organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o419-o420

(S)-N-[(4-{(S)-1-[2-(4-Meth­­oxy­benz­amido)-2-methyl­propano­yl]pyrrolidine-2-carboxamido}-3,4,5,6-tetra­hydro-2H-pyran-4-yl)carbon­yl]proline di­methyl sulfoxide monosolvate (4-MeBz-Aib-Pro-Thp-Pro-OH)

aInstitute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
*Correspondence e-mail: alinden@oci.uzh.ch

(Received 12 February 2013; accepted 15 February 2013; online 20 February 2013)

The asymmetric unit of the title compound, C28H38N4O8·C2H6OS, contains one tetra­peptide and one disordered dimethyl sulfoxide (DMSO) mol­ecule. The central five-membered ring (Pro2) of the peptide mol­ecule has a disordered envelope conformation [occupancy ratio 0.879 (2):0.121 (2)] with the envelope flap atom, the central C atom of the three ring methylene groups, lying on alternate sides of the mean ring plane. The terminal five-membered ring (Pro4) also adopts an envelope conformation with the C atom of the methylene group closest to the carboxylic acid function as the envelope flap, and the six-membered tetra­hydro­pyrane ring shows a chair conformation. The tetra­peptide exists in a helical conformation, stabilized by an intra­molecular hydrogen bond between the amide N—H group of the heterocyclic α-amino acid Thp and the amide O atom of the 4-meth­oxy­benzoyl group. This inter­action has a graph set motif of S(10) and serves to maintain a fairly rigid β-turn structure. In the crystal, the terminal hy­droxy group forms a hydrogen bond with the amide O atom of Thp of a neighbouring mol­ecule, and the amide N—H group at the opposite end of the mol­ecule forms a hydrogen bond with the amide O atom of Thp of another neighbouring mol­ecule. The combination of both inter­molecular inter­actions links the mol­ecules into an extended three-dimensional framework.

Related literature

For the azirine/oxazolone method, see: Heimgartner (1991[Heimgartner, H. (1991). Angew. Chem. Int. Ed. Engl. 30, 238-265.]); Altherr et al. (2007[Altherr, W., Linden, A. & Heimgartner, H. (2007). Chem. Biodivers. 6, 1144-1169.]); Stamm & Heimgartner (2004[Stamm, S. & Heimgartner, H. (2004). Eur. J. Org. Chem. pp. 3820-3827.]). For the synthesis of Thp-containing peptides via the azirine/oxazolone method and their crystal structures, see: Suter et al. (2000[Suter, G., Stoykova, S. A., Linden, A. & Heimgartner, H. (2000). Helv. Chim. Acta, 83, 2961-2974.]). For the synthesis of Aib-Pro containing peptides via azirine coupling, see: Luykx et al. (2003[Luykx, R. T. N., Linden, A. & Heimgartner, H. (2003). Helv. Chim. Acta, 86, 4093-4111.]); Stamm & Heimgartner (2006[Stamm, S. & Heimgartner, H. (2006). Tetrahedron, 62, 9671-9680.]); Pradeille et al. (2012[Pradeille, N., Tzouros, M., Möhle, K., Linden, A. & Heimgartner, H. (2012). Chem. Biodivers. 9, 2528-2558.]); Stoykova et al. (2012[Stoykova, S. A., Linden, A. & Heimgartner, H. (2012). Helv. Chim. Acta, 95, 1325-1351.]). For the insertion of Xaa-Pro units (Xaa = heterocyclic α-amino carb­oxy­lic acid) into peptides, see: Suter et al. (2000[Suter, G., Stoykova, S. A., Linden, A. & Heimgartner, H. (2000). Helv. Chim. Acta, 83, 2961-2974.]); Stamm et al. (2003[Stamm, S., Linden, A. & Heimgartner, H. (2003). Helv. Chim. Acta, 86, 1371-1396.]). For the conformation of peptides containing α,α-disubstituted α-amino acids, see: Prasad & Balaram (1984[Prasad, B. V. & Balaram, P. (1984). CRC Crit. Rev. Biochem. 16, 307-348.]); Toniolo & Benedetti (1991[Toniolo, C. & Benedetti, E. (1991). Macromolecules, 24, 4004-4009.]); Schweitzer-Stenner et al. (2007[Schweitzer-Stenner, R., Gonzales, W., Bourne, G. T., Feng, J. A. & Marshall, G. R. (2007). J. Am. Chem. Soc. 129, 13095-13109.]); Aravinda et al. (2008[Aravinda, S., Shamala, N. & Balaram, P. (2008). Chem. Biodivers. 5, 1238-1262.]); Demizu et al. (2012[Demizu, Y., Yabuki, Y., Doi, M., Sato, Y., Tanaka, M. & Kurikara, M. (2012). J. Pept. Sci. 18, 466-475.]). For crystal structures of peptaibols, see: Whitmore & Wallace (2004[Whitmore, L. & Wallace, B. A. (2004). Nucleic Acids Res. 32, D593-D594.]), authors of The Peptaibol Database http://www.cryst.bbk.ac.uk/peptaibol . For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C28H38N4O8·C2H6OS

  • Mr = 636.76

  • Orthorhombic, P 21 21 21

  • a = 10.8594 (1) Å

  • b = 13.7414 (2) Å

  • c = 21.1929 (3) Å

  • V = 3162.48 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 160 K

  • 0.28 × 0.20 × 0.18 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • 53400 measured reflections

  • 9238 independent reflections

  • 7711 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.103

  • S = 1.02

  • 9231 reflections

  • 433 parameters

  • 21 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack & Bernardinelli (1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.], 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 4115 Friedel pairs

  • Flack parameter: −0.02 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O7i 0.87 (2) 1.81 (3) 2.6669 (17) 168 (2)
N6—H6⋯O13 0.87 (2) 2.19 (2) 3.0468 (17) 169.5 (18)
N12—H12⋯O4ii 0.80 (2) 2.37 (2) 3.1247 (18) 156 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Peptaibols are naturally occurring peptides containing high proportions of α-aminoisobutyric acid (Aib) and occasionally other 2,2-disubstituted glycines (Whitmore & Wallace, 2004). As a result of the presence of α,α-disubstituted α-amino acids, these peptides adopt fairly rigid helical structures, the preferred conformation being the 310-helix as a sequence of β-turns (Prasad & Balaram, 1984; Toniolo & Benedetti, 1991; Schweitzer-Stenner et al., 2007; Aravinda et al., 2008; Demizu et al., 2012). In the past we have elaborated the 'azirine/oxazolone method' as a convenient protocol for the introduction of α,α-disubstituted α-amino acids into peptide chains in solution (Heimgartner, 1991; Altherr et al., 2007) as well as on solid phase (Stamm & Heimgartner, 2004). In addition, it has been shown that the dipeptide unit Aib-Pro, which frequently appears in natural peptaibols (Whitmore & Wallace, 2004), can be inserted conveniently into a peptide chain via 'azirine coupling' with methyl N-(2,2-dimethyl-2H-azirin-3-yl)prolinate (Luykx et al., 2003; Pradeille et al., 2012; Stoykova et al., 2012). In a similar manner, dipeptide segments consisting of a heterocyclic α-amino carboxylic acid and proline have been inserted into peptides via 'azirine coupling' (Suter et al., 2000; Stamm et al., 2003). In all cases, the heterocyclic α-amino carboxylic acid behaves in a similar way to other α,α-disubstituted α-amino acids, that is they induce helical conformations of the peptide. The synthesis of the title tetrapeptide was carried out with the aim of further testing the scope of the 'azirine coupling' with a combination of two different Xaa-Pro synthons.

The crystals of the title compound are enantiomerically pure and the expected absolute configuration, S at C2 and C8 of the two proline residues, has been confirmed by the diffraction experiment. The asymmetric unit contains one molecule of the peptide plus one molecule of DMSO. The S atom of the DMSO molecule is disordered over two sites (details in the Experimental section). The peptide molecule exists in a β-turn conformation stabilized by an intramolecular hydrogen bond between N6—H of the heterocyclic amino acid Thp and the O atom of the amide C=O group of the 4-methoxybenzoyl group (Fig. 1; Table 1). This interaction has a graph set motif (Bernstein et al., 1995) of S(10). The central five-membered ring of Pro2 is disordered in that the ring has an envelope conformation in which atom C23 as the envelope flap is located on alternate sides of the mean ring plane with the major conformation found in 72.0 (10)% of the molecules. The other 5-membered ring (Pro4) also has an envelope conformation with atom C14 as the envelope flap. The six-membered tetrahydropyrane ring (Thp) exists in a chair conformation. All four amide groups are quite planar.

Classical intermolecular hydrogen bonds of the O—H···O and N—H···O type link the molecules into a three-dimensional framework (Fig. 2). This network is built from two substructures. In the first substructure, the carboxylic acid group, O2—H, forms an intermolecular hydrogen bond with one of the central amide O atoms, O7, of a neighbouring molecule, thereby linking the peptide molecules into extended chains which run parallel to the [100] direction and have a graph set motif of C(10). In the second substructure, the amide N—H group, N12—H, at the opposite end of the molecule forms an intermolecular hydrogen bond with the first amide O atom, O4, in the backbone of a different neighbouring molecule. This interaction links the peptide molecules into extended chains which run parallel to the [001] direction and have a graph set motif of C(11).

Related literature top

For the azirine/oxazolone method, see: Heimgartner (1991); Altherr et al. (2007); Stamm & Heimgartner (2004). For the synthesis of Thp-containing peptides via the azirine/oxazolone method and their crystal structures, see: Suter et al. (2000). For the synthesis of Aib-Pro containing peptides via azirine coupling, see: Luykx et al. (2003); Stamm & Heimgartner (2006); Pradeille et al. (2012); Stoykova et al. (2012). For the insertion of Xaa-Pro units (Xaa = heterocyclic α-amino carboxylic acid) into peptides, see: Suter et al. (2000); Stamm et al. (2003). For the conformation of peptides containing α,α-disubstituted α-amino acids, see: Prasad & Balaram (1984); Toniolo & Benedetti (1991); Schweitzer-Stenner et al. (2007); Aravinda et al. (2008); Demizu et al. (2012). For crystal structures of peptaibols, see: Whitmore & Wallace (2004), authors of The Peptaibol Database http://www.cryst.bbk.ac.uk/peptaibol. For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared in analogy to earlier described procedures (Suter et al., 2000; Stoykova et al., 2012) by treatment of (S)-N-[N-(4-methoxyphenyl)-2-methylalanyl]proline (4-MeOBz-Aib-Pro-OH; Stoykova et al., 2012) with two mol-equivalents of methyl (S)-N-(1-aza-6-oxaspiro[2.5]oct-1-en-2-yl)prolinate (Suter et al., 2000) in dry THF at room temperature for 48 h. After removing the solvent under reduced pressure, the residue was purified by column chromatography (silica gel, CH2Cl2/MeOH; gradient 110:1 to 20:1). Saponification of the resulting tetrapeptide ester was achieved by treatment with 4 mol-equivalents of LiOH.H2O in THF/MeOH/H2O 3:1:1 at room temperature for 25 h. After completion of the reaction, 1M HCl was added until pH 1 was reached, and the organic solvent was evaporated. The residue was extracted with CH2Cl2, the combined organic phase was dried over MgSO4, and the solvent evaporated to give the title compound in 74% yield (over two steps). Colourless crystals suitable for an X-ray crystal structure analysis were grown from DMSO at ca 278 K.

Refinement top

The structure contains one molecule of DMSO per peptide molecule. The S atom of the DMSO molecule is disordered over two sites with the major orientation having a site occupation factor of 0.879 (2). One C atom of the central five-membered ring of the peptide molecule is also disordered over two sites with the major conformation having a site occupation factor of 0.720 (10). Similarity restraints with a tolerance of 0.01 Å were applied to the chemically equivalent bond lengths involving all disordered atoms, while neighbouring disordered atoms were restrained to have similar atomic displacement parameters. Seven low angle reflections were omitted on account of obscuration by the beam stop.

The amide and carboxylic acid H atoms were placed in the positions found in a difference Fourier map and were then refined isotropically. All other H atoms were placed in geometrically optimized positions and constrained to ride on their parent atoms with C—H = 0.95 (aromatic), 0.98 (methyl), 0.99 (methylene) or 1.00 (methine) Å and with Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) otherwise.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and the intramolecular hydrogen bond (dashed line). Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size and the alternate conformations of the disordered proline ring (atom C23) and DMSO molecule are shown by full and open bonds.
[Figure 2] Fig. 2. The crystal packing in the title compound viewed down the a axis and showing the N—H···O and O—H···O hydrogen bonds as thin brown lines.
(S)-N-[(4-{(S)-1-[2-(4-Methoxybenzamido)-2-methylpropanoyl]pyrrolidine-2-carboxamido}-3,4,5,6-tetrahydro-2H-pyran-4-yl)carbonyl]proline dimethyl sulfoxide monosolvate top
Crystal data top
C28H38N4O8·C2H6OSF(000) = 1360
Mr = 636.76Dx = 1.337 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5144 reflections
a = 10.8594 (1) Åθ = 1.0–30.0°
b = 13.7414 (2) ŵ = 0.16 mm1
c = 21.1929 (3) ÅT = 160 K
V = 3162.48 (7) Å3Prism, colourless
Z = 40.28 × 0.20 × 0.18 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
7711 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.044
Horizontally mounted graphite crystal monochromatorθmax = 30.0°, θmin = 2.1°
Detector resolution: 9 pixels mm-1h = 1515
ϕ and ω scans with κ offsetsk = 1919
53400 measured reflectionsl = 2929
9238 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.4741P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max = 0.003
S = 1.02Δρmax = 0.28 e Å3
9231 reflectionsΔρmin = 0.33 e Å3
433 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
21 restraintsExtinction coefficient: 0.0096 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack & Bernardinelli (1999, 2000), 4115 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (8)
Crystal data top
C28H38N4O8·C2H6OSV = 3162.48 (7) Å3
Mr = 636.76Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.8594 (1) ŵ = 0.16 mm1
b = 13.7414 (2) ÅT = 160 K
c = 21.1929 (3) Å0.28 × 0.20 × 0.18 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
7711 reflections with I > 2σ(I)
53400 measured reflectionsRint = 0.044
9238 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103Δρmax = 0.28 e Å3
S = 1.02Δρmin = 0.33 e Å3
9231 reflectionsAbsolute structure: Flack & Bernardinelli (1999, 2000), 4115 Friedel pairs
433 parametersAbsolute structure parameter: 0.02 (8)
21 restraints
Special details top

Experimental. Solvent used: DMSO Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.519 (1) Frames collected: 329 Seconds exposure per frame: 42 Degrees rotation per frame: 1.4 Crystal-Detector distance (mm): 30.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure contains one molecule of DMSO per peptide molecule. The S atom of the DMSO molecule is disordered over two sites with the major orientation having a site occupation factor of 0.879 (2). One C atom of the central five-membered ring of the peptide molecule is also disordered over two sites with the major conformation having a site occupation factor of 0.720 (10). Similarity restraints with a tolerance of 0.01 Å were applied to the chemically equivalent bond lengths involving all disordered atoms, while neighbouring disordered atoms were restrained to have similar atomic displacement parameters. Seven low angle reflections were omitted on account of obscuration by the beam stop.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.49592 (11)0.79228 (10)0.02238 (7)0.0429 (3)
O20.38389 (11)0.88646 (9)0.04216 (5)0.0320 (3)
H20.456 (2)0.9100 (18)0.0512 (11)0.050 (6)*
O40.30778 (11)0.60218 (9)0.01081 (5)0.0320 (3)
O70.08885 (11)0.52449 (9)0.08052 (5)0.0329 (3)
O100.17612 (11)0.31930 (8)0.20810 (5)0.0316 (3)
O130.39163 (11)0.45955 (9)0.26319 (5)0.0324 (3)
O190.57060 (13)0.44020 (11)0.04583 (8)0.0516 (4)
O300.71136 (12)0.69569 (9)0.46113 (5)0.0366 (3)
N30.28614 (13)0.70479 (10)0.07067 (6)0.0276 (3)
N60.25499 (12)0.52124 (9)0.14416 (6)0.0249 (3)
H60.2849 (19)0.5049 (15)0.1807 (10)0.039 (5)*
N90.11523 (12)0.46304 (9)0.24731 (6)0.0258 (3)
N120.28842 (13)0.41680 (10)0.35078 (7)0.0293 (3)
H120.286 (2)0.4175 (16)0.3887 (11)0.043 (6)*
C10.39833 (15)0.81984 (11)0.00303 (7)0.0276 (3)
C20.27251 (15)0.78716 (11)0.02743 (7)0.0275 (3)
H10.21650.77010.00840.033*
C40.30659 (14)0.61553 (11)0.04668 (7)0.0260 (3)
C50.34313 (14)0.53169 (12)0.09183 (7)0.0260 (3)
C70.13440 (14)0.51093 (11)0.13341 (7)0.0246 (3)
C80.05129 (14)0.48351 (13)0.18813 (7)0.0289 (3)
H80.00170.42510.17600.035*
C100.17081 (14)0.37502 (11)0.25323 (7)0.0254 (3)
C110.21698 (15)0.34116 (11)0.31820 (7)0.0277 (3)
C130.37882 (14)0.46585 (12)0.32135 (7)0.0271 (3)
C140.21553 (17)0.86652 (13)0.06872 (8)0.0364 (4)
H1410.23900.93220.05370.044*
H1420.12460.86130.06950.044*
C150.2703 (2)0.84566 (13)0.13333 (9)0.0399 (4)
H1510.22000.87520.16730.048*
H1520.35570.87040.13640.048*
C160.26708 (18)0.73510 (12)0.13691 (7)0.0339 (4)
H1610.33350.71010.16450.041*
H1620.18680.71180.15300.041*
C170.47177 (16)0.55084 (14)0.11973 (8)0.0335 (4)
H1710.47540.61820.13620.040*
H1720.48630.50580.15540.040*
C180.57147 (17)0.53701 (16)0.07076 (10)0.0443 (5)
H1810.55900.58410.03600.053*
H1820.65270.55040.09010.053*
C200.45803 (19)0.42227 (16)0.01315 (10)0.0456 (5)
H2010.45920.35540.00420.055*
H2020.45070.46820.02260.055*
C210.34751 (16)0.43379 (12)0.05612 (8)0.0329 (4)
H2110.34790.38020.08730.039*
H2120.27170.42730.03050.039*
C220.0366 (2)0.56707 (17)0.20421 (10)0.0494 (5)
H2210.00740.62870.18510.059*0.720 (10)
H2220.12040.55310.18820.059*0.720 (10)
H2230.03840.61570.16980.059*0.280 (10)
H2240.12120.54240.21110.059*0.280 (10)
C230.0374 (3)0.5746 (3)0.27560 (17)0.0433 (9)0.720 (10)
H2310.05000.64280.28930.052*0.720 (10)
H2320.10310.53350.29400.052*0.720 (10)
C23A0.0100 (10)0.6075 (6)0.2588 (4)0.040 (2)0.280 (10)
H2330.05920.62880.28600.048*0.280 (10)
H2340.05910.66580.24790.048*0.280 (10)
C240.08878 (18)0.53834 (13)0.29483 (9)0.0380 (4)
H2410.15050.59130.29320.046*0.720 (10)
H2420.08730.51040.33790.046*0.720 (10)
H2430.16530.57010.30970.046*0.280 (10)
H2440.04410.51090.33150.046*0.280 (10)
C250.29830 (18)0.25073 (13)0.31024 (9)0.0385 (4)
H2510.36990.26710.28420.058*
H2520.25080.19900.28970.058*
H2530.32610.22830.35180.058*
C260.10223 (17)0.31609 (13)0.35741 (8)0.0345 (4)
H2610.12700.28010.39530.052*
H2620.04630.27590.33220.052*
H2630.06020.37620.36980.052*
C270.46259 (14)0.52808 (12)0.35961 (7)0.0264 (3)
C280.45392 (15)0.53814 (13)0.42525 (8)0.0298 (3)
H280.39000.50610.44770.036*
C290.53853 (16)0.59476 (13)0.45724 (8)0.0321 (4)
H290.53240.60140.50170.039*
C300.63240 (15)0.64214 (12)0.42502 (8)0.0294 (3)
C310.64158 (15)0.63358 (13)0.35972 (8)0.0315 (4)
H310.70490.66640.33730.038*
C320.55693 (15)0.57640 (13)0.32804 (8)0.0305 (3)
H320.56330.56990.28350.037*
C330.82609 (16)0.72279 (15)0.43330 (9)0.0380 (4)
H3310.86780.66460.41730.057*
H3320.87800.75440.46510.057*
H3330.81120.76810.39840.057*
S1A0.73887 (6)0.66072 (5)0.67871 (3)0.0570 (2)0.879 (2)
S1B0.7574 (3)0.7383 (4)0.69153 (18)0.0500 (16)0.121 (2)
O30.66114 (17)0.7045 (2)0.72672 (8)0.0883 (7)
C340.7137 (4)0.7294 (3)0.60964 (12)0.1115 (14)
H3410.62890.71970.59510.167*0.879 (2)
H3420.77110.70820.57670.167*0.879 (2)
H3430.72710.79850.61870.167*0.879 (2)
H3440.62990.75460.60420.167*0.121 (2)
H3450.71660.66120.59630.167*0.121 (2)
H3460.77090.76770.58390.167*0.121 (2)
C350.8931 (2)0.6951 (2)0.69070 (15)0.0747 (8)
H3510.92500.66300.72860.112*0.879 (2)
H3520.89790.76580.69600.112*0.879 (2)
H3530.94250.67560.65410.112*0.879 (2)
H3540.92690.69570.73360.112*0.121 (2)
H3550.94520.73490.66310.112*0.121 (2)
H3560.89110.62810.67490.112*0.121 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0304 (6)0.0456 (8)0.0528 (8)0.0006 (6)0.0038 (6)0.0157 (6)
O20.0334 (6)0.0334 (6)0.0292 (6)0.0044 (5)0.0053 (5)0.0061 (5)
O40.0417 (7)0.0340 (6)0.0204 (5)0.0006 (5)0.0028 (5)0.0003 (4)
O70.0323 (6)0.0417 (7)0.0249 (6)0.0017 (5)0.0070 (5)0.0045 (5)
O100.0406 (7)0.0295 (6)0.0247 (5)0.0027 (5)0.0021 (5)0.0036 (5)
O130.0326 (6)0.0434 (7)0.0213 (5)0.0044 (5)0.0012 (5)0.0016 (5)
O190.0385 (7)0.0555 (9)0.0608 (9)0.0109 (6)0.0117 (6)0.0010 (7)
O300.0419 (7)0.0399 (7)0.0281 (6)0.0096 (6)0.0046 (5)0.0007 (5)
N30.0356 (7)0.0259 (7)0.0214 (6)0.0028 (5)0.0028 (5)0.0005 (5)
N60.0276 (6)0.0275 (6)0.0195 (6)0.0026 (5)0.0014 (5)0.0036 (5)
N90.0310 (6)0.0250 (6)0.0214 (6)0.0023 (5)0.0025 (5)0.0016 (5)
N120.0345 (7)0.0341 (7)0.0194 (6)0.0048 (6)0.0010 (6)0.0029 (6)
C10.0322 (8)0.0264 (8)0.0242 (7)0.0015 (6)0.0056 (6)0.0010 (6)
C20.0307 (8)0.0253 (7)0.0266 (8)0.0024 (6)0.0031 (6)0.0031 (6)
C40.0279 (8)0.0279 (8)0.0221 (7)0.0032 (6)0.0024 (6)0.0000 (6)
C50.0281 (8)0.0280 (8)0.0218 (7)0.0029 (6)0.0021 (6)0.0005 (6)
C70.0276 (8)0.0231 (7)0.0232 (7)0.0001 (6)0.0037 (6)0.0015 (6)
C80.0248 (7)0.0344 (9)0.0274 (8)0.0021 (6)0.0012 (6)0.0050 (7)
C100.0276 (7)0.0266 (8)0.0221 (7)0.0026 (6)0.0041 (6)0.0021 (6)
C110.0344 (8)0.0260 (7)0.0229 (7)0.0037 (6)0.0001 (6)0.0037 (6)
C130.0281 (7)0.0302 (8)0.0231 (7)0.0015 (6)0.0001 (6)0.0033 (6)
C140.0397 (9)0.0306 (9)0.0389 (9)0.0019 (7)0.0131 (8)0.0026 (7)
C150.0564 (12)0.0291 (8)0.0341 (9)0.0044 (8)0.0100 (8)0.0038 (7)
C160.0487 (10)0.0314 (8)0.0215 (7)0.0036 (7)0.0060 (7)0.0034 (6)
C170.0288 (8)0.0390 (9)0.0328 (9)0.0037 (7)0.0002 (7)0.0025 (7)
C180.0309 (9)0.0523 (12)0.0498 (11)0.0022 (8)0.0063 (8)0.0066 (9)
C200.0495 (11)0.0428 (11)0.0444 (11)0.0071 (9)0.0105 (9)0.0059 (9)
C210.0377 (9)0.0275 (8)0.0334 (9)0.0018 (7)0.0003 (7)0.0023 (7)
C220.0458 (11)0.0591 (13)0.0433 (11)0.0242 (10)0.0071 (9)0.0088 (10)
C230.0353 (17)0.0476 (19)0.0471 (18)0.0101 (14)0.0154 (13)0.0004 (14)
C23A0.034 (4)0.043 (4)0.042 (4)0.018 (3)0.011 (3)0.007 (3)
C240.0481 (10)0.0303 (9)0.0355 (9)0.0071 (8)0.0044 (8)0.0065 (7)
C250.0419 (9)0.0324 (9)0.0412 (10)0.0041 (7)0.0051 (8)0.0058 (8)
C260.0391 (9)0.0387 (9)0.0255 (8)0.0110 (7)0.0016 (7)0.0050 (7)
C270.0286 (7)0.0283 (8)0.0224 (7)0.0036 (6)0.0003 (6)0.0031 (6)
C280.0317 (8)0.0329 (8)0.0249 (7)0.0012 (7)0.0028 (6)0.0025 (7)
C290.0390 (9)0.0351 (9)0.0221 (8)0.0036 (7)0.0025 (7)0.0005 (7)
C300.0333 (8)0.0287 (8)0.0262 (8)0.0011 (6)0.0048 (6)0.0011 (6)
C310.0318 (8)0.0359 (9)0.0269 (8)0.0043 (7)0.0000 (6)0.0058 (7)
C320.0331 (8)0.0363 (9)0.0222 (7)0.0020 (7)0.0006 (6)0.0028 (7)
C330.0332 (9)0.0434 (10)0.0372 (10)0.0028 (7)0.0073 (7)0.0011 (8)
S1A0.0586 (4)0.0605 (5)0.0519 (4)0.0202 (3)0.0122 (3)0.0035 (3)
S1B0.043 (2)0.068 (3)0.039 (2)0.002 (2)0.0026 (17)0.017 (2)
O30.0570 (10)0.161 (2)0.0465 (10)0.0138 (13)0.0028 (8)0.0158 (12)
C340.151 (4)0.152 (3)0.0315 (12)0.050 (3)0.0083 (17)0.0009 (17)
C350.0509 (13)0.0781 (18)0.095 (2)0.0069 (13)0.0034 (14)0.0142 (16)
Geometric parameters (Å, º) top
O1—C11.198 (2)C22—C23A1.381 (8)
O2—C11.334 (2)C22—C231.517 (4)
O2—H20.87 (2)C22—H2210.9900
O4—C41.2320 (19)C22—H2220.9900
O7—C71.2393 (18)C22—H2230.9900
O10—C101.2265 (19)C22—H2240.9900
O13—C131.2434 (19)C23—C241.514 (3)
O19—C201.426 (3)C23—H2310.9900
O19—C181.431 (3)C23—H2320.9900
O30—C301.365 (2)C23A—C241.489 (6)
O30—C331.428 (2)C23A—H2330.9900
N3—C41.346 (2)C23A—H2340.9900
N3—C21.464 (2)C24—H2410.9900
N3—C161.479 (2)C24—H2420.9900
N6—C71.337 (2)C24—H2430.9900
N6—C51.4721 (19)C24—H2440.9900
N6—H60.87 (2)C25—H2510.9800
N9—C101.357 (2)C25—H2520.9800
N9—C81.461 (2)C25—H2530.9800
N9—C241.472 (2)C26—H2610.9800
N12—C131.344 (2)C26—H2620.9800
N12—C111.469 (2)C26—H2630.9800
N12—H120.80 (2)C27—C321.392 (2)
C1—C21.528 (2)C27—C281.401 (2)
C2—C141.529 (2)C28—C291.382 (2)
C2—H11.0000C28—H280.9500
C4—C51.549 (2)C29—C301.389 (2)
C5—C171.540 (2)C29—H290.9500
C5—C211.544 (2)C30—C311.393 (2)
C7—C81.517 (2)C31—C321.383 (2)
C8—C221.531 (3)C31—H310.9500
C8—H81.0000C32—H320.9500
C10—C111.537 (2)C33—H3310.9800
C11—C251.534 (2)C33—H3320.9800
C11—C261.537 (2)C33—H3330.9800
C13—C271.489 (2)S1A—O31.452 (2)
C14—C151.520 (3)S1A—C351.759 (3)
C14—H1410.9900S1A—C341.763 (3)
C14—H1420.9900S1B—O31.366 (4)
C15—C161.522 (2)S1B—C351.589 (4)
C15—H1510.9900S1B—C341.803 (4)
C15—H1520.9900C34—H3410.9800
C16—H1610.9900C34—H3420.9800
C16—H1620.9900C34—H3430.9800
C17—C181.512 (3)C34—H3440.9800
C17—H1710.9900C34—H3450.9800
C17—H1720.9900C34—H3460.9800
C18—H1810.9900C35—H3510.9800
C18—H1820.9900C35—H3520.9800
C20—C211.515 (3)C35—H3530.9800
C20—H2010.9900C35—H3540.9800
C20—H2020.9900C35—H3550.9800
C21—H2110.9900C35—H3560.9800
C21—H2120.9900
C1—O2—H2108.0 (16)C8—C22—H221110.5
C20—O19—C18110.20 (15)C23—C22—H222110.5
C30—O30—C33117.22 (13)C8—C22—H222110.5
C4—N3—C2118.99 (12)H221—C22—H222108.7
C4—N3—C16129.66 (13)C23A—C22—H223110.7
C2—N3—C16111.25 (13)C8—C22—H223110.7
C7—N6—C5121.26 (13)C23A—C22—H224110.7
C7—N6—H6119.4 (13)C8—C22—H224110.7
C5—N6—H6117.0 (13)H223—C22—H224108.8
C10—N9—C8117.53 (13)C24—C23—C22103.9 (2)
C10—N9—C24130.52 (13)C24—C23—H231111.0
C8—N9—C24111.05 (13)C22—C23—H231111.0
C13—N12—C11121.47 (14)C24—C23—H232111.0
C13—N12—H12119.0 (16)C22—C23—H232111.0
C11—N12—H12117.3 (16)H231—C23—H232109.0
O1—C1—O2124.53 (15)C22—C23A—C24112.5 (5)
O1—C1—C2125.60 (14)C22—C23A—H233109.1
O2—C1—C2109.84 (14)C24—C23A—H233109.1
N3—C2—C1110.40 (13)C22—C23A—H234109.1
N3—C2—C14103.54 (12)C24—C23A—H234109.1
C1—C2—C14110.24 (13)H233—C23A—H234107.8
N3—C2—H1110.8N9—C24—C23A102.1 (3)
C1—C2—H1110.8N9—C24—C23102.94 (17)
C14—C2—H1110.8N9—C24—H241111.2
O4—C4—N3120.73 (14)C23—C24—H241111.2
O4—C4—C5119.81 (14)N9—C24—H242111.2
N3—C4—C5119.11 (13)C23—C24—H242111.2
N6—C5—C17108.49 (12)H241—C24—H242109.1
N6—C5—C21107.72 (13)N9—C24—H243111.3
C17—C5—C21108.02 (13)C23A—C24—H243111.3
N6—C5—C4111.80 (13)N9—C24—H244111.3
C17—C5—C4110.03 (13)C23A—C24—H244111.3
C21—C5—C4110.67 (13)H243—C24—H244109.2
O7—C7—N6121.95 (15)C11—C25—H251109.5
O7—C7—C8119.43 (14)C11—C25—H252109.5
N6—C7—C8118.61 (13)H251—C25—H252109.5
N9—C8—C7114.92 (12)C11—C25—H253109.5
N9—C8—C22104.45 (14)H251—C25—H253109.5
C7—C8—C22110.77 (14)H252—C25—H253109.5
N9—C8—H8108.8C11—C26—H261109.5
C7—C8—H8108.8C11—C26—H262109.5
C22—C8—H8108.8H261—C26—H262109.5
O10—C10—N9120.34 (14)C11—C26—H263109.5
O10—C10—C11119.60 (14)H261—C26—H263109.5
N9—C10—C11119.83 (13)H262—C26—H263109.5
N12—C11—C25108.71 (14)C32—C27—C28118.65 (15)
N12—C11—C26109.42 (13)C32—C27—C13117.50 (13)
C25—C11—C26110.16 (14)C28—C27—C13123.82 (14)
N12—C11—C10112.28 (12)C29—C28—C27119.87 (15)
C25—C11—C10109.54 (13)C29—C28—H28120.1
C26—C11—C10106.72 (13)C27—C28—H28120.1
O13—C13—N12120.45 (15)C28—C29—C30120.72 (15)
O13—C13—C27120.77 (14)C28—C29—H29119.6
N12—C13—C27118.77 (14)C30—C29—H29119.6
C15—C14—C2102.88 (14)O30—C30—C29116.00 (14)
C15—C14—H141111.2O30—C30—C31123.90 (15)
C2—C14—H141111.2C29—C30—C31120.10 (15)
C15—C14—H142111.2C32—C31—C30118.86 (15)
C2—C14—H142111.2C32—C31—H31120.6
H141—C14—H142109.1C30—C31—H31120.6
C14—C15—C16102.97 (15)C31—C32—C27121.79 (15)
C14—C15—H151111.2C31—C32—H32119.1
C16—C15—H151111.2C27—C32—H32119.1
C14—C15—H152111.2O30—C33—H331109.5
C16—C15—H152111.2O30—C33—H332109.5
H151—C15—H152109.1H331—C33—H332109.5
N3—C16—C15103.33 (13)O30—C33—H333109.5
N3—C16—H161111.1H331—C33—H333109.5
C15—C16—H161111.1H332—C33—H333109.5
N3—C16—H162111.1O3—S1A—C35109.95 (13)
C15—C16—H162111.1O3—S1A—C34105.67 (16)
H161—C16—H162109.1C35—S1A—C3497.1 (2)
C18—C17—C5111.38 (14)O3—S1B—C35126.1 (4)
C18—C17—H171109.4O3—S1B—C34107.5 (3)
C5—C17—H171109.4C35—S1B—C34102.0 (3)
C18—C17—H172109.4S1A—C34—H341109.5
C5—C17—H172109.4S1A—C34—H342109.5
H171—C17—H172108.0H341—C34—H342109.5
O19—C18—C17111.44 (16)S1A—C34—H343109.5
O19—C18—H181109.3H341—C34—H343109.5
C17—C18—H181109.3H342—C34—H343109.5
O19—C18—H182109.3S1B—C34—H344109.5
C17—C18—H182109.3S1B—C34—H345109.5
H181—C18—H182108.0H344—C34—H345109.5
O19—C20—C21111.66 (15)S1B—C34—H346109.5
O19—C20—H201109.3H344—C34—H346109.5
C21—C20—H201109.3H345—C34—H346109.5
O19—C20—H202109.3S1A—C35—H351109.5
C21—C20—H202109.3S1A—C35—H352109.5
H201—C20—H202107.9H351—C35—H352109.5
C20—C21—C5114.20 (15)S1A—C35—H353109.5
C20—C21—H211108.7H351—C35—H353109.5
C5—C21—H211108.7H352—C35—H353109.5
C20—C21—H212108.7S1B—C35—H354109.5
C5—C21—H212108.7S1B—C35—H355109.5
H211—C21—H212107.6H354—C35—H355109.5
C23A—C22—C8105.1 (3)S1B—C35—H356109.5
C23—C22—C8106.09 (17)H354—C35—H356109.5
C23—C22—H221110.5H355—C35—H356109.5
C4—N3—C2—C177.56 (18)C21—C5—C17—C1849.02 (19)
C16—N3—C2—C1105.76 (15)C4—C5—C17—C1871.89 (18)
C4—N3—C2—C14164.46 (14)C20—O19—C18—C1763.9 (2)
C16—N3—C2—C1412.22 (18)C5—C17—C18—O1959.5 (2)
O1—C1—C2—N39.7 (2)C18—O19—C20—C2159.6 (2)
O2—C1—C2—N3172.24 (12)O19—C20—C21—C552.7 (2)
O1—C1—C2—C14104.13 (19)N6—C5—C21—C20163.52 (15)
O2—C1—C2—C1473.97 (17)C17—C5—C21—C2046.52 (19)
C2—N3—C4—O43.6 (2)C4—C5—C21—C2073.99 (18)
C16—N3—C4—O4172.40 (16)N9—C8—C22—C23A19.5 (6)
C2—N3—C4—C5169.63 (13)C7—C8—C22—C23A104.8 (6)
C16—N3—C4—C514.4 (2)N9—C8—C22—C2312.2 (3)
C7—N6—C5—C17175.20 (14)C7—C8—C22—C23136.4 (2)
C7—N6—C5—C2168.11 (18)C23A—C22—C23—C2463.7 (4)
C7—N6—C5—C453.69 (19)C8—C22—C23—C2428.7 (3)
O4—C4—C5—N6133.33 (15)C23—C22—C23A—C2473.4 (7)
N3—C4—C5—N653.40 (19)C8—C22—C23A—C2422.8 (9)
O4—C4—C5—C17106.06 (17)C10—N9—C24—C23A171.4 (5)
N3—C4—C5—C1767.22 (18)C8—N9—C24—C23A2.8 (5)
O4—C4—C5—C2113.2 (2)C10—N9—C24—C23140.9 (2)
N3—C4—C5—C21173.48 (14)C8—N9—C24—C2327.7 (3)
C5—N6—C7—O711.3 (2)C22—C23A—C24—N916.5 (9)
C5—N6—C7—C8169.78 (14)C22—C23A—C24—C2378.4 (10)
C10—N9—C8—C778.00 (18)C22—C23—C24—N933.8 (3)
C24—N9—C8—C7111.71 (16)C22—C23—C24—C23A58.0 (6)
C10—N9—C8—C22160.44 (15)O13—C13—C27—C321.6 (2)
C24—N9—C8—C229.85 (19)N12—C13—C27—C32178.69 (15)
O7—C7—C8—N9176.18 (14)O13—C13—C27—C28179.64 (16)
N6—C7—C8—N94.9 (2)N12—C13—C27—C280.7 (2)
O7—C7—C8—C2265.8 (2)C32—C27—C28—C290.3 (2)
N6—C7—C8—C22113.20 (17)C13—C27—C28—C29177.63 (16)
C8—N9—C10—O106.6 (2)C27—C28—C29—C300.1 (3)
C24—N9—C10—O10174.63 (16)C33—O30—C30—C29163.21 (15)
C8—N9—C10—C11167.91 (13)C33—O30—C30—C3116.9 (2)
C24—N9—C10—C110.1 (2)C28—C29—C30—O30179.63 (16)
C13—N12—C11—C2573.25 (18)C28—C29—C30—C310.5 (3)
C13—N12—C11—C26166.40 (15)O30—C30—C31—C32179.34 (16)
C13—N12—C11—C1048.1 (2)C29—C30—C31—C320.8 (3)
O10—C10—C11—N12137.80 (15)C30—C31—C32—C270.5 (3)
N9—C10—C11—N1247.67 (19)C28—C27—C32—C310.0 (2)
O10—C10—C11—C2516.9 (2)C13—C27—C32—C31178.07 (15)
N9—C10—C11—C25168.55 (14)C35—S1B—O3—S1A59.6 (3)
O10—C10—C11—C26102.32 (17)C34—S1B—O3—S1A60.4 (2)
N9—C10—C11—C2672.21 (17)C35—S1A—O3—S1B42.1 (3)
C11—N12—C13—O1311.4 (2)C34—S1A—O3—S1B61.7 (3)
C11—N12—C13—C27168.90 (14)O3—S1A—C34—S1B54.6 (2)
N3—C2—C14—C1532.26 (17)C35—S1A—C34—S1B58.5 (2)
C1—C2—C14—C1585.84 (16)O3—S1B—C34—S1A61.0 (3)
C2—C14—C15—C1640.31 (18)C35—S1B—C34—S1A73.3 (3)
C4—N3—C16—C15171.04 (17)O3—S1B—C35—S1A56.1 (3)
C2—N3—C16—C1512.74 (19)C34—S1B—C35—S1A66.3 (2)
C14—C15—C16—N332.57 (19)O3—S1A—C35—S1B42.1 (3)
N6—C5—C17—C18165.52 (15)C34—S1A—C35—S1B67.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O7i0.87 (2)1.81 (3)2.6669 (17)168 (2)
N6—H6···O130.87 (2)2.19 (2)3.0468 (17)169.5 (18)
N12—H12···O4ii0.80 (2)2.37 (2)3.1247 (18)156 (2)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H38N4O8·C2H6OS
Mr636.76
Crystal system, space groupOrthorhombic, P212121
Temperature (K)160
a, b, c (Å)10.8594 (1), 13.7414 (2), 21.1929 (3)
V3)3162.48 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.28 × 0.20 × 0.18
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
53400, 9238, 7711
Rint0.044
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.02
No. of reflections9231
No. of parameters433
No. of restraints21
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.33
Absolute structureFlack & Bernardinelli (1999, 2000), 4115 Friedel pairs
Absolute structure parameter0.02 (8)

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O7i0.87 (2)1.81 (3)2.6669 (17)168 (2)
N6—H6···O130.87 (2)2.19 (2)3.0468 (17)169.5 (18)
N12—H12···O4ii0.80 (2)2.37 (2)3.1247 (18)156 (2)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y+1, z+1/2.
 

References

First citationAltherr, W., Linden, A. & Heimgartner, H. (2007). Chem. Biodivers. 6, 1144–1169.  Web of Science CSD CrossRef Google Scholar
First citationAravinda, S., Shamala, N. & Balaram, P. (2008). Chem. Biodivers. 5, 1238–1262.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDemizu, Y., Yabuki, Y., Doi, M., Sato, Y., Tanaka, M. & Kurikara, M. (2012). J. Pept. Sci. 18, 466–475.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHeimgartner, H. (1991). Angew. Chem. Int. Ed. Engl. 30, 238–265.  CrossRef Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLuykx, R. T. N., Linden, A. & Heimgartner, H. (2003). Helv. Chim. Acta, 86, 4093–4111.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPradeille, N., Tzouros, M., Möhle, K., Linden, A. & Heimgartner, H. (2012). Chem. Biodivers. 9, 2528–2558.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPrasad, B. V. & Balaram, P. (1984). CRC Crit. Rev. Biochem. 16, 307–348.  CAS PubMed Web of Science Google Scholar
First citationSchweitzer-Stenner, R., Gonzales, W., Bourne, G. T., Feng, J. A. & Marshall, G. R. (2007). J. Am. Chem. Soc. 129, 13095–13109.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStamm, S. & Heimgartner, H. (2004). Eur. J. Org. Chem. pp. 3820–3827.  Web of Science CrossRef Google Scholar
First citationStamm, S. & Heimgartner, H. (2006). Tetrahedron, 62, 9671–9680.  Web of Science CrossRef CAS Google Scholar
First citationStamm, S., Linden, A. & Heimgartner, H. (2003). Helv. Chim. Acta, 86, 1371–1396.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoykova, S. A., Linden, A. & Heimgartner, H. (2012). Helv. Chim. Acta, 95, 1325–1351.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuter, G., Stoykova, S. A., Linden, A. & Heimgartner, H. (2000). Helv. Chim. Acta, 83, 2961–2974.  CrossRef CAS Google Scholar
First citationToniolo, C. & Benedetti, E. (1991). Macromolecules, 24, 4004–4009.  CrossRef CAS Web of Science Google Scholar
First citationWhitmore, L. & Wallace, B. A. (2004). Nucleic Acids Res. 32, D593–D594.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o419-o420
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds