metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(tetra­hydro­furan-κO)potas­sium]-di-μ-di­methyl­amido-κ4N:N-aluminium-di-μ-di­methyl­amido-κ4N:N-potassium-di-μ-di­methyl­amido-κ4N:N-aluminium-di-μ-di­methyl­amido-κ4N:N]

aNaval Research Laboratory, 4555 Overlook Av, SW, Washington, DC 20375, USA
*Correspondence e-mail: andrew.purdy@nrl.navy.mil

(Received 24 November 2012; accepted 4 February 2013; online 13 February 2013)

The title compound, [Al2K2(C2H6N)8(C4H8O)]n, formed during the sonochemical reaction between Al(NMe2)3 and sodium–potassium alloy in the presence of tetra­hydro­furan (THF). Its asymmetric unit has two inequivalent K+ sites. One site is coordinated by a THF ligand, and crystallizes as a one-dimensional polymer with a backbone of catenated AlN2K rings. A twofold rotation axis bis­ects one K+ site and the THF ligand; the second K+ site is situated on an inversion centre, resulting in a planar four-coordination by N atoms. The latter symmetry operation generates the second half of the THF mol­ecule and fills out the coordination sphere of the potassium sites. The chains extend along the c-axis direction and zigzag at the THF-coordinated K+ sites by an angle of 106.02 (5)°.

Related literature

Several (RR′N)4AlM (M = Li, Na) compounds that have catenated AlN2M chains have been reported previously (Eisler & Chivers, 2006[Eisler, D. J. & Chivers, T. (2006). Can. J. Chem. 84, 443-452.]); Rings et al. 2000[Rings, S., Ischenko, V. & Jansen, M. (2000). Z. Naturforsch Teil B, 55, 730-734.]). The structure of tris­(dimethyl­amino)­aluminium is a mol­ecular dimer, see: Ouzounis et al. (1983[Ouzounis, K., Riffel, H., Hess, H., Kohler, U. & Weidlein, J. (1983). Z. Anorg. Allg. Chem. 504, 67-76.]). Heavily solvated tetra­amino­alanates tend to have separated cations instead of catenated chain structures, see: Hensen et al. (1999[Hensen, K., Lemke, A., Stumpf, T., Bolte, M., Fleischer, H., Pulham, C. R., Gould, R. O. & Harris, S. (1999). Inorg. Chem. 38, 4700-4704.]). For details of the synthesis, see: Ruff (1960[Ruff, J. K. (1960). J. Am. Chem. Soc. 83, 2835-2839.]); Ouzounis et al. (1983[Ouzounis, K., Riffel, H., Hess, H., Kohler, U. & Weidlein, J. (1983). Z. Anorg. Allg. Chem. 504, 67-76.]).

[Scheme 1]

Experimental

Crystal data
  • [Al2K2(C2H6N)8(C4H8O)]

  • Mr = 278.44

  • Monoclinic, C 2/c

  • a = 13.247 (4) Å

  • b = 12.075 (4) Å

  • c = 20.822 (7) Å

  • β = 90.979 (5)°

  • V = 3330.1 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 173 K

  • 0.74 × 0.57 × 0.42 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.776, Tmax = 0.863

  • 18795 measured reflections

  • 4928 independent reflections

  • 3986 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.107

  • S = 1.03

  • 4928 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound consists of an alternating chain of aluminium and potassium ions linked by bridging N atoms into a series of catenated 4-membered rings. One potassium site, K2, is 4-coordinate and planar, whereas a tetrahydrofuran (THF) ligand gives K1 a 5-coordinate twisted geometry. The chain extends along c and zigzags along b by an angle of 106.02° at each K1 atom. All N—Al—N angles are within 3° of the tetrahedral angle, and the Al—N distances of 1.838 (1) - 1.855 (1) Å are within the normal range for covalent Al—N bonds (Hensen, et al., 1999). Similar one-dimensional polymeric chain structures have been observed in the Li and Na tetraamidoaluminates MAl(NH(CHMe2)4)4 (M= Li or Na), and Na(THF)Al(NHp-Tol)4 (Eisler and Chivers, 2006). An alkali amidoaluminate with less sterically demanding ligands, LiAl(NHMe)4 (Rings, et al. 2000), is coordinated in a three-dimensional polymeric framework. Amidoaluminates with fully solvated alkali cations tend to have isolated ions instead (Hensen, et al., 1999).

Related literature top

Several (RR'N)4AlM (M = Li, Na) compounds that have catenated AlN2M chains have been reported previously (Eisler & Chivers, 2006; Rings et al. 2000). The structure of tris(dimethylamino)aluminium is a molecular dimer, see: Ouzounis et al. (1983). Heavily solvated tetraaminoalanates tend to have separated cations instead of catenated chain structures, see: Hensen et al. (1999). For details of the synthesis, see: Ruff (1960); Ouzounis et al. (1983).

Experimental top

All manipulations were performed in an a drybox under argon with dry solvents or inside a closed bulb. Tris(dimethylamino)aluminium (Ruff, 1960) was prepared by slowly adding LiNMe2 (6.07 g, 0.119 mmol) to a solution of AlCl3 (5.24 g, 0.039 mmol) in 50 ml Et2O. After the exotherm was over, the reaction was sonicated for 3 h in a closed bulb and then all solvents were removed under vacuum. The solids were sublimed under dynamic vacuum at 70–90 °C for 12 h, affording 5.51 g A l(NMe2)3 (88%) on the cold finger. The 1H NMR matched reported literature (Ouzounis, et al., 1983).

In an attempt to prepare aluminium nanoparticles a mixture of 1 g A l(NMe2)3 and 0.55 g Na/K (50:50 by wt) in 25 ml of toluene was sonicated for 1 day. Al-27 NMR showed no evidence for aluminium metal. About 5 ml THF was added and the mixture was sonicated for several more days. After filtration in the drybox, the orange-brown solution was allowed to slowly evaporate in a vial. Crystals of the title compound slowly formed.

Refinement top

The full-matrix least-squares refinement on F2 included atomic coordinates and anisotropic thermal parameters for all non-H atoms. The H atoms were included using a riding model, with C—H distances of 0.98 angstroms for the methyl groups, and 0.99 angstroms for the THF molecule.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the asymmetric unit, expanded to show the complete THF ligand. Symmetry code: A, -x+1, y, -z+3/2. Ellipsoids are at the 50& probability level.
[Figure 2] Fig. 2. Packing diagram illustrating the 1-D polymeric chains.
catena-Poly[[(tetrahydrofuran-κO)potassium]-di-µ-dimethylamido-κ4N:N-aluminium-di-µ-dimethylamido-κ4N:N-potassium-di-µ-dimethylamido-κ4N:N-aluminium-di-µ-dimethylamido-κ4N:N] top
Crystal data top
[Al2K2(C2H6N)8(C4H8O)]F(000) = 1216
Mr = 556.88Dx = 1.111 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.247 (4) ÅCell parameters from 6485 reflections
b = 12.075 (4) Åθ = 2.3–30.2°
c = 20.822 (7) ŵ = 0.36 mm1
β = 90.979 (5)°T = 173 K
V = 3330.1 (19) Å3Chunk, orange
Z = 40.74 × 0.57 × 0.42 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4928 independent reflections
Radiation source: fine-focus sealed tube3986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 30.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1818
Tmin = 0.776, Tmax = 0.863k = 1517
18795 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.9926P]
where P = (Fo2 + 2Fc2)/3
4928 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Al2K2(C2H6N)8(C4H8O)]V = 3330.1 (19) Å3
Mr = 556.88Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.247 (4) ŵ = 0.36 mm1
b = 12.075 (4) ÅT = 173 K
c = 20.822 (7) Å0.74 × 0.57 × 0.42 mm
β = 90.979 (5)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4928 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3986 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.863Rint = 0.023
18795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
4928 reflectionsΔρmin = 0.30 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.50000.32471 (3)0.75000.03918 (11)
K20.50000.00000.50000.07103 (19)
Al0.52871 (2)0.22259 (3)0.595808 (16)0.02748 (9)
O1S0.50000.54941 (12)0.75000.0520 (3)
N10.50523 (8)0.23469 (9)0.50846 (5)0.0361 (2)
N20.60258 (8)0.34150 (9)0.62545 (5)0.0374 (2)
N30.59582 (7)0.09033 (8)0.61187 (5)0.0338 (2)
N40.40721 (7)0.21492 (9)0.63840 (5)0.0358 (2)
C1S0.57959 (13)0.61739 (15)0.77418 (9)0.0614 (4)
H1SA0.64450.59610.75470.074*
H1SB0.58620.60960.82140.074*
C2S0.55312 (18)0.73207 (19)0.75688 (16)0.1055 (10)
H2SA0.56920.78290.79290.127*
H2SB0.59100.75610.71880.127*
C110.40625 (11)0.24265 (14)0.47861 (7)0.0497 (3)
H11A0.40610.20360.43740.075*
H11B0.38930.32070.47150.075*
H11C0.35620.20900.50670.075*
C120.58075 (12)0.27839 (15)0.46587 (7)0.0543 (4)
H12A0.58370.23230.42720.081*
H12B0.64680.27810.48780.081*
H12C0.56290.35440.45370.081*
C210.59360 (13)0.44990 (12)0.59569 (8)0.0533 (4)
H21A0.65050.46170.56700.080*
H21B0.59420.50710.62910.080*
H21C0.53010.45400.57090.080*
C220.69696 (10)0.33235 (13)0.66072 (8)0.0501 (3)
H22A0.75310.33520.63070.075*
H22B0.69880.26190.68410.075*
H22C0.70300.39370.69130.075*
C310.68988 (10)0.06920 (12)0.57922 (7)0.0474 (3)
H31A0.69820.01080.57310.057*
H31B0.74630.09790.60520.057*
H31C0.68850.10610.53730.057*
C320.59875 (13)0.03606 (14)0.67380 (7)0.0561 (4)
H32A0.60570.04400.66770.084*
H32B0.53610.05160.69650.084*
H32C0.65640.06390.69910.084*
C410.34632 (11)0.11493 (15)0.63898 (8)0.0555 (4)
H41A0.30360.11230.60010.083*
H41B0.30360.11510.67690.083*
H41C0.39060.05000.64030.083*
C420.34249 (10)0.31184 (15)0.63825 (8)0.0526 (4)
H42A0.29790.31020.60020.079*
H42B0.38410.37890.63730.079*
H42C0.30170.31190.67710.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0424 (2)0.0394 (2)0.03566 (19)0.0000.00112 (14)0.000
K20.1055 (4)0.0351 (2)0.0709 (3)0.0086 (3)0.0445 (3)0.0172 (2)
Al0.02602 (16)0.02410 (17)0.03224 (17)0.00161 (12)0.00140 (12)0.00017 (12)
O1S0.0558 (8)0.0413 (8)0.0586 (9)0.0000.0084 (7)0.000
N10.0381 (5)0.0367 (6)0.0335 (5)0.0005 (4)0.0032 (4)0.0051 (4)
N20.0341 (5)0.0293 (5)0.0488 (6)0.0068 (4)0.0032 (4)0.0014 (4)
N30.0348 (5)0.0297 (5)0.0369 (5)0.0023 (4)0.0034 (4)0.0035 (4)
N40.0268 (4)0.0388 (6)0.0418 (5)0.0039 (4)0.0001 (4)0.0010 (4)
C1S0.0516 (8)0.0589 (10)0.0732 (11)0.0001 (7)0.0148 (7)0.0021 (8)
C2S0.0924 (17)0.0547 (13)0.167 (3)0.0215 (11)0.0594 (17)0.0213 (14)
C110.0500 (8)0.0513 (8)0.0473 (7)0.0007 (6)0.0152 (6)0.0074 (6)
C120.0571 (9)0.0629 (10)0.0433 (7)0.0029 (7)0.0091 (6)0.0151 (7)
C210.0656 (9)0.0294 (7)0.0650 (9)0.0119 (6)0.0007 (7)0.0004 (6)
C220.0353 (6)0.0531 (9)0.0615 (9)0.0094 (6)0.0054 (6)0.0121 (7)
C310.0379 (6)0.0431 (8)0.0611 (8)0.0102 (6)0.0014 (6)0.0014 (6)
C320.0657 (10)0.0530 (9)0.0494 (8)0.0089 (7)0.0050 (7)0.0171 (7)
C410.0431 (7)0.0640 (10)0.0593 (9)0.0239 (7)0.0007 (6)0.0040 (7)
C420.0341 (6)0.0654 (10)0.0581 (9)0.0127 (6)0.0050 (6)0.0092 (7)
Geometric parameters (Å, º) top
K1—O1S2.7133 (18)N3—C311.4521 (17)
K1—N4i2.9274 (12)N4—C421.4506 (18)
K1—N42.9275 (12)N4—C411.4522 (18)
K1—N22.9553 (14)C1S—C2S1.472 (3)
K1—N2i2.9553 (14)C1S—H1SA0.9900
K1—C42i3.1026 (16)C1S—H1SB0.9900
K1—C423.1026 (16)C2S—C2Si1.431 (4)
K1—C22i3.2306 (17)C2S—H2SA0.9900
K1—C223.2307 (17)C2S—H2SB0.9900
K1—Ali3.4662 (11)C11—H11A0.9800
K1—Al3.4662 (11)C11—H11B0.9800
K2—N12.8402 (14)C11—H11C0.9800
K2—N1ii2.8402 (14)C12—H12A0.9800
K2—N3ii2.8506 (12)C12—H12B0.9800
K2—N32.8506 (12)C12—H12C0.9800
K2—C31ii3.0990 (16)C21—H21A0.9800
K2—C313.0991 (16)C21—H21B0.9800
K2—C11ii3.2103 (18)C21—H21C0.9800
K2—C113.2103 (18)C22—H22A0.9800
K2—Alii3.3649 (9)C22—H22B0.9800
K2—Al3.3649 (9)C22—H22C0.9800
K2—H31A3.0156C31—H31A0.9807
K2—H31C2.9013C31—H31B0.9791
Al—N21.8383 (11)C31—H31C0.9800
Al—N11.8457 (12)C32—H32A0.9800
Al—N41.8533 (11)C32—H32B0.9800
Al—N31.8554 (11)C32—H32C0.9800
O1S—C1S1.4215 (19)C41—H41A0.9800
O1S—C1Si1.4215 (19)C41—H41B0.9800
N1—C111.4446 (17)C41—H41C0.9800
N1—C121.4478 (17)C42—H42A0.9800
N2—C221.4433 (17)C42—H42B0.9800
N2—C211.4522 (18)C42—H42C0.9800
N3—C321.4464 (17)
O1S—K1—N4i116.93 (2)H31A—K2—H31C31.3
O1S—K1—N4116.93 (2)N2—Al—N1110.41 (5)
N4i—K1—N4126.15 (5)N2—Al—N4109.88 (5)
O1S—K1—N286.06 (2)N1—Al—N4110.02 (5)
N4i—K1—N2122.31 (3)N2—Al—N3111.17 (5)
N4—K1—N261.81 (3)N1—Al—N3108.54 (5)
O1S—K1—N2i86.07 (2)N4—Al—N3106.74 (5)
N4i—K1—N2i61.81 (3)N2—Al—K2151.29 (4)
N4—K1—N2i122.31 (3)N1—Al—K257.56 (4)
N2—K1—N2i172.13 (4)N4—Al—K298.83 (4)
O1S—K1—C42i92.87 (3)N3—Al—K257.88 (4)
N4i—K1—C42i27.65 (4)N2—Al—K158.49 (4)
N4—K1—C42i147.19 (4)N1—Al—K1149.91 (4)
N2—K1—C42i110.37 (4)N4—Al—K157.63 (3)
N2i—K1—C42i70.05 (4)N3—Al—K1101.48 (4)
O1S—K1—C4292.87 (3)K2—Al—K1145.105 (13)
N4i—K1—C42147.19 (4)C1S—O1S—C1Si109.46 (18)
N4—K1—C4227.64 (4)C1S—O1S—K1125.27 (9)
N2—K1—C4270.05 (4)C1Si—O1S—K1125.27 (9)
N2i—K1—C42110.37 (4)C11—N1—C12110.11 (11)
C42i—K1—C42174.26 (7)C11—N1—Al124.45 (9)
O1S—K1—C22i88.36 (3)C12—N1—Al121.72 (9)
N4i—K1—C22i83.60 (4)C11—N1—K291.07 (8)
N4—K1—C22i97.90 (4)C12—N1—K2110.00 (9)
N2—K1—C22i152.99 (3)Al—N1—K289.18 (4)
N2i—K1—C22i26.51 (3)C22—N2—C21110.49 (11)
C42i—K1—C22i96.27 (4)C22—N2—Al124.23 (9)
C42—K1—C22i83.89 (5)C21—N2—Al121.43 (9)
O1S—K1—C2288.36 (3)C22—N2—K187.45 (8)
N4i—K1—C2297.90 (4)C21—N2—K1113.62 (9)
N4—K1—C2283.60 (4)Al—N2—K189.48 (4)
N2—K1—C2226.51 (3)C32—N3—C31109.13 (11)
N2i—K1—C22153.00 (3)C32—N3—Al123.79 (10)
C42i—K1—C2283.89 (5)C31—N3—Al118.63 (9)
C42—K1—C2296.27 (5)C32—N3—K2124.05 (9)
C22i—K1—C22176.73 (6)C31—N3—K285.63 (8)
O1S—K1—Ali110.839 (12)Al—N3—K288.67 (4)
N4i—K1—Ali32.32 (2)C42—N4—C41110.02 (12)
N4—K1—Ali121.53 (3)C42—N4—Al118.47 (10)
N2—K1—Ali153.72 (2)C41—N4—Al122.18 (10)
N2i—K1—Ali32.03 (2)C42—N4—K182.91 (8)
C42i—K1—Ali50.99 (3)C41—N4—K1126.56 (9)
C42—K1—Ali126.43 (4)Al—N4—K190.05 (4)
C22i—K1—Ali51.29 (3)O1S—C1S—C2S106.52 (14)
C22—K1—Ali130.21 (3)O1S—C1S—H1SA110.4
O1S—K1—Al110.838 (12)C2S—C1S—H1SA110.4
N4i—K1—Al121.53 (3)O1S—C1S—H1SB110.4
N4—K1—Al32.32 (2)C2S—C1S—H1SB110.4
N2—K1—Al32.03 (2)H1SA—C1S—H1SB108.6
N2i—K1—Al153.72 (3)C2Si—C2S—C1S106.16 (14)
C42i—K1—Al126.43 (4)C2Si—C2S—H2SA110.5
C42—K1—Al50.99 (3)C1S—C2S—H2SA110.5
C22i—K1—Al130.21 (3)C2Si—C2S—H2SB110.5
C22—K1—Al51.29 (3)C1S—C2S—H2SB110.5
Ali—K1—Al138.32 (2)H2SA—C2S—H2SB108.7
N1—K2—N1ii180.0N1—C11—K262.19 (7)
N1—K2—N3ii116.27 (3)N1—C11—H11A109.5
N1ii—K2—N3ii63.73 (3)K2—C11—H11A71.2
N1—K2—N363.73 (3)N1—C11—H11B109.5
N1ii—K2—N3116.26 (3)K2—C11—H11B170.5
N3ii—K2—N3179.999 (1)H11A—C11—H11B109.5
N1—K2—C31ii108.71 (3)N1—C11—H11C109.5
N1ii—K2—C31ii71.29 (3)K2—C11—H11C78.6
N3ii—K2—C31ii27.85 (3)H11A—C11—H11C109.5
N3—K2—C31ii152.15 (3)H11B—C11—H11C109.5
N1—K2—C3171.29 (3)N1—C12—H12A109.5
N1ii—K2—C31108.71 (3)N1—C12—H12B109.5
N3ii—K2—C31152.15 (3)H12A—C12—H12B109.5
N3—K2—C3127.85 (3)N1—C12—H12C109.5
C31ii—K2—C31180.0H12A—C12—H12C109.5
N1—K2—C11ii153.26 (3)H12B—C12—H12C109.5
N1ii—K2—C11ii26.74 (3)N2—C21—H21A109.5
N3ii—K2—C11ii85.98 (4)N2—C21—H21B109.5
N3—K2—C11ii94.02 (4)H21A—C21—H21B109.5
C31ii—K2—C11ii97.83 (4)N2—C21—H21C109.5
C31—K2—C11ii82.17 (4)H21A—C21—H21C109.5
N1—K2—C1126.74 (3)H21B—C21—H21C109.5
N1ii—K2—C11153.26 (3)N2—C22—K166.04 (7)
N3ii—K2—C1194.02 (4)N2—C22—H22A109.5
N3—K2—C1185.98 (4)K1—C22—H22A175.5
C31ii—K2—C1182.17 (4)N2—C22—H22B109.5
C31—K2—C1197.83 (4)K1—C22—H22B72.8
C11ii—K2—C11180.0H22A—C22—H22B109.5
N1—K2—Alii146.74 (2)N2—C22—H22C109.5
N1ii—K2—Alii33.26 (2)K1—C22—H22C72.9
N3ii—K2—Alii33.45 (2)H22A—C22—H22C109.5
N3—K2—Alii146.55 (2)H22B—C22—H22C109.5
C31ii—K2—Alii52.16 (3)N3—C31—K266.52 (7)
C31—K2—Alii127.84 (3)N3—C31—H31A109.5
C11ii—K2—Alii52.61 (3)K2—C31—H31A76.0
C11—K2—Alii127.39 (3)N3—C31—H31B109.4
N1—K2—Al33.26 (2)K2—C31—H31B174.3
N1ii—K2—Al146.74 (2)H31A—C31—H31B109.5
N3ii—K2—Al146.55 (2)N3—C31—H31C109.5
N3—K2—Al33.45 (2)K2—C31—H31C69.3
C31ii—K2—Al127.84 (3)H31A—C31—H31C109.4
C31—K2—Al52.16 (3)H31B—C31—H31C109.4
C11ii—K2—Al127.39 (3)N3—C32—H32A109.5
C11—K2—Al52.61 (3)N3—C32—H32B109.5
Alii—K2—Al180.0H32A—C32—H32B109.5
N1—K2—H31A89.5N3—C32—H32C109.5
N1ii—K2—H31A90.5H32A—C32—H32C109.5
N3ii—K2—H31A140.2H32B—C32—H32C109.5
N3—K2—H31A39.8N4—C41—H41A109.5
C31ii—K2—H31A161.6N4—C41—H41B109.5
C31—K2—H31A18.4H41A—C41—H41B109.5
C11ii—K2—H31A63.8N4—C41—H41C109.5
C11—K2—H31A116.2H41A—C41—H41C109.5
Alii—K2—H31A110.7H41B—C41—H41C109.5
Al—K2—H31A69.3N4—C42—K169.45 (7)
N1—K2—H31C61.5N4—C42—H42A109.5
N1ii—K2—H31C118.5K1—C42—H42A174.5
N3ii—K2—H31C139.2N4—C42—H42B109.5
N3—K2—H31C40.8K1—C42—H42B66.5
C31ii—K2—H31C161.6H42A—C42—H42B109.5
C31—K2—H31C18.4N4—C42—H42C109.5
C11ii—K2—H31C92.1K1—C42—H42C75.8
C11—K2—H31C87.9H42A—C42—H42C109.5
Alii—K2—H31C126.8H42B—C42—H42C109.5
Al—K2—H31C53.2
N1—K2—Al—N272.54 (9)K1—Al—N2—C21117.65 (12)
N1ii—K2—Al—N2107.46 (9)N1—Al—N2—K1148.73 (4)
N3ii—K2—Al—N2104.99 (9)N4—Al—N2—K127.20 (5)
N3—K2—Al—N275.01 (9)N3—Al—N2—K190.74 (5)
C31ii—K2—Al—N2136.20 (9)K2—Al—N2—K1152.06 (5)
C31—K2—Al—N243.80 (9)O1S—K1—N2—C2294.23 (7)
C11ii—K2—Al—N279.62 (9)N4i—K1—N2—C2225.34 (9)
C11—K2—Al—N2100.37 (9)N4—K1—N2—C22142.28 (9)
Alii—K2—Al—N290.4 (6)N2i—K1—N2—C2294.24 (8)
N1ii—K2—Al—N1180.0C42i—K1—N2—C222.63 (9)
N3ii—K2—Al—N132.45 (6)C42—K1—N2—C22171.27 (9)
N3—K2—Al—N1147.55 (6)C22i—K1—N2—C22172.81 (13)
C31ii—K2—Al—N163.66 (5)Ali—K1—N2—C2237.53 (10)
C31—K2—Al—N1116.34 (5)Al—K1—N2—C22124.29 (9)
C11ii—K2—Al—N1152.16 (5)O1S—K1—N2—C2117.06 (9)
C11—K2—Al—N127.84 (5)N4i—K1—N2—C21136.63 (9)
Alii—K2—Al—N117.8 (6)N4—K1—N2—C21106.44 (9)
N1—K2—Al—N4108.17 (5)N2i—K1—N2—C2117.05 (9)
N1ii—K2—Al—N471.83 (5)C42i—K1—N2—C21108.66 (9)
N3ii—K2—Al—N475.72 (5)C42—K1—N2—C2177.44 (9)
N3—K2—Al—N4104.28 (5)C22i—K1—N2—C2161.52 (13)
C31ii—K2—Al—N444.51 (5)C22—K1—N2—C21111.29 (12)
C31—K2—Al—N4135.49 (5)Ali—K1—N2—C21148.81 (8)
C11ii—K2—Al—N499.67 (5)Al—K1—N2—C21124.42 (10)
C11—K2—Al—N480.33 (5)O1S—K1—N2—Al141.47 (4)
Alii—K2—Al—N490.3 (6)N4i—K1—N2—Al98.95 (5)
N1—K2—Al—N3147.55 (6)N4—K1—N2—Al17.98 (3)
N1ii—K2—Al—N332.45 (6)N2i—K1—N2—Al141.47 (4)
N3ii—K2—Al—N3179.998 (1)C42i—K1—N2—Al126.92 (5)
C31ii—K2—Al—N3148.79 (5)C42—K1—N2—Al46.98 (5)
C31—K2—Al—N331.21 (5)C22i—K1—N2—Al62.89 (10)
C11ii—K2—Al—N34.61 (5)C22—K1—N2—Al124.29 (9)
C11—K2—Al—N3175.39 (5)Ali—K1—N2—Al86.77 (6)
Alii—K2—Al—N3165.4 (5)N2—Al—N3—C3278.67 (12)
N1—K2—Al—K1151.74 (5)N1—Al—N3—C32159.71 (11)
N1ii—K2—Al—K128.26 (5)N4—Al—N3—C3241.15 (12)
N3ii—K2—Al—K1119.29 (4)K2—Al—N3—C32131.18 (12)
N3—K2—Al—K160.71 (4)K1—Al—N3—C3218.22 (11)
C31ii—K2—Al—K188.08 (4)N2—Al—N3—C3165.87 (11)
C31—K2—Al—K191.92 (4)N1—Al—N3—C3155.76 (10)
C11ii—K2—Al—K156.10 (4)N4—Al—N3—C31174.31 (9)
C11—K2—Al—K1123.91 (4)K2—Al—N3—C3184.29 (10)
Alii—K2—Al—K1133.9 (5)K1—Al—N3—C31126.31 (9)
O1S—K1—Al—N241.68 (4)N2—Al—N3—K2150.16 (4)
N4i—K1—Al—N2101.64 (5)N1—Al—N3—K228.53 (5)
N4—K1—Al—N2149.41 (6)N4—Al—N3—K290.02 (5)
N2i—K1—Al—N2168.89 (6)K1—Al—N3—K2149.395 (19)
C42i—K1—Al—N268.66 (6)N1—K2—N3—C32150.13 (11)
C42—K1—Al—N2117.83 (6)N1ii—K2—N3—C3229.87 (11)
C22i—K1—Al—N2148.04 (6)N3ii—K2—N3—C3210 (12)
C22—K1—Al—N228.19 (5)C31ii—K2—N3—C3269.82 (13)
Ali—K1—Al—N2138.33 (4)C31—K2—N3—C32110.18 (13)
O1S—K1—Al—N134.33 (7)C11ii—K2—N3—C3245.36 (11)
N4i—K1—Al—N1177.64 (7)C11—K2—N3—C32134.65 (11)
N4—K1—Al—N173.41 (8)Alii—K2—N3—C3249.03 (12)
N2—K1—Al—N176.00 (8)Al—K2—N3—C32130.97 (12)
N2i—K1—Al—N192.89 (9)N1—K2—N3—C3199.69 (8)
C42i—K1—Al—N1144.66 (8)N1ii—K2—N3—C3180.31 (8)
C42—K1—Al—N141.82 (8)N3ii—K2—N3—C31121 (12)
C22i—K1—Al—N172.04 (8)C31ii—K2—N3—C31180.0
C22—K1—Al—N1104.20 (8)C11ii—K2—N3—C3164.83 (8)
Ali—K1—Al—N1145.67 (7)C11—K2—N3—C31115.17 (8)
O1S—K1—Al—N4107.73 (4)Alii—K2—N3—C3161.15 (8)
N4i—K1—Al—N4108.95 (6)Al—K2—N3—C31118.84 (8)
N2—K1—Al—N4149.41 (6)N1—K2—N3—Al19.16 (3)
N2i—K1—Al—N419.48 (7)N1ii—K2—N3—Al160.84 (3)
C42i—K1—Al—N4141.93 (6)N3ii—K2—N3—Al121 (12)
C42—K1—Al—N431.58 (6)C31ii—K2—N3—Al61.15 (8)
C22i—K1—Al—N41.37 (6)C31—K2—N3—Al118.84 (8)
C22—K1—Al—N4177.60 (6)C11ii—K2—N3—Al176.33 (4)
Ali—K1—Al—N472.26 (4)C11—K2—N3—Al3.67 (4)
O1S—K1—Al—N3149.60 (3)Alii—K2—N3—Al180.0
N4i—K1—Al—N36.28 (4)N2—Al—N4—C4254.48 (11)
N4—K1—Al—N3102.67 (5)N1—Al—N4—C4267.29 (11)
N2—K1—Al—N3107.92 (6)N3—Al—N4—C42175.13 (9)
N2i—K1—Al—N383.18 (6)K2—Al—N4—C42125.88 (9)
C42i—K1—Al—N339.26 (5)K1—Al—N4—C4281.96 (10)
C42—K1—Al—N3134.25 (6)N2—Al—N4—C41162.25 (10)
C22i—K1—Al—N3104.04 (5)N1—Al—N4—C4175.98 (12)
C22—K1—Al—N379.73 (5)N3—Al—N4—C4141.60 (12)
Ali—K1—Al—N330.40 (3)K2—Al—N4—C4117.39 (11)
O1S—K1—Al—K2161.489 (17)K1—Al—N4—C41134.78 (12)
N4i—K1—Al—K255.20 (4)N2—Al—N4—K127.47 (5)
N4—K1—Al—K253.75 (4)N1—Al—N4—K1149.24 (4)
N2—K1—Al—K2156.84 (5)N3—Al—N4—K193.17 (5)
N2i—K1—Al—K234.27 (6)K2—Al—N4—K1152.17 (2)
C42i—K1—Al—K288.18 (4)O1S—K1—N4—C4231.94 (8)
C42—K1—Al—K285.34 (5)N4i—K1—N4—C42148.06 (8)
C22i—K1—Al—K255.12 (4)N2—K1—N4—C42100.87 (9)
C22—K1—Al—K2128.64 (4)N2i—K1—N4—C4271.36 (9)
Ali—K1—Al—K218.510 (17)C42i—K1—N4—C42175.00 (6)
N4i—K1—O1S—C1S37.19 (10)C22i—K1—N4—C4260.24 (8)
N4—K1—O1S—C1S142.81 (10)C22—K1—N4—C42116.82 (9)
N2—K1—O1S—C1S87.28 (10)Ali—K1—N4—C42109.28 (8)
N2i—K1—O1S—C1S92.72 (10)Al—K1—N4—C42118.70 (10)
C42i—K1—O1S—C1S22.96 (10)O1S—K1—N4—C41141.66 (11)
C42—K1—O1S—C1S157.04 (10)N4i—K1—N4—C4138.34 (11)
C22i—K1—O1S—C1S119.16 (10)N2—K1—N4—C41149.41 (12)
C22—K1—O1S—C1S60.84 (10)N2i—K1—N4—C4138.35 (12)
Ali—K1—O1S—C1S72.02 (10)C42i—K1—N4—C4165.28 (13)
Al—K1—O1S—C1S107.98 (10)C42—K1—N4—C41109.71 (14)
N4i—K1—O1S—C1Si142.81 (10)C22i—K1—N4—C4149.47 (12)
N4—K1—O1S—C1Si37.19 (10)C22—K1—N4—C41133.46 (12)
N2—K1—O1S—C1Si92.72 (10)Ali—K1—N4—C410.43 (12)
N2i—K1—O1S—C1Si87.28 (10)Al—K1—N4—C41131.58 (13)
C42i—K1—O1S—C1Si157.04 (10)O1S—K1—N4—Al86.76 (4)
C42—K1—O1S—C1Si22.96 (10)N4i—K1—N4—Al93.24 (4)
C22i—K1—O1S—C1Si60.84 (10)N2—K1—N4—Al17.83 (3)
C22—K1—O1S—C1Si119.16 (10)N2i—K1—N4—Al169.94 (4)
Ali—K1—O1S—C1Si107.98 (10)C42i—K1—N4—Al66.30 (8)
Al—K1—O1S—C1Si72.02 (10)C42—K1—N4—Al118.70 (9)
N2—Al—N1—C11118.54 (11)C22i—K1—N4—Al178.95 (4)
N4—Al—N1—C112.91 (13)C22—K1—N4—Al1.88 (5)
N3—Al—N1—C11119.37 (11)Ali—K1—N4—Al132.01 (3)
K2—Al—N1—C1190.73 (11)C1Si—O1S—C1S—C2S7.13 (16)
K1—Al—N1—C1156.57 (15)K1—O1S—C1S—C2S172.87 (16)
N2—Al—N1—C1237.57 (12)O1S—C1S—C2S—C2Si19.0 (4)
N4—Al—N1—C12159.02 (11)C12—N1—C11—K2111.78 (11)
N3—Al—N1—C1284.52 (12)Al—N1—C11—K289.74 (9)
K2—Al—N1—C12113.16 (12)N1ii—K2—C11—N1180.0
K1—Al—N1—C1299.54 (12)N3ii—K2—C11—N1147.85 (8)
N2—Al—N1—K2150.73 (4)N3—K2—C11—N132.15 (8)
N4—Al—N1—K287.82 (5)C31ii—K2—C11—N1173.11 (8)
N3—Al—N1—K228.64 (5)C31—K2—C11—N16.88 (8)
K1—Al—N1—K2147.30 (5)C11ii—K2—C11—N188 (10)
N1ii—K2—N1—C11116 (15)Alii—K2—C11—N1145.30 (6)
N3ii—K2—N1—C1136.29 (8)Al—K2—C11—N134.70 (6)
N3—K2—N1—C11143.71 (8)C21—N2—C22—K1114.31 (10)
C31ii—K2—N1—C117.20 (9)Al—N2—C22—K187.64 (9)
C31—K2—N1—C11172.80 (9)O1S—K1—C22—N284.46 (7)
C11ii—K2—N1—C11180.0N4i—K1—C22—N2158.58 (7)
Alii—K2—N1—C1155.55 (9)N4—K1—C22—N232.87 (7)
Al—K2—N1—C11124.45 (9)N2i—K1—C22—N2162.50 (10)
N1ii—K2—N1—C12132 (15)C42i—K1—C22—N2177.52 (8)
N3ii—K2—N1—C1275.59 (9)C42—K1—C22—N28.25 (8)
N3—K2—N1—C12104.41 (9)C22i—K1—C22—N284.45 (7)
C31ii—K2—N1—C12104.68 (9)Ali—K1—C22—N2159.32 (6)
C31—K2—N1—C1275.32 (9)Al—K1—C22—N234.16 (6)
C11ii—K2—N1—C1268.11 (12)C32—N3—C31—K2124.60 (11)
C11—K2—N1—C12111.88 (12)Al—N3—C31—K286.09 (7)
Alii—K2—N1—C1256.33 (10)N1—K2—C31—N368.95 (7)
Al—K2—N1—C12123.67 (10)N1ii—K2—C31—N3111.05 (7)
N1ii—K2—N1—Al8 (15)N3ii—K2—C31—N3180.0
N3ii—K2—N1—Al160.74 (3)C31ii—K2—C31—N3167 (13)
N3—K2—N1—Al19.26 (3)C11ii—K2—C31—N3114.31 (8)
C31ii—K2—N1—Al131.65 (4)C11—K2—C31—N365.69 (8)
C31—K2—N1—Al48.35 (4)Alii—K2—C31—N3142.31 (6)
C11ii—K2—N1—Al55.56 (9)Al—K2—C31—N337.69 (6)
C11—K2—N1—Al124.45 (9)C41—N4—C42—K1126.41 (10)
Alii—K2—N1—Al180.0Al—N4—C42—K186.19 (7)
N1—Al—N2—C22124.71 (11)O1S—K1—C42—N4151.82 (7)
N4—Al—N2—C22113.76 (11)N4i—K1—C42—N452.04 (12)
N3—Al—N2—C224.18 (12)N2—K1—C42—N467.05 (7)
K2—Al—N2—C2265.50 (15)N2i—K1—C42—N4121.32 (7)
K1—Al—N2—C2286.56 (11)C42i—K1—C42—N428.18 (8)
N1—Al—N2—C2131.07 (12)C22i—K1—C42—N4120.14 (8)
N4—Al—N2—C2190.46 (12)C22—K1—C42—N463.15 (8)
N3—Al—N2—C21151.60 (10)Ali—K1—C42—N489.52 (8)
K2—Al—N2—C2190.28 (13)Al—K1—C42—N437.12 (6)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Al2K2(C2H6N)8(C4H8O)]
Mr556.88
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)13.247 (4), 12.075 (4), 20.822 (7)
β (°) 90.979 (5)
V3)3330.1 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.74 × 0.57 × 0.42
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.776, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
18795, 4928, 3986
Rint0.023
(sin θ/λ)max1)0.723
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.107, 1.03
No. of reflections4928
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

 

Footnotes

Chemistry Division, Code 6123.

§Code 6900.

Acknowledgements

We thank The Office of Naval Research for financial support.

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEisler, D. J. & Chivers, T. (2006). Can. J. Chem. 84, 443–452.  Web of Science CSD CrossRef CAS Google Scholar
First citationHensen, K., Lemke, A., Stumpf, T., Bolte, M., Fleischer, H., Pulham, C. R., Gould, R. O. & Harris, S. (1999). Inorg. Chem. 38, 4700–4704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOuzounis, K., Riffel, H., Hess, H., Kohler, U. & Weidlein, J. (1983). Z. Anorg. Allg. Chem. 504, 67–76.  CSD CrossRef CAS Web of Science Google Scholar
First citationRings, S., Ischenko, V. & Jansen, M. (2000). Z. Naturforsch Teil B, 55, 730–734.  CAS Google Scholar
First citationRuff, J. K. (1960). J. Am. Chem. Soc. 83, 2835–2839.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds