organic compounds
(2,7-Dimethoxynaphthalen-1-yl)(4-methoxyphenyl)methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
In the molecule of the title compound, C20H18O4, the dihedral angle between the naphthalene ring system and the benzene ring is 81.74 (5)°. An intermolecular C—H⋯O interaction is formed between an H atom at the 6-position of the naphthalene ring and the O atom of the methoxy group at the 7-position.
Related literature
For formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Nakaema et al. (2008); Hijikata et al. (2010); Kato et al. (2010); Tsumuki et al. (2011, 2012).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536813003218/pk2464sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813003218/pk2464Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813003218/pk2464Isup3.cml
4-Methoxybenzoyl chloride (11.0 mmol, 1.96 g), aluminium chloride (11.0 mmol, 1.47 g) and methylene chloride (25.0 ml) were placed into a 100 ml flask, followed by stirring at 273 K. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (10.0 mmol, 1.88 g) was added. The reaction mixture was poured into ice-cold water (100 ml) after it had been stirred for 6 h at 273 K. The aqueous layer was extracted with CHCl3 (20 ml × 3). The combined extracts were washed with 2M aqueous NaOH followed by washing with brine. The extracts thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. The crude product was purified by recrystallization from methanol (yield 44%). Colorless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from methanol.
Spectroscopic Data:
1H NMR δ (300 MHz, CDCl3): 3.70 (3H, s), 3.79 (3H, s), 3.83 (3H, s), 6.78 (1H, d, J = 2.4 Hz), 6.89 (2H, d, J = 9.0 Hz), 7.00 (1H, dd, J = 9.0, 2.4 Hz), 7.15 (1H, d, J = 9.0 Hz), 7.70 (1H, d, J = 9.0 Hz), 7.83 (3H, d, J = 9.0 Hz) p.p.m. 13C NMR δ (75 MHz, CDCl3): 55.14, 55.41, 56.36, 102.17, 110.28, 113.73, 116.98, 122.15, 124.34, 129.56, 130.61, 131.09, 131.98, 132.98, 154.60, 158.69, 163.81, 196.54 p.p.m. IR (KBr): 1659 (C=O), 1624, 1599, 1510 (Ar), 1251 (OMe) cm-1 HRMS (m/z): [M+H]+ calcd. for C20H19O4, 323.1283, found, 323.1332 m.p. = 368.5–368.9 K
All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å with Uĩso(H) = 1.2 Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C20H18O4 | F(000) = 680 |
Mr = 322.34 | Dx = 1.326 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -P 2ybc | Cell parameters from 25377 reflections |
a = 14.9638 (2) Å | θ = 3.0–68.2° |
b = 7.9191 (1) Å | µ = 0.75 mm−1 |
c = 13.6394 (2) Å | T = 193 K |
β = 92.56° | Block, colorless |
V = 1614.64 (4) Å3 | 0.60 × 0.40 × 0.30 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 2957 independent reflections |
Radiation source: fine-focus sealed tube | 2701 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Detector resolution: 10.000 pixels mm-1 | θmax = 68.2°, θmin = 3.0° |
ω scans | h = −17→18 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −9→9 |
Tmin = 0.662, Tmax = 0.806 | l = −16→16 |
27665 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0622P)2 + 0.323P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2957 reflections | Δρmax = 0.24 e Å−3 |
221 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0093 (6) |
C20H18O4 | V = 1614.64 (4) Å3 |
Mr = 322.34 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 14.9638 (2) Å | µ = 0.75 mm−1 |
b = 7.9191 (1) Å | T = 193 K |
c = 13.6394 (2) Å | 0.60 × 0.40 × 0.30 mm |
β = 92.56° |
Rigaku R-AXIS RAPID diffractometer | 2957 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2701 reflections with I > 2σ(I) |
Tmin = 0.662, Tmax = 0.806 | Rint = 0.051 |
27665 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.24 e Å−3 |
2957 reflections | Δρmin = −0.18 e Å−3 |
221 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.34025 (6) | −0.17441 (11) | 0.36039 (7) | 0.0431 (3) | |
O2 | 0.26300 (6) | 0.04715 (12) | 0.55470 (6) | 0.0428 (3) | |
O3 | 0.12880 (6) | −0.05902 (13) | 0.04035 (7) | 0.0463 (3) | |
O4 | 0.58557 (5) | 0.47580 (11) | 0.37408 (7) | 0.0392 (2) | |
C1 | 0.22392 (8) | 0.02329 (15) | 0.38741 (9) | 0.0324 (3) | |
C2 | 0.19845 (8) | 0.06572 (15) | 0.48029 (9) | 0.0355 (3) | |
C3 | 0.11163 (8) | 0.12450 (17) | 0.49646 (10) | 0.0403 (3) | |
H3 | 0.0950 | 0.1532 | 0.5608 | 0.048* | |
C4 | 0.05162 (8) | 0.13973 (17) | 0.41872 (10) | 0.0412 (3) | |
H4 | −0.0063 | 0.1833 | 0.4294 | 0.049* | |
C5 | 0.01000 (8) | 0.10274 (18) | 0.24246 (10) | 0.0423 (3) | |
H5 | −0.0480 | 0.1466 | 0.2526 | 0.051* | |
C6 | 0.03049 (8) | 0.05121 (18) | 0.15138 (10) | 0.0430 (3) | |
H6 | −0.0132 | 0.0565 | 0.0988 | 0.052* | |
C7 | 0.11745 (8) | −0.01061 (17) | 0.13501 (9) | 0.0373 (3) | |
C8 | 0.18197 (8) | −0.01881 (15) | 0.20971 (9) | 0.0342 (3) | |
H8 | 0.2404 | −0.0578 | 0.1970 | 0.041* | |
C9 | 0.16091 (8) | 0.03151 (15) | 0.30639 (9) | 0.0325 (3) | |
C10 | 0.07321 (8) | 0.09269 (16) | 0.32321 (9) | 0.0364 (3) | |
C11 | 0.31989 (8) | −0.02724 (15) | 0.37353 (8) | 0.0318 (3) | |
C12 | 0.38717 (7) | 0.11016 (15) | 0.37531 (8) | 0.0294 (3) | |
C13 | 0.36306 (7) | 0.28000 (15) | 0.36920 (8) | 0.0311 (3) | |
H13 | 0.3015 | 0.3094 | 0.3664 | 0.037* | |
C14 | 0.42667 (8) | 0.40714 (15) | 0.36708 (8) | 0.0317 (3) | |
H14 | 0.4090 | 0.5221 | 0.3614 | 0.038* | |
C15 | 0.51697 (7) | 0.36349 (15) | 0.37345 (8) | 0.0311 (3) | |
C16 | 0.54233 (7) | 0.19433 (16) | 0.38133 (9) | 0.0348 (3) | |
H16 | 0.6039 | 0.1652 | 0.3868 | 0.042* | |
C17 | 0.47838 (8) | 0.06988 (15) | 0.38119 (9) | 0.0333 (3) | |
H17 | 0.4963 | −0.0451 | 0.3851 | 0.040* | |
C18 | 0.23465 (11) | 0.0506 (2) | 0.65301 (10) | 0.0510 (4) | |
H18A | 0.1872 | −0.0331 | 0.6605 | 0.061* | |
H18B | 0.2118 | 0.1633 | 0.6679 | 0.061* | |
H18C | 0.2854 | 0.0239 | 0.6982 | 0.061* | |
C19 | 0.21651 (9) | −0.1007 (2) | 0.01257 (10) | 0.0474 (3) | |
H19A | 0.2387 | −0.1976 | 0.0511 | 0.057* | |
H19B | 0.2562 | −0.0038 | 0.0248 | 0.057* | |
H19C | 0.2151 | −0.1293 | −0.0574 | 0.057* | |
C20 | 0.56375 (9) | 0.65140 (16) | 0.37488 (9) | 0.0381 (3) | |
H20A | 0.6189 | 0.7181 | 0.3815 | 0.046* | |
H20B | 0.5263 | 0.6754 | 0.4303 | 0.046* | |
H20C | 0.5311 | 0.6812 | 0.3134 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0377 (5) | 0.0318 (5) | 0.0599 (6) | 0.0008 (4) | 0.0037 (4) | −0.0008 (4) |
O2 | 0.0388 (5) | 0.0573 (6) | 0.0324 (5) | −0.0005 (4) | 0.0015 (4) | −0.0039 (4) |
O3 | 0.0376 (5) | 0.0627 (6) | 0.0380 (5) | 0.0012 (4) | −0.0039 (4) | −0.0055 (4) |
O4 | 0.0325 (4) | 0.0321 (5) | 0.0529 (5) | −0.0025 (3) | 0.0004 (4) | 0.0000 (4) |
C1 | 0.0305 (6) | 0.0302 (6) | 0.0367 (6) | −0.0026 (5) | 0.0038 (5) | 0.0014 (5) |
C2 | 0.0346 (6) | 0.0349 (7) | 0.0372 (6) | −0.0039 (5) | 0.0023 (5) | −0.0005 (5) |
C3 | 0.0399 (7) | 0.0416 (7) | 0.0403 (7) | −0.0006 (5) | 0.0102 (5) | −0.0040 (5) |
C4 | 0.0333 (6) | 0.0401 (7) | 0.0510 (7) | 0.0027 (5) | 0.0099 (5) | 0.0013 (6) |
C5 | 0.0283 (6) | 0.0479 (8) | 0.0506 (7) | 0.0013 (5) | 0.0022 (5) | 0.0041 (6) |
C6 | 0.0323 (6) | 0.0517 (8) | 0.0446 (7) | −0.0013 (5) | −0.0045 (5) | 0.0040 (6) |
C7 | 0.0348 (6) | 0.0389 (7) | 0.0380 (6) | −0.0036 (5) | −0.0003 (5) | 0.0011 (5) |
C8 | 0.0292 (6) | 0.0339 (6) | 0.0396 (7) | −0.0014 (5) | 0.0021 (5) | 0.0011 (5) |
C9 | 0.0302 (6) | 0.0288 (6) | 0.0385 (6) | −0.0028 (4) | 0.0028 (5) | 0.0028 (5) |
C10 | 0.0303 (6) | 0.0351 (7) | 0.0442 (7) | −0.0013 (5) | 0.0046 (5) | 0.0028 (5) |
C11 | 0.0328 (6) | 0.0345 (7) | 0.0281 (6) | 0.0024 (5) | 0.0002 (4) | 0.0020 (5) |
C12 | 0.0306 (6) | 0.0310 (6) | 0.0264 (5) | 0.0016 (4) | 0.0009 (4) | 0.0011 (4) |
C13 | 0.0285 (5) | 0.0350 (6) | 0.0298 (5) | 0.0042 (5) | 0.0009 (4) | 0.0014 (5) |
C14 | 0.0351 (6) | 0.0294 (6) | 0.0306 (6) | 0.0039 (5) | 0.0008 (4) | 0.0010 (5) |
C15 | 0.0314 (6) | 0.0329 (6) | 0.0289 (5) | −0.0007 (5) | 0.0008 (4) | −0.0010 (5) |
C16 | 0.0271 (6) | 0.0351 (7) | 0.0419 (7) | 0.0044 (5) | 0.0000 (5) | 0.0002 (5) |
C17 | 0.0339 (6) | 0.0294 (6) | 0.0365 (6) | 0.0050 (5) | 0.0010 (5) | 0.0015 (5) |
C18 | 0.0548 (8) | 0.0635 (10) | 0.0348 (7) | 0.0035 (7) | 0.0044 (6) | −0.0049 (6) |
C19 | 0.0430 (7) | 0.0600 (9) | 0.0393 (7) | 0.0039 (6) | 0.0021 (6) | −0.0061 (6) |
C20 | 0.0441 (7) | 0.0321 (7) | 0.0379 (6) | −0.0042 (5) | 0.0004 (5) | 0.0006 (5) |
O1—C11 | 1.2199 (15) | C8—H8 | 0.9500 |
O2—C2 | 1.3773 (15) | C9—C10 | 1.4270 (17) |
O2—C18 | 1.4245 (16) | C11—C12 | 1.4819 (16) |
O3—C7 | 1.3648 (15) | C12—C13 | 1.3941 (17) |
O3—C19 | 1.4210 (16) | C12—C17 | 1.4004 (16) |
O4—C15 | 1.3580 (14) | C13—C14 | 1.3867 (17) |
O4—C20 | 1.4286 (15) | C13—H13 | 0.9500 |
C1—C2 | 1.3807 (17) | C14—C15 | 1.3936 (16) |
C1—C9 | 1.4216 (17) | C14—H14 | 0.9500 |
C1—C11 | 1.5108 (16) | C15—C16 | 1.3951 (17) |
C2—C3 | 1.4066 (17) | C16—C17 | 1.3736 (17) |
C3—C4 | 1.3638 (19) | C16—H16 | 0.9500 |
C3—H3 | 0.9500 | C17—H17 | 0.9500 |
C4—C10 | 1.4063 (18) | C18—H18A | 0.9800 |
C4—H4 | 0.9500 | C18—H18B | 0.9800 |
C5—C6 | 1.3556 (19) | C18—H18C | 0.9800 |
C5—C10 | 1.4217 (18) | C19—H19A | 0.9800 |
C5—H5 | 0.9500 | C19—H19B | 0.9800 |
C6—C7 | 1.4172 (18) | C19—H19C | 0.9800 |
C6—H6 | 0.9500 | C20—H20A | 0.9800 |
C7—C8 | 1.3735 (17) | C20—H20B | 0.9800 |
C8—C9 | 1.4262 (17) | C20—H20C | 0.9800 |
C2—O2—C18 | 117.58 (10) | C13—C12—C17 | 118.17 (11) |
C7—O3—C19 | 118.23 (10) | C13—C12—C11 | 122.25 (10) |
C15—O4—C20 | 117.68 (9) | C17—C12—C11 | 119.57 (11) |
C2—C1—C9 | 120.09 (11) | C14—C13—C12 | 121.71 (10) |
C2—C1—C11 | 118.84 (10) | C14—C13—H13 | 119.1 |
C9—C1—C11 | 121.05 (10) | C12—C13—H13 | 119.1 |
O2—C2—C1 | 115.90 (10) | C13—C14—C15 | 118.89 (11) |
O2—C2—C3 | 122.82 (11) | C13—C14—H14 | 120.6 |
C1—C2—C3 | 121.28 (12) | C15—C14—H14 | 120.6 |
C4—C3—C2 | 119.21 (12) | O4—C15—C14 | 124.64 (11) |
C4—C3—H3 | 120.4 | O4—C15—C16 | 115.18 (10) |
C2—C3—H3 | 120.4 | C14—C15—C16 | 120.17 (11) |
C3—C4—C10 | 121.75 (11) | C17—C16—C15 | 120.12 (11) |
C3—C4—H4 | 119.1 | C17—C16—H16 | 119.9 |
C10—C4—H4 | 119.1 | C15—C16—H16 | 119.9 |
C6—C5—C10 | 121.54 (12) | C16—C17—C12 | 120.91 (11) |
C6—C5—H5 | 119.2 | C16—C17—H17 | 119.5 |
C10—C5—H5 | 119.2 | C12—C17—H17 | 119.5 |
C5—C6—C7 | 119.69 (12) | O2—C18—H18A | 109.5 |
C5—C6—H6 | 120.2 | O2—C18—H18B | 109.5 |
C7—C6—H6 | 120.2 | H18A—C18—H18B | 109.5 |
O3—C7—C8 | 125.13 (11) | O2—C18—H18C | 109.5 |
O3—C7—C6 | 113.58 (11) | H18A—C18—H18C | 109.5 |
C8—C7—C6 | 121.29 (12) | H18B—C18—H18C | 109.5 |
C7—C8—C9 | 119.71 (11) | O3—C19—H19A | 109.5 |
C7—C8—H8 | 120.1 | O3—C19—H19B | 109.5 |
C9—C8—H8 | 120.1 | H19A—C19—H19B | 109.5 |
C1—C9—C8 | 122.65 (11) | O3—C19—H19C | 109.5 |
C1—C9—C10 | 118.25 (11) | H19A—C19—H19C | 109.5 |
C8—C9—C10 | 119.10 (11) | H19B—C19—H19C | 109.5 |
C4—C10—C5 | 122.03 (11) | O4—C20—H20A | 109.5 |
C4—C10—C9 | 119.33 (12) | O4—C20—H20B | 109.5 |
C5—C10—C9 | 118.64 (11) | H20A—C20—H20B | 109.5 |
O1—C11—C12 | 122.00 (11) | O4—C20—H20C | 109.5 |
O1—C11—C1 | 121.09 (11) | H20A—C20—H20C | 109.5 |
C12—C11—C1 | 116.90 (10) | H20B—C20—H20C | 109.5 |
C18—O2—C2—C1 | −165.55 (12) | C6—C5—C10—C9 | 1.9 (2) |
C18—O2—C2—C3 | 14.60 (18) | C1—C9—C10—C4 | −1.07 (17) |
C9—C1—C2—O2 | 177.39 (10) | C8—C9—C10—C4 | 178.91 (11) |
C11—C1—C2—O2 | −4.15 (17) | C1—C9—C10—C5 | 179.46 (11) |
C9—C1—C2—C3 | −2.75 (19) | C8—C9—C10—C5 | −0.56 (18) |
C11—C1—C2—C3 | 175.71 (11) | C2—C1—C11—O1 | 105.40 (14) |
O2—C2—C3—C4 | 179.84 (12) | C9—C1—C11—O1 | −76.15 (15) |
C1—C2—C3—C4 | 0.0 (2) | C2—C1—C11—C12 | −75.42 (14) |
C2—C3—C4—C10 | 2.2 (2) | C9—C1—C11—C12 | 103.03 (13) |
C10—C5—C6—C7 | −1.5 (2) | O1—C11—C12—C13 | 165.98 (11) |
C19—O3—C7—C8 | −8.7 (2) | C1—C11—C12—C13 | −13.19 (16) |
C19—O3—C7—C6 | 171.37 (12) | O1—C11—C12—C17 | −12.62 (17) |
C5—C6—C7—O3 | 179.62 (12) | C1—C11—C12—C17 | 168.21 (10) |
C5—C6—C7—C8 | −0.3 (2) | C17—C12—C13—C14 | 1.17 (16) |
O3—C7—C8—C9 | −178.27 (12) | C11—C12—C13—C14 | −177.45 (10) |
C6—C7—C8—C9 | 1.65 (19) | C12—C13—C14—C15 | −1.44 (17) |
C2—C1—C9—C8 | −176.75 (11) | C20—O4—C15—C14 | 4.39 (16) |
C11—C1—C9—C8 | 4.82 (18) | C20—O4—C15—C16 | −174.64 (10) |
C2—C1—C9—C10 | 3.23 (17) | C13—C14—C15—O4 | −178.69 (10) |
C11—C1—C9—C10 | −175.20 (11) | C13—C14—C15—C16 | 0.29 (17) |
C7—C8—C9—C1 | 178.80 (11) | O4—C15—C16—C17 | −179.82 (10) |
C7—C8—C9—C10 | −1.18 (18) | C14—C15—C16—C17 | 1.10 (17) |
C3—C4—C10—C5 | 177.77 (13) | C15—C16—C17—C12 | −1.38 (18) |
C3—C4—C10—C9 | −1.68 (19) | C13—C12—C17—C16 | 0.26 (17) |
C6—C5—C10—C4 | −177.53 (13) | C11—C12—C17—C16 | 178.92 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O3i | 0.95 | 2.51 | 3.4592 (16) | 178 |
Symmetry code: (i) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C20H18O4 |
Mr | 322.34 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 193 |
a, b, c (Å) | 14.9638 (2), 7.9191 (1), 13.6394 (2) |
β (°) | 92.56 |
V (Å3) | 1614.64 (4) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.75 |
Crystal size (mm) | 0.60 × 0.40 × 0.30 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.662, 0.806 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27665, 2957, 2701 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.106, 1.05 |
No. of reflections | 2957 |
No. of parameters | 221 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.18 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O3i | 0.95 | 2.51 | 3.4592 (16) | 178 |
Symmetry code: (i) −x, −y, −z. |
Acknowledgements
The authors express their gratitude to Master Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice. This work was partially supported by the Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant, Tokyo, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tsumuki, T., Isogai, A., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2595. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1-aroylnaphthalene and 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008) and [2,7-dimethoxy-8-(2-naphthoyl)-naphthalen-1-yl](naphthalen-2-yl)-methanone [1,8-bis(2-naphthoyl)-2,7-dimethoxynaphthalene] (Tsumuki et al., 2011). The aroyl groups in the 1,8-diaroylnaphthalene compounds are almost perpendicular to the naphthalene rings and oriented in opposite directions (anti-orientation). On the other hand, we have also clarified the minor structure of the 1,8-diaroylnaphthalene derivatives, which the two aroyl groups are oriented in same direction (syn-orientation), [2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene; Hijikata et al., 2010]. Moreover, we have reported crystal structures of 1-aroylnapthalene compounds such as (2,7-dimethoxynaphthalen-1-yl)-(phenyl)methanone (1-benzoyl-2,7-dimethoxynaphthalene) (Kato et al., 2010) and 2,7-dimethoxy-1-(2-naphthoyl)naphthalene (Tsumuki et al., 2012). They have essentially same non-coplanar structure as the homologous 1,8-diaroylnaphthalenes.
As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, 1-aroylated naphthalene bearing methoxy groups on aroyl group, is discussed in this article.
The molecular structure of the title compound is displayed in Fig. 1. The dihedral angle between the best planes of the phenyl ring and the naphthalene ring is 81.74 (5) °.
The dihedral angle between the naphthalene ring system and the bridging ketonic carbonyl C—C(=O)—C plane is larger than that between the phenyl ring and the bridging carbonyl plane [74.77 (6)° versus. 13.27 (6) °].
In the molecular packing, C—H···O interactions between the aromatic hydrogen atoms at the 6-position of the naphthalene ring and the methoxy oxygen atoms at the 7-position are observed (C5—H5···O3 = 2.51 Å; symmetry code: -x, -y, -z; Fig. 2). Moreover, the naphthalene rings are aligned in parallel to each other along b axis (Fig. 3).