); Kitov et al. (2000); Kopytek et al. (2000); Kryger et al. (1999); Lee & Lee (1995); Luedtke et al. (2003); Mammen et al. (1998); Pang et al. (1996). For agrochemical applications of the cluster effect, see: Ma et al. (2010); Zhao et al. (2008, 2009). For the structure of AChE from Torpedo californica (TcAChe), see: Sussman et al. (1991); Harel et al. (1993).

Experimental top

2-((E)-4-(4-(trifluoromethyl)phenoxy)but-2-enyloxy)phenyl methylcarbamate (0.2 g) was dissolved in 95% ethanol (50 ml) at room temperature. Colorless crystals of compound (I) were obtained through slow evaporation after two weeks.

Refinement top

The trifluoromethyl group showed orientational disorder with two resolved alternative sites which were refined independently leading to a 71:29 occupancy ratio. All non-hydrogen atoms were refined with anisotropic displacement parameters. The carbon-bound H atoms were placed at calculated positions, with C—H = 0.93 - 0.98 Å, and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2 - 1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku 2001); cell refinement: RAPID-AUTO (Rigaku 2001); data reduction: RAPID-AUTO (Rigaku 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
2-{(E)-4-[4-(Trifluoromethyl)phenoxy]but-2-enyloxy}phenyl N-methylcarbamate top
Crystal data top
C19H18F3NO4F(000) = 792
Mr = 381.34Dx = 1.443 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 468 reflections
a = 12.413 (3) Åθ = 2.2–68.3°
b = 9.3936 (19) ŵ = 1.05 mm1
c = 16.202 (3) ÅT = 173 K
β = 111.65 (3)°Block, colorless
V = 1755.9 (6) Å30.47 × 0.30 × 0.25 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3163 independent reflections
Radiation source: rotating anode2615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scans at fixed χ = 45°θmax = 68.2°, θmin = 3.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.639, Tmax = 0.780k = 1110
11613 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.8611P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3163 reflectionsΔρmax = 0.29 e Å3
274 parametersΔρmin = 0.22 e Å3
60 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (3)
Crystal data top
C19H18F3NO4V = 1755.9 (6) Å3
Mr = 381.34Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.413 (3) ŵ = 1.05 mm1
b = 9.3936 (19) ÅT = 173 K
c = 16.202 (3) Å0.47 × 0.30 × 0.25 mm
β = 111.65 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3163 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2615 reflections with I > 2σ(I)
Tmin = 0.639, Tmax = 0.780Rint = 0.033
11613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04460 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
3163 reflectionsΔρmin = 0.22 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.4769 (4)0.2372 (3)0.2853 (4)0.0698 (14)0.710 (12)
F20.4529 (5)0.0522 (5)0.2121 (3)0.0731 (13)0.710 (12)
F30.5816 (4)0.0554 (8)0.3412 (5)0.090 (2)0.710 (12)
F1'0.5251 (13)0.2132 (15)0.3448 (14)0.109 (5)0.290 (12)
F2'0.4491 (9)0.111 (2)0.2122 (6)0.111 (5)0.290 (12)
F3'0.5655 (11)0.0074 (18)0.3219 (13)0.092 (5)0.290 (12)
O10.13692 (11)0.11336 (15)0.41856 (9)0.0376 (4)
O20.17712 (11)0.32576 (15)0.48990 (9)0.0348 (3)
O30.02201 (12)0.28785 (14)0.67050 (9)0.0367 (4)
O40.03869 (11)0.50607 (14)0.60863 (9)0.0313 (3)
N10.12414 (13)0.41620 (18)0.60530 (11)0.0336 (4)
H10.12420.49450.57550.040*
C10.47480 (19)0.0960 (2)0.29620 (17)0.0477 (6)
C20.38579 (17)0.0443 (2)0.32947 (14)0.0360 (5)
C30.27526 (17)0.1023 (2)0.29649 (13)0.0360 (5)
H30.25840.17730.25430.043*
C40.18957 (17)0.0526 (2)0.32412 (13)0.0332 (5)
H40.11410.09300.30090.040*
C50.21432 (16)0.0570 (2)0.38617 (13)0.0318 (4)
C60.32588 (18)0.1133 (2)0.42067 (15)0.0422 (5)
H60.34370.18680.46400.051*
C70.41034 (18)0.0630 (2)0.39219 (15)0.0439 (5)
H70.48620.10220.41580.053*
C80.01688 (16)0.0769 (2)0.37353 (13)0.0354 (5)
H8A0.00550.02640.37920.043*
H8B0.00810.10050.30960.043*
C90.05238 (17)0.1595 (2)0.41472 (13)0.0329 (5)
H90.01820.24160.44850.039*
C100.15720 (18)0.1256 (2)0.40707 (14)0.0381 (5)
H100.18770.04120.37450.046*
C110.23549 (17)0.2024 (2)0.44281 (13)0.0337 (5)
H11A0.30740.23080.39350.040*
H11B0.25690.13920.48320.040*
C120.22437 (16)0.3914 (2)0.54436 (12)0.0300 (4)
C130.33741 (17)0.3764 (2)0.53971 (13)0.0354 (5)
H130.38930.31490.49670.042*
C140.37483 (18)0.4512 (2)0.59798 (14)0.0394 (5)
H140.45230.44020.59480.047*
C150.30069 (18)0.5415 (2)0.66040 (14)0.0392 (5)
H150.32710.59220.70010.047*
C160.18725 (17)0.5581 (2)0.66513 (13)0.0347 (5)
H160.13600.62090.70760.042*
C170.14992 (16)0.4832 (2)0.60820 (12)0.0296 (4)
C180.03597 (16)0.3915 (2)0.63119 (12)0.0290 (4)
C190.22029 (18)0.3175 (2)0.62487 (16)0.0446 (6)
H19A0.28180.36110.60910.067*
H19B0.19360.23000.59040.067*
H19C0.25040.29470.68840.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.082 (2)0.0421 (13)0.117 (3)0.0125 (13)0.073 (2)0.0034 (16)
F20.084 (3)0.083 (2)0.077 (2)0.0261 (19)0.059 (2)0.019 (2)
F30.0276 (13)0.136 (5)0.100 (3)0.001 (2)0.0170 (15)0.051 (3)
F1'0.099 (7)0.091 (7)0.172 (12)0.058 (6)0.092 (8)0.046 (7)
F2'0.038 (4)0.192 (13)0.093 (7)0.003 (6)0.011 (4)0.102 (8)
F3'0.065 (7)0.090 (7)0.159 (11)0.039 (6)0.087 (8)0.045 (7)
O10.0312 (7)0.0435 (8)0.0390 (8)0.0012 (6)0.0141 (6)0.0093 (7)
O20.0333 (7)0.0358 (8)0.0412 (8)0.0074 (6)0.0207 (6)0.0109 (6)
O30.0369 (8)0.0314 (8)0.0423 (8)0.0002 (6)0.0151 (6)0.0082 (6)
O40.0279 (7)0.0274 (7)0.0399 (7)0.0004 (6)0.0139 (6)0.0013 (6)
N10.0307 (8)0.0351 (9)0.0369 (9)0.0017 (7)0.0148 (7)0.0039 (8)
C10.0362 (12)0.0442 (13)0.0672 (16)0.0019 (11)0.0243 (11)0.0044 (13)
C20.0302 (10)0.0354 (11)0.0437 (11)0.0024 (9)0.0151 (9)0.0051 (9)
C30.0347 (10)0.0354 (11)0.0385 (11)0.0001 (9)0.0141 (9)0.0032 (9)
C40.0300 (10)0.0346 (11)0.0344 (10)0.0010 (8)0.0111 (8)0.0010 (9)
C50.0302 (10)0.0330 (10)0.0327 (10)0.0027 (8)0.0121 (8)0.0035 (8)
C60.0342 (11)0.0405 (12)0.0489 (12)0.0047 (10)0.0118 (9)0.0112 (10)
C70.0285 (10)0.0434 (12)0.0573 (14)0.0043 (9)0.0130 (10)0.0055 (11)
C80.0313 (10)0.0384 (11)0.0380 (11)0.0031 (9)0.0145 (9)0.0050 (9)
C90.0347 (10)0.0314 (10)0.0335 (10)0.0015 (9)0.0137 (8)0.0049 (8)
C100.0408 (11)0.0331 (11)0.0439 (12)0.0048 (9)0.0200 (9)0.0095 (9)
C110.0334 (10)0.0322 (10)0.0367 (11)0.0048 (8)0.0142 (8)0.0041 (8)
C120.0303 (10)0.0313 (10)0.0315 (10)0.0019 (8)0.0147 (8)0.0007 (8)
C130.0297 (10)0.0400 (12)0.0382 (11)0.0026 (9)0.0145 (9)0.0030 (9)
C140.0315 (10)0.0457 (13)0.0463 (12)0.0046 (9)0.0205 (9)0.0035 (10)
C150.0408 (12)0.0441 (12)0.0378 (11)0.0078 (10)0.0206 (10)0.0003 (10)
C160.0379 (11)0.0333 (11)0.0325 (10)0.0025 (9)0.0125 (9)0.0001 (9)
C170.0279 (9)0.0291 (10)0.0331 (10)0.0013 (8)0.0129 (8)0.0029 (8)
C180.0271 (9)0.0294 (10)0.0284 (9)0.0008 (8)0.0077 (8)0.0031 (8)
C190.0319 (11)0.0475 (13)0.0549 (13)0.0068 (10)0.0168 (10)0.0000 (11)
Geometric parameters (Å, º) top
F1—C11.339 (3)C6—H60.9500
F2—C11.351 (4)C7—H70.9500
F3—C11.312 (5)C8—C91.487 (3)
F1'—C11.363 (7)C8—H8A0.9900
F2'—C11.287 (8)C8—H8B0.9900
F3'—C11.337 (9)C9—C101.300 (3)
O1—C51.361 (2)C9—H90.9500
O1—C81.438 (2)C10—C111.488 (3)
O2—C121.373 (2)C10—H100.9500
O2—C111.429 (2)C11—H11A0.9900
O3—C181.210 (2)C11—H11B0.9900
O4—C181.379 (2)C12—C131.384 (3)
O4—C171.395 (2)C12—C171.401 (3)
N1—C181.329 (2)C13—C141.387 (3)
N1—C191.451 (3)C13—H130.9500
N1—H10.8800C14—C151.379 (3)
C1—C21.479 (3)C14—H140.9500
C2—C71.383 (3)C15—C161.390 (3)
C2—C31.387 (3)C15—H150.9500
C3—C41.379 (3)C16—C171.369 (3)
C3—H30.9500C16—H160.9500
C4—C51.392 (3)C19—H19A0.9800
C4—H40.9500C19—H19B0.9800
C5—C61.393 (3)C19—H19C0.9800
C6—C71.376 (3)
C5—O1—C8117.30 (15)H8A—C8—H8B108.4
C12—O2—C11117.06 (15)C10—C9—C8123.63 (19)
C18—O4—C17116.65 (14)C10—C9—H9118.2
C18—N1—C19121.73 (18)C8—C9—H9118.2
C18—N1—H1119.1C9—C10—C11128.22 (19)
C19—N1—H1119.1C9—C10—H10115.9
F2'—C1—F3'104.5 (10)C11—C10—H10115.9
F3—C1—F1107.3 (4)O2—C11—C10108.98 (16)
F3—C1—F2104.9 (4)O2—C11—H11A109.9
F1—C1—F2100.1 (3)C10—C11—H11A109.9
F2'—C1—F1'113.7 (8)O2—C11—H11B109.9
F3'—C1—F1'99.7 (8)C10—C11—H11B109.9
F2'—C1—C2119.7 (6)H11A—C11—H11B108.3
F3—C1—C2116.1 (4)O2—C12—C13125.72 (17)
F3'—C1—C2109.8 (7)O2—C12—C17115.42 (16)
F1—C1—C2115.2 (2)C13—C12—C17118.84 (18)
F2—C1—C2111.6 (3)C12—C13—C14119.89 (19)
F1'—C1—C2107.4 (5)C12—C13—H13120.1
C7—C2—C3119.2 (2)C14—C13—H13120.1
C7—C2—C1121.03 (19)C15—C14—C13120.68 (19)
C3—C2—C1119.8 (2)C15—C14—H14119.7
C4—C3—C2120.9 (2)C13—C14—H14119.7
C4—C3—H3119.5C14—C15—C16119.8 (2)
C2—C3—H3119.5C14—C15—H15120.1
C3—C4—C5119.58 (19)C16—C15—H15120.1
C3—C4—H4120.2C17—C16—C15119.53 (19)
C5—C4—H4120.2C17—C16—H16120.2
O1—C5—C4124.58 (18)C15—C16—H16120.2
O1—C5—C6115.86 (18)C16—C17—O4119.88 (17)
C4—C5—C6119.54 (19)C16—C17—C12121.22 (18)
C7—C6—C5120.2 (2)O4—C17—C12118.71 (17)
C7—C6—H6119.9O3—C18—N1126.96 (18)
C5—C6—H6119.9O3—C18—O4123.69 (17)
C6—C7—C2120.6 (2)N1—C18—O4109.33 (16)
C6—C7—H7119.7N1—C19—H19A109.5
C2—C7—H7119.7N1—C19—H19B109.5
O1—C8—C9108.10 (16)H19A—C19—H19B109.5
O1—C8—H8A110.1N1—C19—H19C109.5
C9—C8—H8A110.1H19A—C19—H19C109.5
O1—C8—H8B110.1H19B—C19—H19C109.5
C9—C8—H8B110.1
F2'—C1—C2—C7132.8 (10)C5—O1—C8—C9175.09 (16)
F3—C1—C2—C712.8 (5)O1—C8—C9—C10160.9 (2)
F3'—C1—C2—C711.9 (10)C8—C9—C10—C11177.9 (2)
F1—C1—C2—C7139.4 (4)C12—O2—C11—C10165.39 (16)
F2—C1—C2—C7107.3 (3)C9—C10—C11—O20.2 (3)
F1'—C1—C2—C795.6 (11)C11—O2—C12—C1319.5 (3)
F2'—C1—C2—C346.2 (10)C11—O2—C12—C17161.91 (17)
F3—C1—C2—C3168.2 (4)O2—C12—C13—C14178.79 (18)
F3'—C1—C2—C3167.0 (10)C17—C12—C13—C140.2 (3)
F1—C1—C2—C341.6 (4)C12—C13—C14—C150.4 (3)
F2—C1—C2—C371.7 (3)C13—C14—C15—C160.1 (3)
F1'—C1—C2—C385.4 (11)C14—C15—C16—C170.7 (3)
C7—C2—C3—C41.2 (3)C15—C16—C17—O4175.88 (17)
C1—C2—C3—C4177.75 (19)C15—C16—C17—C120.8 (3)
C2—C3—C4—C50.2 (3)C18—O4—C17—C16117.69 (19)
C8—O1—C5—C412.6 (3)C18—O4—C17—C1267.1 (2)
C8—O1—C5—C6169.01 (18)O2—C12—C17—C16178.33 (17)
C3—C4—C5—O1179.48 (18)C13—C12—C17—C160.4 (3)
C3—C4—C5—C61.1 (3)O2—C12—C17—O43.2 (3)
O1—C5—C6—C7179.85 (19)C13—C12—C17—O4175.48 (17)
C4—C5—C6—C71.3 (3)C19—N1—C18—O31.9 (3)
C5—C6—C7—C20.3 (3)C19—N1—C18—O4176.30 (17)
C3—C2—C7—C61.0 (3)C17—O4—C18—O318.9 (3)
C1—C2—C7—C6178.0 (2)C17—O4—C18—N1162.82 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.223.072 (2)163
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H18F3NO4
Mr381.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.413 (3), 9.3936 (19), 16.202 (3)
β (°) 111.65 (3)
V3)1755.9 (6)
Z4
Radiation typeCu Kα
µ (mm1)1.05
Crystal size (mm)0.47 × 0.30 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.639, 0.780
No. of measured, independent and
observed [I > 2σ(I)] reflections
11613, 3163, 2615
Rint0.033
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.07
No. of reflections3163
No. of parameters274
No. of restraints60
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: RAPID-AUTO (Rigaku 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.223.072 (2)163
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (program No. 31201554), the China Postdoctoral Science Foundation (program No. 20110491174) and the Fundamental Research Funds for the Central Universities (program No. 2011QC086).

References

First citationCarlier, P. R., Chow, E. S. H., Han, Y., Liu, J., Yazal, J. E. & Pang, Y. R. (1999). J. Med. Chem. 42, 4225–4231.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P. H., Silman, I. & Sussman, J. L. (1993). Proc. Natl. Acad. Sci. USA, 90, 9031–9035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, M. K., Wu, L. J., Hsiao, G. & Yen, M. H. (2002). J. Med. Chem. 45, 2277–2282.  Web of Science CrossRef PubMed Google Scholar
First citationKitov, P. I., Sadowska, J. M., Mulvey, G., Armstrong, G. D., Ling, H., Pannu, N. S., Read, R. J. & Bundle, D. R. (2000). Nature, 403, 669–672.  Web of Science PubMed CAS Google Scholar
First citationKopytek, S. J., Standaert, R. F., Dyer, J. C. D. & Hu, J. C. (2000). Chem. Biol. 7, 313–321.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKryger, G., Silman, I. & Sussman, J. (1999). Structure, 7, 297–306.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, Y. C. & Lee, R. T. (1995). Acc. Chem. Res. 28, 321–327.  CrossRef CAS Web of Science Google Scholar
First citationLuedtke, N. W., Lui, Q. & Tor, Y. (2003). Biochemistry, 42, 11391–11403.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, H. J., Xie, R. L., Zhao, Q. F., Mei, X. D. & Ning, J. (2010). J. Agric. Food Chem. 58, 12817–12821.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMammen, M., Choi, S. K. & Whitesides, G. M. (1998). Angew. Chem. Int. Ed. 37, 2754–2794.  CrossRef Google Scholar
First citationPang, Y. P., Quiram, P., Jelacic, T., Hong, F. & Brimijoin, S. (1996). J. Biol. Chem. 271, 23646–23649.  CAS PubMed Web of Science Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. & Silman, I. (1991). Science, 253, 872–879.  CrossRef PubMed CAS Web of Science Google Scholar
First citationZhao, Q. F., Yang, G. Q., Mei, X. D., Yuan, H. Z. & Ning, J. (2008). J. Pestic. Sci. 33, 371–375.  Web of Science CrossRef CAS Google Scholar
First citationZhao, Q. F., Yang, G. Q., Mei, X. D., Yuan, H. Z. & Ning, J. (2009). Pestic. Biochem. Physiol. 95, 131–134.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o326-o327
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds