metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m139-m140

Chlorido[2,3,5,6-tetra­kis­(tert-butyl­sulfanylmeth­yl)phenyl-κ3S2,C1,S6]palladium(II) di­chloro­methane monosolvate

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, CP 04510, México, DF, Mexico
*Correspondence e-mail: evelynpm@unam.mx

(Received 25 January 2013; accepted 29 January 2013; online 6 February 2013)

The title compound, [Pd(C26H45S4)Cl]·CH2Cl2, crystallizes with a disordered dichloro­methane solvent mol­ecule [occupancy ratio = 0.67 (4):0.33 (4)]. Two of the tert-butyl groups are also disordered [occupancy ratios = 0.70 (5):0.30 (5) and 0.63 (4):0.37 (4)]. Although the pincer ligand offers the possibility for coordination of two different metal atoms, the present structure shows only the coordination of a single PdII atom in a typical S—C—S tridentate pincer manner. The PdII atom is in a slightly distorted square-planar environment with the two tert-butyl­sulfanyl groups arranged in a trans con­formation and with a chloride ligand trans to the σ-bonded aromatic C atom. The structure exhibits a durene-like ligand frame, forming a dihedral angle of 13.6 (4)° with the metal coordination (Pd/S/S/Cl/C) environment. It is noteworthy that the tert-butyl groups are found in a syn arrangement, this being different to that found previously by Loeb, Shimizu & Wisner [(1998). Organometallics, 17, 2324–2327].

Related literature

For background to pincer compounds, see: Arroyo et al., (2003[Arroyo, M., Cervantes, R., Gómez-Benitez, V., López, P., Morales-Morales, D., Torrens, H. & Toscano, R. A. (2003). Synthesis, pp. 1565-1568.]); Errington, et al. (1980[Errington, J., McDonald, W. S. & Shaw, B. L. (1980). J. Chem. Soc. Dalton Trans. pp. 2312-2314.]); Morales-Morales & Jensen (2007[Morales-Morales, D. & Jensen, C. M. (2007). In The Chemistry of Pincer Compounds. Amsterdam: Elsevier.]). For an isomeric structure, see: Loeb et al. (1998[Loeb, S. J., Shimizu, K. H. G. & Wisner, J. A. (1998). Organometallics, 17, 2324-2327.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C26H45S4)Cl]·CH2Cl2

  • Mr = 712.64

  • Monoclinic, P 21 /n

  • a = 15.917 (15) Å

  • b = 13.768 (13) Å

  • c = 17.808 (16) Å

  • β = 105.216 (15)°

  • V = 3766 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 298 K

  • 0.27 × 0.22 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: integration (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.593, Tmax = 0.745

  • 28207 measured reflections

  • 6570 independent reflections

  • 5144 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.110

  • S = 1.03

  • 6570 reflections

  • 406 parameters

  • 291 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Pd—C2 2.022 (4)
Pd—S1 2.326 (2)
Pd—S2 2.333 (2)
Pd—Cl1 2.441 (2)

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Pincer compounds have had a preponderant importance in chemistry, this being especially important in areas such as homogeneous catalysis, organometallic chemistry, the activation of unreactive or difficult to activate bonds and the activation of small molecules (Errington et al. 1980; Morales-Morales & Jensen, 2007). Among these species, those including sulfur as donor atom have been scarcely studied (Arroyo et al., 2003), mostly due to the well known tendency of sulfur to kill the activity of homogeneous catalysts. Thus, following our continuing interest in the synthesis of pincer compounds, we report here the crystal structure of the Pd(II) sulfur based pincer complex (1,2,4,5-tetrakis(tert-butylsulfanylmethyl)phenyl)-chloro-palladium (II) dichloromethane solvate (I).

The structure of (I) is shown in Fig. 1 with the numbering scheme. Compound (I) was crystallized as a dichloromethane solvate. Selected bond distances and angles are shown in Table 1. In agreement with the dihedral angles of the planes C7—C1—C2—C3—C8 and S1—Pd—S2—Cl1 (13.6 (4)°) the Pd atom is located in a slightly distorted square-planar geometry. Compound (I) is a geometric isomer of a previously described compound (Loeb et al. 1998). However, there are several noticeable differences in our compound (I), the tert-butyl substituents at the S are found in a syn fashion while those described in the previously reported compound are oriented in an anti fashion with respect to the square plane. The bond distances for Pd—S and Pd—C [2.326 (2) Å, 2.333 (2) Å and 2.022 (4) Å] are slightly larger than those of the anti isomer [2.297 (3) Å, 2.302 (3) Å and 1.994 (4) Å]. The Pd—Cl bond distance [2.441 (2) Å] is larger than of the anti isomer. While the uncoordinated tert-butylS groups are found in a similar geometry as those previously observed in the Loeb's species (Loeb et al. 1998). Finally, both the tert-butyl groups and the dichloromethane solvent molecule are disordered and were refined as disordered with two components.

Related literature top

For background to pincer compounds, see: Arroyo et al., (2003); Errington, et al. (1980); Morales-Morales & Jensen (2007). For an isomeric structure, see: Loeb et al. (1998). [The scheme should show the solvent]

Experimental top

The title compound was synthesized according to a published procedure (Loeb et al. 1998). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of the title compound (I) in CH2Cl2.

Refinement top

Two tert-butyl and CH2Cl2 solvent, are disordered and were modelled and refined in two major contributors. The ratio of S.O.F., were 70/30 and 63/37 for tertbutyl groups and 67/33 for CH2Cl2 solvent. H atoms on C atoms were included in calculated positions (C—H = 0.93 Å for C—H arom., 0.97 Å for CH2, and 0.96 Å for CH3), H atoms were refined using a riding model, with Uiso(H) = 1.2Ueq of the carrier atom for C—H-arom. and methylene groups and Uiso(H) = 1.5Ueq for methyl groups.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 40% probability level. The H-atoms and the minor disorder components have been omitted to enhance clarity.
Chlorido[2,3,5,6-tetrakis(tert-butylsulfanylmethyl)phenyl-κ3S2,C1,S6]palladium(II) dichloromethane monosolvate top
Crystal data top
[Pd(C26H45S4)Cl]·CH2Cl2F(000) = 1480
Mr = 712.64Dx = 1.257 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8648 reflections
a = 15.917 (15) Åθ = 2.4–24.8°
b = 13.768 (13) ŵ = 0.94 mm1
c = 17.808 (16) ÅT = 298 K
β = 105.216 (15)°Prism, colourless
V = 3766 (6) Å30.27 × 0.22 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
6570 independent reflections
Radiation source: fine-focus sealed tube5144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 0.83 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 1818
Absorption correction: integration
(SADABS; Sheldrick, 1996)
k = 1616
Tmin = 0.593, Tmax = 0.745l = 2020
28207 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
6570 reflections(Δ/σ)max = 0.002
406 parametersΔρmax = 0.64 e Å3
291 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Pd(C26H45S4)Cl]·CH2Cl2V = 3766 (6) Å3
Mr = 712.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.917 (15) ŵ = 0.94 mm1
b = 13.768 (13) ÅT = 298 K
c = 17.808 (16) Å0.27 × 0.22 × 0.15 mm
β = 105.216 (15)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6570 independent reflections
Absorption correction: integration
(SADABS; Sheldrick, 1996)
5144 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.745Rint = 0.066
28207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048291 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.64 e Å3
6570 reflectionsΔρmin = 0.24 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd0.386615 (17)1.08106 (2)0.319516 (16)0.04396 (12)
Cl10.37582 (7)1.23743 (9)0.25300 (8)0.0792 (4)
S10.53435 (6)1.06823 (7)0.32714 (6)0.0491 (2)
S20.24590 (6)1.07447 (7)0.33560 (5)0.0476 (2)
S30.23346 (7)0.83956 (10)0.53990 (7)0.0700 (3)
S40.62344 (7)0.72277 (8)0.41972 (6)0.0623 (3)
C10.4886 (2)0.9199 (3)0.41609 (19)0.0418 (8)
C20.4033 (2)0.9564 (3)0.38174 (19)0.0393 (8)
C30.3296 (2)0.9071 (3)0.3951 (2)0.0428 (9)
C40.3422 (2)0.8228 (3)0.4436 (2)0.0437 (9)
C50.4270 (2)0.7883 (3)0.4761 (2)0.0466 (9)
H50.43470.73320.50730.056*
C60.5011 (2)0.8349 (3)0.46264 (19)0.0440 (9)
C70.5669 (2)0.9770 (3)0.4048 (2)0.0469 (9)
H7A0.60810.93230.39200.056*
H7B0.59571.00920.45320.056*
C80.2386 (2)0.9439 (3)0.3549 (2)0.0522 (10)
H8A0.19970.93330.38800.063*
H8B0.21570.90920.30640.063*
C90.5909 (2)0.7917 (3)0.4969 (2)0.0492 (9)
H9A0.58960.74880.53980.059*
H9B0.63260.84300.51650.059*
C100.2641 (2)0.7715 (3)0.4616 (2)0.0532 (10)
H10A0.27950.70530.47810.064*
H10B0.21560.76980.41540.064*
C110.5483 (3)1.0033 (3)0.2379 (2)0.0626 (11)
C120.5103 (4)1.0728 (4)0.1686 (3)0.0945 (17)
H12A0.51581.04340.12120.142*
H12B0.54181.13300.17680.142*
H12C0.45001.08480.16500.142*
C130.4989 (3)0.9058 (4)0.2249 (3)0.0851 (16)
H13A0.43760.91760.21590.128*
H13B0.51880.86560.27020.128*
H13C0.50960.87350.18050.128*
C140.6471 (3)0.9881 (4)0.2493 (3)0.0868 (16)
H14A0.66830.94150.29000.130*
H14B0.67691.04870.26320.130*
H14C0.65740.96460.20170.130*
C150.1526 (2)1.0958 (3)0.2465 (2)0.0613 (11)
C160.1716 (3)1.0506 (4)0.1738 (3)0.0981 (18)
H16A0.12571.06710.12880.147*
H16B0.17510.98120.17950.147*
H16C0.22591.07520.16780.147*
C170.1440 (3)1.2083 (4)0.2396 (3)0.0865 (15)
H17A0.10061.22490.19290.130*
H17B0.19891.23580.23800.130*
H17C0.12721.23350.28380.130*
C180.0705 (3)1.0526 (4)0.2631 (3)0.0928 (17)
H18A0.06561.07490.31280.139*
H18B0.07420.98300.26340.139*
H18C0.02021.07290.22330.139*
C190.1205 (3)0.7963 (4)0.5345 (3)0.1000 (16)
C200.1243 (12)0.6833 (5)0.5442 (11)0.113 (3)0.70 (5)
H20A0.14440.65480.50290.170*0.70 (5)
H20B0.06720.65910.54230.170*0.70 (5)
H20C0.16350.66680.59340.170*0.70 (5)
C210.0584 (8)0.8249 (16)0.4531 (7)0.112 (4)0.70 (5)
H21A0.07640.79160.41260.167*0.70 (5)
H21B0.06130.89380.44570.167*0.70 (5)
H21C0.00030.80690.45150.167*0.70 (5)
C220.0923 (15)0.8477 (12)0.6022 (10)0.142 (4)0.70 (5)
H22A0.08900.91650.59330.213*0.70 (5)
H22B0.13430.83430.65060.213*0.70 (5)
H22C0.03630.82380.60440.213*0.70 (5)
C20A0.101 (3)0.6851 (9)0.522 (2)0.119 (6)0.30 (5)
H20D0.14090.64930.56290.179*0.30 (5)
H20E0.10900.66560.47280.179*0.30 (5)
H20F0.04260.67210.52390.179*0.30 (5)
C21A0.0545 (19)0.858 (3)0.473 (2)0.120 (6)0.30 (5)
H21D0.05630.83850.42130.180*0.30 (5)
H21E0.06980.92570.47980.180*0.30 (5)
H21F0.00320.84880.47840.180*0.30 (5)
C22A0.122 (3)0.828 (3)0.6194 (11)0.125 (6)0.30 (5)
H22D0.16220.78840.65610.188*0.30 (5)
H22E0.06450.82040.62700.188*0.30 (5)
H22F0.13900.89490.62700.188*0.30 (5)
C230.7421 (3)0.7020 (3)0.4609 (3)0.0885 (14)
C240.7840 (11)0.8059 (7)0.4636 (12)0.097 (3)0.63 (4)
H24A0.77180.83200.41190.145*0.63 (4)
H24B0.84590.80120.48500.145*0.63 (4)
H24C0.76000.84790.49570.145*0.63 (4)
C250.7747 (14)0.6346 (11)0.4031 (11)0.120 (4)0.63 (4)
H25A0.76070.66380.35240.180*0.63 (4)
H25B0.74680.57240.40020.180*0.63 (4)
H25C0.83670.62640.42140.180*0.63 (4)
C260.7646 (13)0.6563 (17)0.5444 (7)0.118 (4)0.63 (4)
H26A0.73950.59250.54180.177*0.63 (4)
H26B0.74130.69640.57810.177*0.63 (4)
H26C0.82660.65180.56430.177*0.63 (4)
C24A0.8068 (18)0.7877 (18)0.4898 (18)0.112 (5)0.37 (4)
H24D0.80180.83390.44850.169*0.37 (4)
H24E0.86520.76310.50540.169*0.37 (4)
H24F0.79300.81890.53340.169*0.37 (4)
C25A0.759 (2)0.653 (2)0.3868 (13)0.108 (5)0.37 (4)
H25D0.72000.59910.37110.162*0.37 (4)
H25E0.81830.62930.39880.162*0.37 (4)
H25F0.75040.69910.34540.162*0.37 (4)
C26A0.747 (2)0.6253 (19)0.5270 (14)0.108 (5)0.37 (4)
H26D0.70790.57270.50730.162*0.37 (4)
H26E0.73100.65540.56980.162*0.37 (4)
H26F0.80540.60070.54440.162*0.37 (4)
Cl20.8993 (11)0.9229 (8)0.1142 (5)0.148 (3)0.67 (4)
Cl30.8721 (9)0.8710 (11)0.2647 (7)0.176 (3)0.67 (4)
C270.9079 (19)0.8314 (12)0.1845 (13)0.113 (5)0.67 (4)
H27A0.96820.81080.20230.135*0.67 (4)
H27B0.87360.77580.16100.135*0.67 (4)
Cl2A0.875 (2)0.9294 (16)0.1197 (14)0.172 (7)0.33 (4)
Cl3A0.841 (2)0.835 (3)0.2547 (12)0.185 (6)0.33 (4)
C27A0.890 (4)0.824 (2)0.177 (2)0.104 (6)0.33 (4)
H27C0.95130.81120.19720.125*0.33 (4)
H27D0.86400.76900.14460.125*0.33 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.04006 (17)0.0427 (2)0.04995 (18)0.00192 (13)0.01323 (13)0.00124 (14)
Cl10.0618 (7)0.0613 (8)0.1110 (9)0.0010 (6)0.0164 (6)0.0313 (7)
S10.0453 (5)0.0476 (6)0.0576 (6)0.0058 (4)0.0191 (5)0.0012 (5)
S20.0428 (5)0.0499 (6)0.0497 (5)0.0032 (4)0.0116 (4)0.0025 (5)
S30.0543 (6)0.0934 (10)0.0689 (7)0.0112 (6)0.0282 (6)0.0068 (6)
S40.0554 (6)0.0693 (8)0.0635 (6)0.0091 (6)0.0181 (5)0.0143 (6)
C10.0394 (19)0.051 (2)0.0380 (18)0.0016 (18)0.0147 (15)0.0026 (17)
C20.042 (2)0.041 (2)0.0371 (18)0.0014 (17)0.0144 (15)0.0010 (16)
C30.0387 (19)0.045 (2)0.047 (2)0.0026 (17)0.0145 (16)0.0026 (17)
C40.041 (2)0.047 (2)0.046 (2)0.0024 (17)0.0163 (16)0.0029 (18)
C50.051 (2)0.048 (2)0.046 (2)0.0025 (19)0.0205 (18)0.0046 (18)
C60.043 (2)0.051 (2)0.0412 (19)0.0037 (18)0.0162 (16)0.0054 (17)
C70.0375 (19)0.058 (3)0.046 (2)0.0004 (18)0.0125 (16)0.0029 (18)
C80.043 (2)0.052 (3)0.063 (2)0.0019 (18)0.0161 (19)0.008 (2)
C90.046 (2)0.056 (3)0.047 (2)0.0067 (19)0.0146 (17)0.0025 (18)
C100.051 (2)0.053 (3)0.058 (2)0.0036 (19)0.0172 (19)0.010 (2)
C110.065 (3)0.076 (3)0.055 (2)0.004 (2)0.029 (2)0.002 (2)
C120.100 (4)0.123 (5)0.068 (3)0.011 (3)0.037 (3)0.017 (3)
C130.099 (4)0.094 (4)0.072 (3)0.018 (3)0.039 (3)0.024 (3)
C140.072 (3)0.116 (4)0.090 (4)0.008 (3)0.052 (3)0.002 (3)
C150.040 (2)0.075 (3)0.063 (3)0.009 (2)0.0042 (19)0.009 (2)
C160.102 (4)0.129 (5)0.054 (3)0.018 (4)0.005 (3)0.009 (3)
C170.066 (3)0.084 (4)0.104 (4)0.019 (3)0.011 (3)0.020 (3)
C180.046 (3)0.112 (5)0.111 (4)0.000 (3)0.003 (3)0.020 (3)
C190.062 (3)0.157 (4)0.096 (3)0.022 (3)0.047 (2)0.006 (3)
C200.091 (8)0.157 (5)0.096 (7)0.070 (5)0.033 (6)0.008 (4)
C210.045 (4)0.178 (9)0.117 (5)0.006 (5)0.030 (4)0.012 (6)
C220.083 (9)0.241 (9)0.125 (6)0.008 (7)0.067 (6)0.030 (7)
C20A0.094 (13)0.165 (6)0.088 (11)0.055 (9)0.005 (11)0.011 (8)
C21A0.069 (10)0.176 (11)0.128 (9)0.008 (10)0.047 (9)0.006 (10)
C22A0.070 (13)0.215 (13)0.114 (6)0.018 (10)0.065 (8)0.024 (8)
C230.051 (3)0.121 (4)0.100 (3)0.018 (2)0.030 (3)0.023 (3)
C240.028 (6)0.155 (5)0.107 (8)0.014 (5)0.017 (6)0.038 (5)
C250.081 (8)0.147 (7)0.144 (7)0.045 (7)0.050 (7)0.033 (7)
C260.087 (8)0.144 (9)0.103 (5)0.041 (7)0.011 (6)0.008 (6)
C24A0.043 (10)0.168 (9)0.115 (12)0.001 (7)0.002 (9)0.038 (8)
C25A0.073 (10)0.135 (11)0.125 (8)0.041 (9)0.043 (9)0.036 (7)
C26A0.082 (11)0.129 (10)0.089 (8)0.042 (8)0.019 (8)0.013 (7)
Cl20.184 (7)0.102 (3)0.134 (3)0.001 (4)0.001 (4)0.036 (3)
Cl30.126 (5)0.218 (7)0.196 (4)0.003 (5)0.060 (4)0.015 (4)
C270.069 (12)0.082 (5)0.165 (6)0.015 (6)0.008 (7)0.026 (5)
Cl2A0.190 (14)0.102 (7)0.178 (10)0.041 (7)0.035 (7)0.010 (7)
Cl3A0.122 (11)0.254 (16)0.191 (7)0.042 (9)0.062 (8)0.039 (9)
C27A0.072 (16)0.085 (8)0.145 (8)0.012 (9)0.011 (10)0.018 (7)
Geometric parameters (Å, º) top
Pd—C22.022 (4)C19—C21A1.563 (7)
Pd—S12.326 (2)C19—C201.564 (6)
Pd—S22.333 (2)C19—C20A1.565 (8)
Pd—Cl12.441 (2)C19—C22A1.570 (7)
S1—C71.839 (4)C19—C211.574 (6)
S1—C111.887 (4)C20—H20A0.9600
S2—C81.839 (4)C20—H20B0.9600
S2—C151.890 (4)C20—H20C0.9600
S3—C101.849 (4)C21—H21A0.9600
S3—C191.873 (5)C21—H21B0.9600
S4—C91.852 (4)C21—H21C0.9600
S4—C231.861 (5)C22—H22A0.9600
C1—C61.418 (5)C22—H22B0.9600
C1—C21.427 (5)C22—H22C0.9600
C1—C71.530 (5)C20A—H20D0.9600
C2—C31.428 (5)C20A—H20E0.9600
C3—C41.429 (5)C20A—H20F0.9600
C3—C81.525 (5)C21A—H21D0.9600
C4—C51.405 (5)C21A—H21E0.9600
C4—C101.534 (5)C21A—H21F0.9600
C5—C61.418 (5)C22A—H22D0.9600
C5—H50.9300C22A—H22E0.9600
C6—C91.521 (5)C22A—H22F0.9600
C7—H7A0.9700C23—C24A1.561 (7)
C7—H7B0.9700C23—C261.566 (7)
C8—H8A0.9700C23—C26A1.567 (7)
C8—H8B0.9700C23—C25A1.572 (7)
C9—H9A0.9700C23—C251.572 (6)
C9—H9B0.9700C23—C241.574 (6)
C10—H10A0.9700C24—H24A0.9600
C10—H10B0.9700C24—H24B0.9600
C11—C131.542 (6)C24—H24C0.9600
C11—C141.546 (6)C25—H25A0.9600
C11—C121.553 (6)C25—H25B0.9600
C12—H12A0.9600C25—H25C0.9600
C12—H12B0.9600C26—H26A0.9600
C12—H12C0.9600C26—H26B0.9600
C13—H13A0.9600C26—H26C0.9600
C13—H13B0.9600C24A—H24D0.9600
C13—H13C0.9600C24A—H24E0.9600
C14—H14A0.9600C24A—H24F0.9600
C14—H14B0.9600C25A—H25D0.9600
C14—H14C0.9600C25A—H25E0.9600
C15—C181.534 (6)C25A—H25F0.9600
C15—C161.536 (6)C26A—H26D0.9600
C15—C171.557 (6)C26A—H26E0.9600
C16—H16A0.9600C26A—H26F0.9600
C16—H16B0.9600Cl2—C271.755 (8)
C16—H16C0.9600Cl3—C271.759 (8)
C17—H17A0.9600C27—H27A0.9700
C17—H17B0.9600C27—H27B0.9700
C17—H17C0.9600Cl2A—C27A1.755 (10)
C18—H18A0.9600Cl3A—C27A1.757 (10)
C18—H18B0.9600C27A—H27C0.9700
C18—H18C0.9600C27A—H27D0.9700
C19—C221.562 (6)
C2—Pd—S185.33 (10)C22—C19—C21111.0 (5)
C2—Pd—S283.78 (10)C20—C19—C21110.4 (5)
S1—Pd—S2168.00 (4)C20A—C19—C2193.8 (13)
C2—Pd—Cl1175.31 (10)C22A—C19—C21131.5 (13)
S1—Pd—Cl192.10 (4)C22—C19—S3106.4 (8)
S2—Pd—Cl198.41 (4)C21A—C19—S3108.7 (14)
C7—S1—C11103.7 (2)C20—C19—S3107.6 (7)
C7—S1—Pd100.17 (11)C20A—C19—S3117.9 (17)
C11—S1—Pd109.11 (14)C22A—C19—S395.3 (13)
C8—S2—C15103.53 (19)C21—C19—S3109.3 (6)
C8—S2—Pd99.85 (12)C19—C20—H20A109.5
C15—S2—Pd117.30 (14)C19—C20—H20B109.5
C10—S3—C19103.9 (2)H20A—C20—H20B109.5
C9—S4—C23103.79 (18)C19—C20—H20C109.5
C6—C1—C2120.9 (3)H20A—C20—H20C109.5
C6—C1—C7120.4 (3)H20B—C20—H20C109.5
C2—C1—C7118.6 (3)C19—C21—H21A109.5
C1—C2—C3119.5 (3)C19—C21—H21B109.5
C1—C2—Pd120.4 (3)H21A—C21—H21B109.5
C3—C2—Pd120.0 (3)C19—C21—H21C109.5
C2—C3—C4119.7 (3)H21A—C21—H21C109.5
C2—C3—C8119.0 (3)H21B—C21—H21C109.5
C4—C3—C8121.3 (3)C19—C22—H22A109.5
C5—C4—C3119.4 (3)C19—C22—H22B109.5
C5—C4—C10120.1 (3)H22A—C22—H22B109.5
C3—C4—C10120.5 (3)C19—C22—H22C109.5
C4—C5—C6122.0 (3)H22A—C22—H22C109.5
C4—C5—H5119.0H22B—C22—H22C109.5
C6—C5—H5119.0C19—C20A—H20D109.5
C1—C6—C5118.5 (3)C19—C20A—H20E109.5
C1—C6—C9122.1 (3)H20D—C20A—H20E109.5
C5—C6—C9119.4 (3)C19—C20A—H20F109.5
C1—C7—S1111.8 (2)H20D—C20A—H20F109.5
C1—C7—H7A109.3H20E—C20A—H20F109.5
S1—C7—H7A109.3C19—C21A—H21D109.5
C1—C7—H7B109.3C19—C21A—H21E109.5
S1—C7—H7B109.3H21D—C21A—H21E109.5
H7A—C7—H7B107.9C19—C21A—H21F109.5
C3—C8—S2108.3 (3)H21D—C21A—H21F109.5
C3—C8—H8A110.0H21E—C21A—H21F109.5
S2—C8—H8A110.0C19—C22A—H22D109.5
C3—C8—H8B110.0C19—C22A—H22E109.5
S2—C8—H8B110.0H22D—C22A—H22E109.5
H8A—C8—H8B108.4C19—C22A—H22F109.5
C6—C9—S4108.6 (2)H22D—C22A—H22F109.5
C6—C9—H9A110.0H22E—C22A—H22F109.5
S4—C9—H9A110.0C24A—C23—C2691.4 (10)
C6—C9—H9B110.0C24A—C23—C26A111.3 (6)
S4—C9—H9B110.0C24A—C23—C25A111.0 (6)
H9A—C9—H9B108.4C26—C23—C25A125.2 (15)
C4—C10—S3108.2 (3)C26A—C23—C25A110.7 (6)
C4—C10—H10A110.1C24A—C23—C25111.1 (16)
S3—C10—H10A110.1C26—C23—C25110.6 (5)
C4—C10—H10B110.1C26A—C23—C2597.7 (14)
S3—C10—H10B110.1C26—C23—C24110.3 (5)
H10A—C10—H10B108.4C26A—C23—C24130.7 (10)
C13—C11—C14111.3 (4)C25A—C23—C24104.7 (14)
C13—C11—C12109.9 (4)C25—C23—C24110.3 (5)
C14—C11—C12111.0 (4)C24A—C23—S4121.8 (14)
C13—C11—S1111.8 (3)C26—C23—S4113.0 (8)
C14—C11—S1107.1 (3)C26A—C23—S4104.2 (12)
C12—C11—S1105.7 (3)C25A—C23—S496.8 (13)
C11—C12—H12A109.5C25—C23—S4107.9 (9)
C11—C12—H12B109.5C24—C23—S4104.5 (8)
H12A—C12—H12B109.5C23—C24—H24A109.5
C11—C12—H12C109.5C23—C24—H24B109.5
H12A—C12—H12C109.5H24A—C24—H24B109.5
H12B—C12—H12C109.5C23—C24—H24C109.5
C11—C13—H13A109.5H24A—C24—H24C109.5
C11—C13—H13B109.5H24B—C24—H24C109.5
H13A—C13—H13B109.5C23—C25—H25A109.5
C11—C13—H13C109.5C23—C25—H25B109.5
H13A—C13—H13C109.5H25A—C25—H25B109.5
H13B—C13—H13C109.5C23—C25—H25C109.5
C11—C14—H14A109.5H25A—C25—H25C109.5
C11—C14—H14B109.5H25B—C25—H25C109.5
H14A—C14—H14B109.5C23—C26—H26A109.5
C11—C14—H14C109.5C23—C26—H26B109.5
H14A—C14—H14C109.5H26A—C26—H26B109.5
H14B—C14—H14C109.5C23—C26—H26C109.5
C18—C15—C16111.8 (4)H26A—C26—H26C109.5
C18—C15—C17109.8 (4)H26B—C26—H26C109.5
C16—C15—C17111.7 (4)C23—C24A—H24D109.5
C18—C15—S2107.4 (3)C23—C24A—H24E109.5
C16—C15—S2111.1 (3)H24D—C24A—H24E109.5
C17—C15—S2104.7 (3)C23—C24A—H24F109.5
C15—C16—H16A109.5H24D—C24A—H24F109.5
C15—C16—H16B109.5H24E—C24A—H24F109.5
H16A—C16—H16B109.5C23—C25A—H25D109.5
C15—C16—H16C109.5C23—C25A—H25E109.5
H16A—C16—H16C109.5H25D—C25A—H25E109.5
H16B—C16—H16C109.5C23—C25A—H25F109.5
C15—C17—H17A109.5H25D—C25A—H25F109.5
C15—C17—H17B109.5H25E—C25A—H25F109.5
H17A—C17—H17B109.5C23—C26A—H26D109.5
C15—C17—H17C109.5C23—C26A—H26E109.5
H17A—C17—H17C109.5H26D—C26A—H26E109.5
H17B—C17—H17C109.5C23—C26A—H26F109.5
C15—C18—H18A109.5H26D—C26A—H26F109.5
C15—C18—H18B109.5H26E—C26A—H26F109.5
H18A—C18—H18B109.5Cl2—C27—Cl3112.1 (5)
C15—C18—H18C109.5Cl2—C27—H27A109.2
H18A—C18—H18C109.5Cl3—C27—H27A109.2
H18B—C18—H18C109.5Cl2—C27—H27B109.2
C22—C19—C21A91.2 (13)Cl3—C27—H27B109.2
C22—C19—C20112.0 (5)H27A—C27—H27B107.9
C21A—C19—C20128.4 (15)Cl2A—C27A—Cl3A111.7 (7)
C22—C19—C20A117.7 (19)Cl2A—C27A—H27C109.3
C21A—C19—C20A111.5 (7)Cl3A—C27A—H27C109.3
C21A—C19—C22A111.3 (7)Cl2A—C27A—H27D109.3
C20—C19—C22A100.4 (16)Cl3A—C27A—H27D109.3
C20A—C19—C22A111.0 (7)H27C—C27A—H27D107.9

Experimental details

Crystal data
Chemical formula[Pd(C26H45S4)Cl]·CH2Cl2
Mr712.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)15.917 (15), 13.768 (13), 17.808 (16)
β (°) 105.216 (15)
V3)3766 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.27 × 0.22 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionIntegration
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.593, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
28207, 6570, 5144
Rint0.066
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.110, 1.03
No. of reflections6570
No. of parameters406
No. of restraints291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.24

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pd—C22.022 (4)Pd—S22.333 (2)
Pd—S12.326 (2)Pd—Cl12.441 (2)
 

Acknowledgements

EPM would like to thank CONACYT for a postdoctoral scholarship (postdoctoral agreement No. 290662 UNAM). The financial support of this research by CONACYT (CB2010–154732) and DGAPA-UNAM (IN201711) is gratefully acknowledged. SHO would like to thank the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a licence for the use of the Cambridge Structural Database.

References

First citationArroyo, M., Cervantes, R., Gómez-Benitez, V., López, P., Morales-Morales, D., Torrens, H. & Toscano, R. A. (2003). Synthesis, pp. 1565–1568.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErrington, J., McDonald, W. S. & Shaw, B. L. (1980). J. Chem. Soc. Dalton Trans. pp. 2312–2314.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLoeb, S. J., Shimizu, K. H. G. & Wisner, J. A. (1998). Organometallics, 17, 2324–2327.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorales-Morales, D. & Jensen, C. M. (2007). In The Chemistry of Pincer Compounds. Amsterdam: Elsevier.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m139-m140
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds