organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-6-[(2,4-dimeth­­oxy­benz­yl)amino]-9-iso­propyl-9H-purine

aDepartment of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
*Correspondence e-mail: zdenek.travnicek@upol.cz

(Received 9 February 2013; accepted 11 February 2013; online 16 February 2013)

In the title compound, C17H20ClN5O2, the benzene ring and the purine ring system make a dihedral angle of 78.56 (4)°. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers. C—H⋯O and C—H⋯Cl contacts further link the mol­ecules, forming a three-dimensional network.

Related literature

For the synthesis, see: Oh et al. (1999[Oh, C. H., Lee, S. C., Lee, K. S., Woo, E. R., Hong, C. Y., Yang, B. S., Baek, D. J. & Cho, J. H. (1999). Arch. Pharm. Pharm. Med. Chem. 332, 187-190.]). For related structures, see: Trávníček & Popa (2007a[Trávníček, Z. & Popa, I. (2007a). Acta Cryst. E63, o629-o631.],b[Trávníček, Z. & Popa, I. (2007b). Acta Cryst. E63, o728-o730.]); Trávníček et al. (2010[Trávníček, Z., Popa, I., Čajan, M., Zbořil, R., Kryštof, V. & Mikulík, J. (2010). J. Inorg. Biochem. 104, 405-417.]); Čajan & Trávníček (2011[Čajan, M. & Trávníček, Z. (2011). J. Mol. Struct. 994, 350-359.]). For the cytotoxic activity of related compounds, see: Benson et al. (2005[Benson, C., Kaye, S., Workman, P., Garret, M., Walton, M. & de Bono, J. (2005). Br. J. Cancer, 92, 7-12.]); Meijer et al. (1997[Meijer, L., Borgne, A., Mulner, O., Chong, J. P. J., Blow, J. J., Inagaki, N., Inagaki, M., Delcros, J. G. & Moulinoux, J. P. (1997). Eur. J. Biochem. 243, 527-536.]); Štarha et al. (2010[Štarha, P., Trávníček, Z. & Popa, I. (2010). J. Inorg. Biochem. 104, 639-647.]); Vrzal et al. (2010[Vrzal, R., Štarha, P., Dvořák, Z. & Trávníček, Z. (2010). J. Inorg. Biochem. 104, 1130-1132.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20ClN5O2

  • Mr = 361.83

  • Triclinic, [P \overline 1]

  • a = 7.8620 (2) Å

  • b = 9.20164 (18) Å

  • c = 13.3027 (3) Å

  • α = 82.4472 (18)°

  • β = 74.803 (2)°

  • γ = 66.012 (2)°

  • V = 848.16 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Agilent Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.908, Tmax = 0.930

  • 7228 measured reflections

  • 2965 independent reflections

  • 2704 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 1.10

  • 2965 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯N7i 0.88 2.16 2.9465 (15) 148
C16—H16C⋯Cl1ii 0.98 2.78 3.4607 (15) 127
C19—H19A⋯O2iii 0.98 2.57 3.4709 (17) 154
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z; (iii) x, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I) is derived from 6-benzylaminopurine, which is along with its derivatives classified among plant growth hormones called cytokinins, which influence crucial biochemical processes, such as cell cycle and division, in plant tissues. Suitable substitutions on the 6-benzylaminopurine skeleton, particularly in the C2 and N9 positions, lead to the formation of compounds that can act as inhibitors of enzymes cyclin dependent kinases in various phases of the human cell cycle (Meijer et al., 1997). One representative of such derivatives, (R)-Roscovitine, i.e. 2-[(R)-(1-ethyl-2-hydroxyethylamino)]-6-(benzylamino)-9-isopropylpurine (Seliciclib or CYC202), has entered the IIb phase of clinical trials in patients with nonsmall cell lung cancer (Benson et al., 2005). Moreover, 6-benzylaminopurine derivatives have been successfully used as N-donor ligands in transition metal complexes exhibiting varied types of biological activity. Even the title compound (I) has been employed as a ligand in the preparation of highly anticancer active platinum(II) oxalato complexes whose in vitro cytotoxic activity against various human cancer cells exceeded the commercially applied drug cisplatin (Štarha et al., 2010; Vrzal et al., 2010).

The molecular structure of (I) consists of discrete molecules of a three-substituted adenine derivative, 2-chloro-6-[(2,4-dimethoxybenzyl)amino]-9-isopropylpurine (Fig. 1). It is basically derived from the 6-benzylaminopurine skeleton by substitutions of H atoms by the methoxy groups in the positions 2 and 4 on the benzene ring, by chlorine, and the isopropyl group in the position C2, and N9, of purine, respectively. The molecule contains two heterocyclic rings pyrimidine and imidazole, which are almost coplanar, since they form a dihedral angle of 2.02 (5)°. Additionally, there is also a benzene ring present in the structure of (I) which is similarly to the other two rings essentially planar. The maximum deviations from the least-square planes fitted through the non-hydrogen atoms for each of the rings are as follows: 0.0102 (14) Å for C4 in pyrimidine, 0.0025 (14) Å for C8 in imidazole and 0.007 (2) Å for C14 in benzene. The benzene and purine ring systems form a dihedral angle of 78.56 (4)°.

The crystal structure of (I) consists of the molecules of 2-chloro-6-[(2,4-dimethoxybenzyl)amino]-9-isopropylpurine organized into centrosymmetric dimers connected by N—H···N hydrogen bonds (Table 1, Fig. 2). Additionally, varied types of non-covalent contacts are present in the structure of (I), namely C—H···O [d(C19···O2iii) = 3.471 (2) Å; d(C17···O1iv) = 3.358 (2) Å; symmetry codes: (iii) x, y, 1 + z; (iv) 1 - x, 1 - y, -z], C—H···Cl [d(C16···Cl1ii) = 3.820 (2) Å; d(C20···Cl1v) = 3.461 (2) Å; symmetry codes: (ii) 1 - x, 2 - y, -z; (v) 2 - x, 2 - y, 1 - z], C—H···N [d(C17···N1vi) = 3.435 (2) Å], C—H···C [d(C17···C2vi) = 3.603 (2) Å; symmetry code: (vi) 2 - x, 1 - y, -z] as well as C···Cl contacts [d(C8···Cl1vii) = 3.3888 (11) Å; symmetry code: (vii) 1 - x, 2 - y, 1 - z] (Fig. 3 and 4), forming an extended three-dimensional network.

Related literature top

For the synthesis, see: Oh et al. (1999). For related structures, see: Trávníček & Popa (2007a,b); Trávníček et al. (2010); Čajan & Trávníček (2011). For the cytotoxic activity of related compounds, see: Benson et al. (2005); Meijer et al. (1997); Štarha et al. (2010); Vrzal et al. (2010).

Experimental top

Compound (I) was prepared, as a prospective ligand for syntheses of transition metal complexes, by the procedure described previously (Oh et al., 1999). The resulting product was recrystallized from hot ethanol and crystals suitable for X-ray analysis were formed after several days of slow evaporation at room temperature. The crystals were characterized by elemental analysis, NMR spectroscopy and single-crystal X-ray analysis. 1H NMR (DMF-d7, TMS, 298 K, p.p.m.): 8.28 (s, 1H, C8H), 8.23 (t, 6.8, N6H, 1H), 7.23 (d, 8.2, C15H, 1H), 6.62 (d, 2.4, C12H, 1H), 6.49 (dd, 8.2, 2.4, C14H, 1H), 4.76 (sep, 6.8, C18H, 1H), 4.72 (d, 5.9, C9H, 2H), 3.89 (s, C16H, 3H), 3.80 (s, C17H, 3H), 1.58 (d, 6.8, C19H, C20H, 6H). 13C NMR (DMF-d7, TMS, 298 K, p.p.m.): δ 161.03 (C13), 158.99 (C11), 156.27 (C6), 154.01 (C2), 150.49 (C4), 139.96 (C8), 129.37 (C15), 120.32 (C10), 119.71 (C5), 104.90 (C14), 98.93 (C12), 55.88 (C16), 55.65 (C17), 47.90 (C18), 39.36 (C9), 22.42 (C19, C20). 15N NMR (DMF-d7, relative to DMF, 298 K, p.p.m.): δ 241.1 (N7), 228.5 (N1), 224.1 (N3), 179.6 (N9), 91.8 (N6). Analysis calculated for C17H20ClN5O2: C, 56.4; H, 5.6; N, 19.4. Found: C, 56.4; H, 5.9; N, 19.0%. Elemental analysis (C, H, N) was performed on a Thermo Scientific Flash 2000 CHNO-S Analyzer. The 1H, 13C and 15N NMR spectra of the DMF-d7 solutions were obtained at 300 K on a Varian 400 spectrometer at 400.00 MHz, 100.58 MHz and 40.53 MHz respectively. 1H and 13C spectra were calibrated using tetramethylsilane (TMS) as a reference. The 15N NMR spectrum was measured relative to the DMF signals.

Refinement top

Non-hydrogen atoms were refined anisotropically and hydrogen atoms were located in difference maps and refined using the riding model with C—H = 0.95 (CH), C—H = 0.99 (CH2), C—H = 0.98 (CH3) Å, and N—H = 0.88 Å, with Uiso(H) = 1.2Ueq(CH, CH2, NH) and 1.5Ueq(CH3).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) with the non-hydrogen atoms depicted as thermal ellipsoids at the 50% probability level shown with the atom numbering.
[Figure 2] Fig. 2. A part of the crystal structure of (I) showing the N—H···N hydrogen bonds connecting the individual molecules into centrosymmetric dimers (symmetry code: (i) -x + 1, -y + 1, -z + 1). Hydrogen atoms not involved in the contacts were omitted for clarity.
[Figure 3] Fig. 3. A part of the crystal structure of (I) showing the centrosymmetric dimers connected by C···Cl non-covalent contacts (symmetry codes: (i) -x + 1, -y + 1, -z + 1; (vii) 1 - x, 2 - y, 1 - z). Hydrogen atoms not involved in the contacts were omitted for clarity.
[Figure 4] Fig. 4. A part of the crystal structure of (I) showing the present non-covalent interactions of the C—H···O, C—H···Cl, C—H···N, C—H···C types (symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 2 - y, -z; (iii) x, y, 1 + z; (iv) 1 - x, 1 - y, -z; (v) 2 - x, 2 - y, 1 - z; (vi) 2 - x, 1 - y, -z). Hydrogen atoms not involved in the contacts were omitted for clarity.
2-Chloro-6-[(2,4-dimethoxybenzyl)amino]-9-isopropyl-9H-purine top
Crystal data top
C17H20ClN5O2Z = 2
Mr = 361.83F(000) = 380
Triclinic, P1Dx = 1.417 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8620 (2) ÅCell parameters from 7872 reflections
b = 9.20164 (18) Åθ = 3.0–31.9°
c = 13.3027 (3) ŵ = 0.25 mm1
α = 82.4472 (18)°T = 100 K
β = 74.803 (2)°Prism, colourless
γ = 66.012 (2)°0.40 × 0.35 × 0.30 mm
V = 848.16 (3) Å3
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
2965 independent reflections
Radiation source: Enhance (Mo) X-ray Source2704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
Detector resolution: 8.3611 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 108
Tmin = 0.908, Tmax = 0.930l = 1515
7228 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.2812P]
where P = (Fo2 + 2Fc2)/3
2965 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H20ClN5O2γ = 66.012 (2)°
Mr = 361.83V = 848.16 (3) Å3
Triclinic, P1Z = 2
a = 7.8620 (2) ÅMo Kα radiation
b = 9.20164 (18) ŵ = 0.25 mm1
c = 13.3027 (3) ÅT = 100 K
α = 82.4472 (18)°0.40 × 0.35 × 0.30 mm
β = 74.803 (2)°
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
2965 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2704 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.930Rint = 0.009
7228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.10Δρmax = 0.28 e Å3
2965 reflectionsΔρmin = 0.19 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.70269 (5)1.09303 (4)0.25218 (2)0.02037 (12)
O10.32700 (14)0.87203 (11)0.09283 (7)0.0211 (2)
O20.83383 (14)0.47675 (11)0.12752 (7)0.0219 (2)
N10.58970 (15)0.86255 (13)0.31864 (8)0.0154 (2)
N30.75392 (16)0.92987 (13)0.42340 (8)0.0158 (2)
N60.48258 (16)0.65791 (13)0.35975 (8)0.0157 (2)
H60.48190.57160.39700.019*
N70.63884 (16)0.60705 (13)0.55906 (8)0.0164 (2)
N90.77924 (15)0.76630 (13)0.58170 (8)0.0149 (2)
C20.67876 (18)0.94292 (15)0.34373 (10)0.0151 (3)
C40.72769 (18)0.81144 (15)0.48852 (10)0.0143 (3)
C50.64099 (18)0.71309 (15)0.47514 (10)0.0145 (3)
C60.56932 (18)0.74185 (15)0.38453 (10)0.0142 (3)
C80.72325 (19)0.64331 (15)0.62003 (10)0.0170 (3)
H80.74320.58910.68440.020*
C90.38927 (19)0.70512 (16)0.27300 (10)0.0157 (3)
H9A0.33420.82280.26700.019*
H9B0.28200.66920.28880.019*
C100.51862 (18)0.64023 (15)0.16885 (10)0.0148 (3)
C110.47845 (18)0.72793 (15)0.07743 (10)0.0156 (3)
C120.58604 (19)0.67038 (16)0.01979 (10)0.0171 (3)
H120.55590.73090.08090.021*
C130.73911 (19)0.52284 (16)0.02749 (10)0.0173 (3)
C140.7841 (2)0.43487 (16)0.06153 (11)0.0187 (3)
H140.88960.33520.05660.022*
C150.67172 (19)0.49520 (15)0.15851 (10)0.0178 (3)
H150.70160.43430.21960.021*
C160.2745 (2)0.96545 (17)0.00354 (11)0.0259 (3)
H16A0.38420.98660.03990.039*
H16B0.16821.06650.02560.039*
H16C0.23500.90770.03670.039*
C170.9907 (2)0.32597 (17)0.14131 (12)0.0253 (3)
H17A1.04880.30930.21580.038*
H17B0.94470.24160.11200.038*
H17C1.08610.32350.10560.038*
C180.89162 (19)0.83166 (15)0.62220 (10)0.0161 (3)
H180.85470.94600.59900.019*
C190.8456 (2)0.82494 (17)0.74010 (10)0.0199 (3)
H19A0.88710.71360.76490.030*
H19B0.70730.87930.76690.030*
H19C0.91250.87760.76490.030*
C201.1021 (2)0.74454 (19)0.57366 (12)0.0267 (3)
H20A1.14450.63370.59950.040*
H20B1.17620.79620.59250.040*
H20C1.12190.74740.49770.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0287 (2)0.02086 (19)0.01726 (18)0.01511 (15)0.00878 (14)0.00570 (13)
O10.0227 (5)0.0188 (5)0.0140 (5)0.0003 (4)0.0057 (4)0.0005 (4)
O20.0223 (5)0.0198 (5)0.0176 (5)0.0041 (4)0.0001 (4)0.0037 (4)
N10.0163 (5)0.0155 (6)0.0139 (5)0.0065 (5)0.0019 (4)0.0005 (4)
N30.0176 (6)0.0145 (5)0.0153 (6)0.0066 (5)0.0037 (4)0.0000 (4)
N60.0220 (6)0.0169 (6)0.0122 (5)0.0109 (5)0.0061 (5)0.0024 (4)
N70.0208 (6)0.0163 (6)0.0131 (5)0.0085 (5)0.0038 (4)0.0003 (4)
N90.0184 (6)0.0153 (5)0.0130 (5)0.0078 (5)0.0050 (4)0.0005 (4)
C20.0158 (6)0.0134 (6)0.0139 (6)0.0049 (5)0.0012 (5)0.0003 (5)
C40.0141 (6)0.0132 (6)0.0127 (6)0.0031 (5)0.0012 (5)0.0022 (5)
C50.0144 (6)0.0145 (6)0.0134 (6)0.0048 (5)0.0016 (5)0.0027 (5)
C60.0123 (6)0.0133 (6)0.0142 (6)0.0033 (5)0.0003 (5)0.0029 (5)
C80.0223 (7)0.0160 (6)0.0144 (6)0.0098 (6)0.0030 (5)0.0002 (5)
C90.0180 (6)0.0178 (7)0.0141 (6)0.0087 (5)0.0062 (5)0.0012 (5)
C100.0178 (7)0.0164 (7)0.0153 (6)0.0108 (5)0.0054 (5)0.0004 (5)
C110.0153 (6)0.0150 (6)0.0182 (7)0.0068 (5)0.0049 (5)0.0004 (5)
C120.0206 (7)0.0174 (7)0.0146 (6)0.0084 (6)0.0058 (5)0.0024 (5)
C130.0178 (7)0.0190 (7)0.0173 (7)0.0098 (6)0.0022 (5)0.0032 (5)
C140.0195 (7)0.0131 (6)0.0228 (7)0.0045 (5)0.0068 (6)0.0012 (5)
C150.0231 (7)0.0163 (7)0.0179 (7)0.0098 (6)0.0094 (6)0.0031 (5)
C160.0278 (8)0.0227 (7)0.0181 (7)0.0001 (6)0.0084 (6)0.0033 (6)
C170.0223 (7)0.0218 (7)0.0265 (8)0.0052 (6)0.0006 (6)0.0071 (6)
C180.0198 (7)0.0155 (6)0.0168 (7)0.0091 (5)0.0063 (5)0.0012 (5)
C190.0240 (7)0.0232 (7)0.0162 (7)0.0114 (6)0.0065 (6)0.0013 (5)
C200.0212 (8)0.0354 (9)0.0258 (8)0.0124 (7)0.0010 (6)0.0129 (6)
Geometric parameters (Å, º) top
Cl1—C21.7537 (13)C10—C111.4021 (18)
O1—C111.3703 (16)C11—C121.3824 (19)
O1—C161.4213 (16)C12—C131.3948 (19)
O2—C131.3700 (16)C12—H120.9500
O2—C171.4270 (17)C13—C141.3847 (19)
N1—C21.3256 (17)C14—C151.3947 (19)
N1—C61.3574 (17)C14—H140.9500
N3—C21.3130 (17)C15—H150.9500
N3—C41.3496 (17)C16—H16A0.9800
N6—C61.3353 (17)C16—H16B0.9800
N6—C91.4532 (16)C16—H16C0.9800
N6—H60.8800C17—H17A0.9800
N7—C81.3201 (17)C17—H17B0.9800
N7—C51.3841 (17)C17—H17C0.9800
N9—C41.3655 (16)C18—C191.5131 (18)
N9—C81.3676 (17)C18—C201.5153 (19)
N9—C181.4831 (16)C18—H181.0000
C4—C51.3866 (18)C19—H19A0.9800
C5—C61.4113 (18)C19—H19B0.9800
C8—H80.9500C19—H19C0.9800
C9—C101.5151 (18)C20—H20A0.9800
C9—H9A0.9900C20—H20B0.9800
C9—H9B0.9900C20—H20C0.9800
C10—C151.3799 (19)
C11—O1—C16117.98 (10)C13—C12—H12120.2
C13—O2—C17117.58 (11)O2—C13—C14125.13 (12)
C2—N1—C6117.18 (11)O2—C13—C12114.52 (12)
C2—N3—C4109.33 (11)C14—C13—C12120.35 (12)
C6—N6—C9121.82 (11)C13—C14—C15118.82 (12)
C6—N6—H6119.1C13—C14—H14120.6
C9—N6—H6119.1C15—C14—H14120.6
C8—N7—C5103.89 (11)C10—C15—C14122.29 (12)
C4—N9—C8105.86 (10)C10—C15—H15118.9
C4—N9—C18124.22 (11)C14—C15—H15118.9
C8—N9—C18129.61 (11)O1—C16—H16A109.5
N3—C2—N1132.07 (12)O1—C16—H16B109.5
N3—C2—Cl1114.30 (10)H16A—C16—H16B109.5
N1—C2—Cl1113.62 (9)O1—C16—H16C109.5
N3—C4—N9126.58 (12)H16A—C16—H16C109.5
N3—C4—C5127.06 (12)H16B—C16—H16C109.5
N9—C4—C5106.35 (11)O2—C17—H17A109.5
N7—C5—C4110.24 (11)O2—C17—H17B109.5
N7—C5—C6133.27 (12)H17A—C17—H17B109.5
C4—C5—C6116.46 (12)O2—C17—H17C109.5
N6—C6—N1118.06 (11)H17A—C17—H17C109.5
N6—C6—C5124.07 (12)H17B—C17—H17C109.5
N1—C6—C5117.87 (11)N9—C18—C19111.14 (10)
N7—C8—N9113.66 (12)N9—C18—C20108.83 (10)
N7—C8—H8123.2C19—C18—C20113.22 (12)
N9—C8—H8123.2N9—C18—H18107.8
N6—C9—C10114.74 (11)C19—C18—H18107.8
N6—C9—H9A108.6C20—C18—H18107.8
C10—C9—H9A108.6C18—C19—H19A109.5
N6—C9—H9B108.6C18—C19—H19B109.5
C10—C9—H9B108.6H19A—C19—H19B109.5
H9A—C9—H9B107.6C18—C19—H19C109.5
C15—C10—C11117.63 (12)H19A—C19—H19C109.5
C15—C10—C9123.29 (12)H19B—C19—H19C109.5
C11—C10—C9119.04 (11)C18—C20—H20A109.5
O1—C11—C12123.76 (11)C18—C20—H20B109.5
O1—C11—C10114.88 (11)H20A—C20—H20B109.5
C12—C11—C10121.36 (12)C18—C20—H20C109.5
C11—C12—C13119.54 (12)H20A—C20—H20C109.5
C11—C12—H12120.2H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···N7i0.882.162.9465 (15)148
C16—H16C···Cl1ii0.982.783.4607 (15)127
C19—H19A···O2iii0.982.573.4709 (17)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H20ClN5O2
Mr361.83
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8620 (2), 9.20164 (18), 13.3027 (3)
α, β, γ (°)82.4472 (18), 74.803 (2), 66.012 (2)
V3)848.16 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerAgilent Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.908, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
7228, 2965, 2704
Rint0.009
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.10
No. of reflections2965
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.19

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···N7i0.882.162.9465 (15)148.3
C16—H16C···Cl1ii0.982.783.4607 (15)127
C19—H19A···O2iii0.982.573.4709 (17)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z; (iii) x, y, z+1.
 

Acknowledgements

This work was supported financially by Palacký University (PrF_2012_009). The authors wish to thank Dr Igor Popa for carrying out the NMR spectroscopy measurements and Mr Tomáš Šilha for performing the CHN elemental analyses.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBenson, C., Kaye, S., Workman, P., Garret, M., Walton, M. & de Bono, J. (2005). Br. J. Cancer, 92, 7–12.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationČajan, M. & Trávníček, Z. (2011). J. Mol. Struct. 994, 350–359.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeijer, L., Borgne, A., Mulner, O., Chong, J. P. J., Blow, J. J., Inagaki, N., Inagaki, M., Delcros, J. G. & Moulinoux, J. P. (1997). Eur. J. Biochem. 243, 527–536.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOh, C. H., Lee, S. C., Lee, K. S., Woo, E. R., Hong, C. Y., Yang, B. S., Baek, D. J. & Cho, J. H. (1999). Arch. Pharm. Pharm. Med. Chem. 332, 187–190.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠtarha, P., Trávníček, Z. & Popa, I. (2010). J. Inorg. Biochem. 104, 639–647.  Web of Science PubMed Google Scholar
First citationTrávníček, Z. & Popa, I. (2007a). Acta Cryst. E63, o629–o631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrávníček, Z. & Popa, I. (2007b). Acta Cryst. E63, o728–o730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrávníček, Z., Popa, I., Čajan, M., Zbořil, R., Kryštof, V. & Mikulík, J. (2010). J. Inorg. Biochem. 104, 405–417.  Web of Science PubMed Google Scholar
First citationVrzal, R., Štarha, P., Dvořák, Z. & Trávníček, Z. (2010). J. Inorg. Biochem. 104, 1130–1132.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds