organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[4-(4-Meth­­oxy­phen­yl)-1-methyl-3-nitro­pyrrolidin-3-yl]methanol

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-25, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

(Received 20 November 2012; accepted 30 January 2013; online 9 February 2013)

In the title compound, C13H18N2O4, the dihedral angle between the benzene and pyrrolidine (all atoms) rings is 70.6 (1)°. The pyrrolidine ring adopts a half-chair conformation. In the crystal, mol­ecules form chains along the c-axis direction linked by O—H⋯N hydrogen bonds, which are then connected by C—H⋯O inter­actions, forming a sheet parallel to the bc plane.

Related literature

For information on the pyrrolidine ring in biologically active natural compounds, see: Gu et al. (2004[Gu, Y. G., Zhang, X., Clark, R. F., Djuric, S. & Ma, Z. (2004). Tetrahedron Lett. 45, 3051-3053.]). For the use of pyrrolidine-containing mol­ecules in the treatment of diseases, see, for example: Horri et al. (1986[Horri, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N. & Matsui, K. (1986). J. Med. Chem. 29, 1038-1046.]) for diabetes and Karpas et al. (1988[Karpas, A., Fleet, G. W. J., Dwek, R. A., Petursson, S., Mamgoong, S. K., Ramsden, N. G., Jacob, G. S. & Rademacher, T. W. (1988). Proc. Natl Acad. Sci. USA, 85, 9229-9233.]) for viral infections. For bond lengths in a related structure, see: Jayabharathi et al. (2009[Jayabharathi, J., Thanikachalam, V. & Saravanan, K. (2009). J. Photochem. Photobiol. A, 208, 13-20.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2O4

  • Mr = 266.29

  • Monoclinic, P 21 /c

  • a = 11.6827 (10) Å

  • b = 11.1912 (11) Å

  • c = 11.1789 (11) Å

  • β = 109.118 (2)°

  • V = 1381.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 12464 measured reflections

  • 3407 independent reflections

  • 2282 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.162

  • S = 1.01

  • 3407 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1i 0.82 2.01 2.8237 (16) 170
C1—H1A⋯O2ii 0.96 2.51 3.390 (2) 153
C3—H3⋯O3iii 0.93 2.51 3.429 (2) 171
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF.

Pyrrolidine ring is present in many biologically active natural compounds and pharmaceuticals (Gu et al., 2004), and find utility in the treatment of diseases such as diabetes (Horri et al.,1986), and viral infections (Karpas et al., 1988).

The bond lengths C8—C13 = 1.525 (2) Å; C13—N1=1.460 (2) Å; C11—N1 = 1.462 (2) Å; C11—C9= 1.520 (2) Å; C8—C9= 1.566 (2) Å are longer than the normal values but are comparable with the values of such distances in the reported structure (Jayabharathi et al., 2009). This may be due to the steric forces caused by the bulky group at C8 and C9 of pyrrolidine moiety. C1—O1 [1.416 (3) Å] is longer than C2—O1 [1.367 (2) Å]; this may be due the end atom C1.The dihedral angle between phenyl and pyrrolidine ring is 70.6 (1)°. The sum of angles around N3 [360°] and N1[329.1 (1)°] indicates sp2and sp3hybridization, respectively. The five membered ring adopts half chair conformation.The crystal structure is stabilized by intermolecular O—H···N and C—H···O type hydrogen bonds.

Related literature top

For information on the pyrrolidine ring in biologically active natural compounds, see: Gu et al. (2004). For the use of pyrrolidine-containing molecules in the treatment of diseases, see, for example: Horri et al. (1986) for diabetes and Karpas et al. (1988) for viral infections. For bond lengths in a related structure, see: Jayabharathi et al. (2009).

Experimental top

Typical Procedure for the synthesis of (E)-3-(4-methoxyphenyl)-2-nitroprop-2-en-1-ol:

To a stirred soln of (E)-1-methoxy-4-(2-nitrovinyl)benzene (10 mmol) in THF (20 mL) at r.t. was added imidazole (1 equiv) followed by anthranilic acid (10 mol%). Aq formaldehyde (38%, 20 mL, excess) was then added and the mixture was stirred at r.t. for the period of 48h. On completion of the reaction (TLC analysis), the mixture was acidified with 5 M HCl (20 mL) and the aqueous layer was extracted with EtOAc (3 × 25 mL). The combined organic layers were washed with brine (50 mL), dried (anhyd Na2SO4), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc–hexanes, 0–25%, gradient elution) to afford pure (E)-3-(4-methoxyphenyl)-2-nitroprop-2-en-1-ol in 50% yield as yellow oil.

A mixture of (E)-3-(4-methoxyphenyl)-2-nitroprop-2-en-1-ol (2 mmol,0.42 g), para formaldehyde (12 mmol,0.36 g) and sacrosine (6 mmol,0.53 g) in acetonitrile(8 ml) was refluxed for 8hrs. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3x10ml) and dried over anhydrous Na2SO4.The organic layer was concentrated and purified by column chromatography on silica gel (Acme 100–200 mesh), using ethyl acetate:hexane (3:7) to provide the title compound as a colourless solid in 73% (0.39 g) yield.

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distance of 0.93 - 0.97 Å, O—H distance of 0.82 Å and Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure. The dashed lines indicate the hydrogen bonds.
[4-(4-Methoxyphenyl)-1-methyl-3-nitropyrrolidin-3-yl]methanol top
Crystal data top
C13H18N2O4F(000) = 568
Mr = 266.29Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3407 reflections
a = 11.6827 (10) Åθ = 1.5–28.3°
b = 11.1912 (11) ŵ = 0.10 mm1
c = 11.1789 (11) ÅT = 293 K
β = 109.118 (2)°Block, colourless
V = 1381.0 (2) Å30.22 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2282 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
ω and ϕ scanh = 1515
12464 measured reflectionsk = 1414
3407 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3407 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C13H18N2O4V = 1381.0 (2) Å3
Mr = 266.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6827 (10) ŵ = 0.10 mm1
b = 11.1912 (11) ÅT = 293 K
c = 11.1789 (11) Å0.22 × 0.20 × 0.20 mm
β = 109.118 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2282 reflections with I > 2σ(I)
12464 measured reflectionsRint = 0.031
3407 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
3407 reflectionsΔρmin = 0.16 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36799 (16)0.15244 (19)0.51274 (18)0.0686 (5)
H1A0.44680.17720.45920.103*
H1B0.37430.07700.55090.103*
H1C0.31510.14450.46310.103*
C20.20810 (13)0.21887 (15)0.69433 (15)0.0481 (4)
C30.13157 (13)0.12749 (15)0.68781 (14)0.0487 (4)
H30.15400.07510.61950.058*
C40.02079 (13)0.11333 (14)0.78317 (14)0.0451 (4)
H40.03010.05130.77720.054*
C50.01580 (12)0.18913 (13)0.88680 (13)0.0397 (3)
C60.06274 (14)0.28269 (16)0.88911 (16)0.0544 (4)
H60.04070.33550.95710.065*
C70.17096 (15)0.29922 (17)0.79468 (17)0.0589 (5)
H70.21970.36410.79760.071*
C80.13415 (12)0.17615 (13)0.99434 (12)0.0388 (3)
H80.11980.20541.07080.047*
C90.24446 (12)0.24842 (13)0.98146 (12)0.0380 (3)
C100.22476 (13)0.29756 (15)0.84980 (13)0.0443 (4)
H10A0.20560.23300.78850.053*
H10B0.15760.35350.82700.053*
C110.35084 (14)0.16266 (15)1.02668 (14)0.0484 (4)
H11A0.36720.12560.95550.058*
H11B0.42320.20391.07830.058*
C120.38953 (16)0.03316 (17)1.12644 (17)0.0643 (5)
H12A0.47010.01191.17830.096*
H12B0.39160.06591.04780.096*
H12C0.35730.09151.16970.096*
C130.18708 (14)0.05085 (15)1.02428 (15)0.0481 (4)
H13A0.14510.00541.07110.058*
H13B0.18260.00790.94750.058*
N10.31240 (11)0.07359 (12)1.10121 (11)0.0433 (3)
N30.26471 (14)0.35622 (12)1.07021 (12)0.0509 (4)
O10.32042 (10)0.23895 (12)0.60855 (13)0.0663 (4)
O20.33114 (10)0.35553 (12)0.84933 (10)0.0578 (4)
H20.32130.38320.77880.087*
O30.18039 (14)0.42471 (12)1.05376 (14)0.0740 (4)
O40.36032 (15)0.36987 (16)1.15196 (15)0.1019 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0467 (9)0.0815 (14)0.0648 (12)0.0034 (9)0.0006 (8)0.0089 (10)
C20.0367 (7)0.0534 (10)0.0510 (9)0.0001 (7)0.0101 (7)0.0014 (7)
C30.0456 (8)0.0500 (9)0.0461 (8)0.0014 (7)0.0091 (7)0.0101 (7)
C40.0396 (8)0.0449 (9)0.0480 (8)0.0002 (6)0.0107 (7)0.0060 (6)
C50.0366 (7)0.0443 (8)0.0403 (7)0.0048 (6)0.0155 (6)0.0034 (6)
C60.0462 (9)0.0618 (11)0.0532 (9)0.0018 (8)0.0138 (7)0.0168 (8)
C70.0485 (9)0.0589 (11)0.0675 (11)0.0111 (8)0.0164 (9)0.0118 (8)
C80.0392 (7)0.0449 (8)0.0341 (7)0.0050 (6)0.0147 (6)0.0028 (6)
C90.0385 (7)0.0426 (8)0.0312 (7)0.0060 (6)0.0092 (6)0.0026 (5)
C100.0414 (8)0.0549 (9)0.0348 (7)0.0099 (7)0.0098 (6)0.0016 (6)
C110.0406 (8)0.0611 (10)0.0440 (8)0.0002 (7)0.0148 (7)0.0069 (7)
C120.0694 (12)0.0594 (12)0.0626 (11)0.0198 (9)0.0196 (9)0.0076 (8)
C130.0489 (8)0.0451 (9)0.0473 (8)0.0063 (7)0.0116 (7)0.0033 (6)
N10.0432 (7)0.0483 (8)0.0377 (6)0.0036 (5)0.0124 (5)0.0043 (5)
N30.0627 (9)0.0478 (8)0.0384 (7)0.0138 (7)0.0114 (6)0.0022 (6)
O10.0463 (7)0.0686 (9)0.0692 (8)0.0104 (6)0.0013 (6)0.0085 (6)
O20.0480 (6)0.0810 (9)0.0414 (6)0.0216 (6)0.0105 (5)0.0112 (5)
O30.0861 (10)0.0537 (8)0.0824 (9)0.0001 (7)0.0281 (8)0.0176 (7)
O40.0916 (11)0.0971 (12)0.0788 (10)0.0172 (9)0.0244 (9)0.0309 (9)
Geometric parameters (Å, º) top
C1—O11.415 (2)C9—C101.5165 (19)
C1—H1A0.9600C9—C111.520 (2)
C1—H1B0.9600C9—N31.5303 (19)
C1—H1C0.9600C10—O21.4035 (17)
C2—O11.3666 (18)C10—H10A0.9700
C2—C31.376 (2)C10—H10B0.9700
C2—C71.392 (2)C11—N11.4610 (19)
C3—C41.390 (2)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.386 (2)C12—N11.467 (2)
C4—H40.9300C12—H12A0.9600
C5—C61.398 (2)C12—H12B0.9600
C5—C81.5130 (19)C12—H12C0.9600
C6—C71.369 (2)C13—N11.4571 (19)
C6—H60.9300C13—H13A0.9700
C7—H70.9300C13—H13B0.9700
C8—C131.525 (2)N3—O41.1989 (19)
C8—C91.5676 (18)N3—O31.214 (2)
C8—H80.9800O2—H20.8200
O1—C1—H1A109.5C11—C9—C8104.53 (12)
O1—C1—H1B109.5N3—C9—C8107.72 (11)
H1A—C1—H1B109.5O2—C10—C9108.55 (11)
O1—C1—H1C109.5O2—C10—H10A110.0
H1A—C1—H1C109.5C9—C10—H10A110.0
H1B—C1—H1C109.5O2—C10—H10B110.0
O1—C2—C3125.19 (14)C9—C10—H10B110.0
O1—C2—C7115.70 (14)H10A—C10—H10B108.4
C3—C2—C7119.11 (14)N1—C11—C9104.48 (11)
C2—C3—C4120.13 (14)N1—C11—H11A110.9
C2—C3—H3119.9C9—C11—H11A110.9
C4—C3—H3119.9N1—C11—H11B110.9
C5—C4—C3121.74 (14)C9—C11—H11B110.9
C5—C4—H4119.1H11A—C11—H11B108.9
C3—C4—H4119.1N1—C12—H12A109.5
C4—C5—C6116.70 (13)N1—C12—H12B109.5
C4—C5—C8123.84 (13)H12A—C12—H12B109.5
C6—C5—C8119.46 (13)N1—C12—H12C109.5
C7—C6—C5122.22 (15)H12A—C12—H12C109.5
C7—C6—H6118.9H12B—C12—H12C109.5
C5—C6—H6118.9N1—C13—C8103.05 (12)
C6—C7—C2119.99 (15)N1—C13—H13A111.2
C6—C7—H7120.0C8—C13—H13A111.2
C2—C7—H7120.0N1—C13—H13B111.2
C5—C8—C13117.52 (12)C8—C13—H13B111.2
C5—C8—C9116.25 (11)H13A—C13—H13B109.1
C13—C8—C9102.02 (11)C13—N1—C11102.69 (11)
C5—C8—H8106.8C13—N1—C12113.98 (14)
C13—C8—H8106.8C11—N1—C12112.41 (12)
C9—C8—H8106.8O4—N3—O3122.84 (16)
C10—C9—C11113.55 (12)O4—N3—C9120.15 (15)
C10—C9—N3106.59 (12)O3—N3—C9117.01 (13)
C11—C9—N3110.26 (12)C2—O1—C1117.86 (14)
C10—C9—C8114.09 (11)C10—O2—H2109.5
O1—C2—C3—C4177.74 (15)C11—C9—C10—O257.84 (17)
C7—C2—C3—C42.5 (2)N3—C9—C10—O263.75 (15)
C2—C3—C4—C50.3 (2)C8—C9—C10—O2177.49 (12)
C3—C4—C5—C61.7 (2)C10—C9—C11—N1144.62 (12)
C3—C4—C5—C8178.72 (14)N3—C9—C11—N195.86 (13)
C4—C5—C6—C70.4 (2)C8—C9—C11—N119.66 (14)
C8—C5—C6—C7179.95 (16)C5—C8—C13—N1163.40 (11)
C5—C6—C7—C22.4 (3)C9—C8—C13—N135.02 (13)
O1—C2—C7—C6176.40 (16)C8—C13—N1—C1148.96 (14)
C3—C2—C7—C63.8 (3)C8—C13—N1—C12170.81 (12)
C4—C5—C8—C1328.9 (2)C9—C11—N1—C1342.62 (14)
C6—C5—C8—C13151.54 (15)C9—C11—N1—C12165.54 (13)
C4—C5—C8—C992.35 (17)C10—C9—N3—O4115.56 (17)
C6—C5—C8—C987.21 (17)C11—C9—N3—O48.10 (19)
C5—C8—C9—C1013.76 (18)C8—C9—N3—O4121.60 (16)
C13—C8—C9—C10115.42 (13)C10—C9—N3—O364.81 (17)
C5—C8—C9—C11138.37 (12)C11—C9—N3—O3171.52 (13)
C13—C8—C9—C119.19 (13)C8—C9—N3—O358.03 (17)
C5—C8—C9—N3104.35 (13)C3—C2—O1—C17.2 (3)
C13—C8—C9—N3126.47 (12)C7—C2—O1—C1173.08 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.822.012.8237 (16)170
C1—H1A···O2ii0.962.513.390 (2)153
C3—H3···O3iii0.932.513.429 (2)171
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y+1/2, z1/2; (iii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H18N2O4
Mr266.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.6827 (10), 11.1912 (11), 11.1789 (11)
β (°) 109.118 (2)
V3)1381.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12464, 3407, 2282
Rint0.031
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.162, 1.01
No. of reflections3407
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.822.012.8237 (16)170.3
C1—H1A···O2ii0.962.513.390 (2)152.9
C3—H3···O3iii0.932.513.429 (2)171.1
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y+1/2, z1/2; (iii) x, y1/2, z+3/2.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data collection and computer facilities.

References

First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGu, Y. G., Zhang, X., Clark, R. F., Djuric, S. & Ma, Z. (2004). Tetrahedron Lett. 45, 3051–3053.  Web of Science CrossRef CAS Google Scholar
First citationHorri, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N. & Matsui, K. (1986). J. Med. Chem. 29, 1038–1046.  PubMed Web of Science Google Scholar
First citationJayabharathi, J., Thanikachalam, V. & Saravanan, K. (2009). J. Photochem. Photobiol. A, 208, 13–20.  Web of Science CrossRef CAS Google Scholar
First citationKarpas, A., Fleet, G. W. J., Dwek, R. A., Petursson, S., Mamgoong, S. K., Ramsden, N. G., Jacob, G. S. & Rademacher, T. W. (1988). Proc. Natl Acad. Sci. USA, 85, 9229–9233.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds