organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,7-Dimeth­­oxy­naphthalen-1-yl)(4-meth­­oxy­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 30 January 2013; accepted 31 January 2013; online 9 February 2013)

In the mol­ecule of the title compound, C20H18O4, the dihedral angle between the naphthalene ring system and the benzene ring is 81.74 (5)°. An inter­molecular C—H⋯O inter­action is formed between an H atom at the 6-position of the naphthalene ring and the O atom of the meth­oxy group at the 7-position.

Related literature

For formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene deriv­atives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]); Kato et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]); Tsumuki et al. (2011[Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.], 2012[Tsumuki, T., Isogai, A., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2595.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18O4

  • Mr = 322.34

  • Monoclinic, P 21 /c

  • a = 14.9638 (2) Å

  • b = 7.9191 (1) Å

  • c = 13.6394 (2) Å

  • β = 92.56°

  • V = 1614.64 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.662, Tmax = 0.806

  • 27665 measured reflections

  • 2957 independent reflections

  • 2701 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.05

  • 2957 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.51 3.4592 (16) 178
Symmetry code: (i) -x, -y, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1-aroylnaphthalene and 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008) and [2,7-dimethoxy-8-(2-naphthoyl)-naphthalen-1-yl](naphthalen-2-yl)-methanone [1,8-bis(2-naphthoyl)-2,7-dimethoxynaphthalene] (Tsumuki et al., 2011). The aroyl groups in the 1,8-diaroylnaphthalene compounds are almost perpendicular to the naphthalene rings and oriented in opposite directions (anti-orientation). On the other hand, we have also clarified the minor structure of the 1,8-diaroylnaphthalene derivatives, which the two aroyl groups are oriented in same direction (syn-orientation), [2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene; Hijikata et al., 2010]. Moreover, we have reported crystal structures of 1-aroylnapthalene compounds such as (2,7-dimethoxynaphthalen-1-yl)-(phenyl)methanone (1-benzoyl-2,7-dimethoxynaphthalene) (Kato et al., 2010) and 2,7-dimethoxy-1-(2-naphthoyl)naphthalene (Tsumuki et al., 2012). They have essentially same non-coplanar structure as the homologous 1,8-diaroylnaphthalenes.

As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, 1-aroylated naphthalene bearing methoxy groups on aroyl group, is discussed in this article.

The molecular structure of the title compound is displayed in Fig. 1. The dihedral angle between the best planes of the phenyl ring and the naphthalene ring is 81.74 (5) °.

The dihedral angle between the naphthalene ring system and the bridging ketonic carbonyl C—C(=O)—C plane is larger than that between the phenyl ring and the bridging carbonyl plane [74.77 (6)° versus. 13.27 (6) °].

In the molecular packing, C—H···O interactions between the aromatic hydrogen atoms at the 6-position of the naphthalene ring and the methoxy oxygen atoms at the 7-position are observed (C5—H5···O3 = 2.51 Å; symmetry code: -x, -y, -z; Fig. 2). Moreover, the naphthalene rings are aligned in parallel to each other along b axis (Fig. 3).

Related literature top

For formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Nakaema et al. (2008); Hijikata et al. (2010); Kato et al. (2010); Tsumuki et al. (2011, 2012).

Experimental top

4-Methoxybenzoyl chloride (11.0 mmol, 1.96 g), aluminium chloride (11.0 mmol, 1.47 g) and methylene chloride (25.0 ml) were placed into a 100 ml flask, followed by stirring at 273 K. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (10.0 mmol, 1.88 g) was added. The reaction mixture was poured into ice-cold water (100 ml) after it had been stirred for 6 h at 273 K. The aqueous layer was extracted with CHCl3 (20 ml × 3). The combined extracts were washed with 2M aqueous NaOH followed by washing with brine. The extracts thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. The crude product was purified by recrystallization from methanol (yield 44%). Colorless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from methanol.

Spectroscopic Data:

1H NMR δ (300 MHz, CDCl3): 3.70 (3H, s), 3.79 (3H, s), 3.83 (3H, s), 6.78 (1H, d, J = 2.4 Hz), 6.89 (2H, d, J = 9.0 Hz), 7.00 (1H, dd, J = 9.0, 2.4 Hz), 7.15 (1H, d, J = 9.0 Hz), 7.70 (1H, d, J = 9.0 Hz), 7.83 (3H, d, J = 9.0 Hz) p.p.m. 13C NMR δ (75 MHz, CDCl3): 55.14, 55.41, 56.36, 102.17, 110.28, 113.73, 116.98, 122.15, 124.34, 129.56, 130.61, 131.09, 131.98, 132.98, 154.60, 158.69, 163.81, 196.54 p.p.m. IR (KBr): 1659 (C=O), 1624, 1599, 1510 (Ar), 1251 (OMe) cm-1 HRMS (m/z): [M+H]+ calcd. for C20H19O4, 323.1283, found, 323.1332 m.p. = 368.5–368.9 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å with Uĩso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular C—H···O interactions between H5 and O3 [symmetry code: -x, -y, -z] along the c axis (dashed lines).
[Figure 3] Fig. 3. Alignment of the naphthalene rings along b axis.
(2,7-Dimethoxynaphthalen-1-yl)(4-methoxyphenyl)methanone top
Crystal data top
C20H18O4F(000) = 680
Mr = 322.34Dx = 1.326 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 25377 reflections
a = 14.9638 (2) Åθ = 3.0–68.2°
b = 7.9191 (1) ŵ = 0.75 mm1
c = 13.6394 (2) ÅT = 193 K
β = 92.56°Block, colorless
V = 1614.64 (4) Å30.60 × 0.40 × 0.30 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2957 independent reflections
Radiation source: fine-focus sealed tube2701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.0°
ω scansh = 1718
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 99
Tmin = 0.662, Tmax = 0.806l = 1616
27665 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.323P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2957 reflectionsΔρmax = 0.24 e Å3
221 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (6)
Crystal data top
C20H18O4V = 1614.64 (4) Å3
Mr = 322.34Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.9638 (2) ŵ = 0.75 mm1
b = 7.9191 (1) ÅT = 193 K
c = 13.6394 (2) Å0.60 × 0.40 × 0.30 mm
β = 92.56°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2957 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2701 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.806Rint = 0.051
27665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
2957 reflectionsΔρmin = 0.18 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34025 (6)0.17441 (11)0.36039 (7)0.0431 (3)
O20.26300 (6)0.04715 (12)0.55470 (6)0.0428 (3)
O30.12880 (6)0.05902 (13)0.04035 (7)0.0463 (3)
O40.58557 (5)0.47580 (11)0.37408 (7)0.0392 (2)
C10.22392 (8)0.02329 (15)0.38741 (9)0.0324 (3)
C20.19845 (8)0.06572 (15)0.48029 (9)0.0355 (3)
C30.11163 (8)0.12450 (17)0.49646 (10)0.0403 (3)
H30.09500.15320.56080.048*
C40.05162 (8)0.13973 (17)0.41872 (10)0.0412 (3)
H40.00630.18330.42940.049*
C50.01000 (8)0.10274 (18)0.24246 (10)0.0423 (3)
H50.04800.14660.25260.051*
C60.03049 (8)0.05121 (18)0.15138 (10)0.0430 (3)
H60.01320.05650.09880.052*
C70.11745 (8)0.01061 (17)0.13501 (9)0.0373 (3)
C80.18197 (8)0.01881 (15)0.20971 (9)0.0342 (3)
H80.24040.05780.19700.041*
C90.16091 (8)0.03151 (15)0.30639 (9)0.0325 (3)
C100.07321 (8)0.09269 (16)0.32321 (9)0.0364 (3)
C110.31989 (8)0.02724 (15)0.37353 (8)0.0318 (3)
C120.38717 (7)0.11016 (15)0.37531 (8)0.0294 (3)
C130.36306 (7)0.28000 (15)0.36920 (8)0.0311 (3)
H130.30150.30940.36640.037*
C140.42667 (8)0.40714 (15)0.36708 (8)0.0317 (3)
H140.40900.52210.36140.038*
C150.51697 (7)0.36349 (15)0.37345 (8)0.0311 (3)
C160.54233 (7)0.19433 (16)0.38133 (9)0.0348 (3)
H160.60390.16520.38680.042*
C170.47838 (8)0.06988 (15)0.38119 (9)0.0333 (3)
H170.49630.04510.38510.040*
C180.23465 (11)0.0506 (2)0.65301 (10)0.0510 (4)
H18A0.18720.03310.66050.061*
H18B0.21180.16330.66790.061*
H18C0.28540.02390.69820.061*
C190.21651 (9)0.1007 (2)0.01257 (10)0.0474 (3)
H19A0.23870.19760.05110.057*
H19B0.25620.00380.02480.057*
H19C0.21510.12930.05740.057*
C200.56375 (9)0.65140 (16)0.37488 (9)0.0381 (3)
H20A0.61890.71810.38150.046*
H20B0.52630.67540.43030.046*
H20C0.53110.68120.31340.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0377 (5)0.0318 (5)0.0599 (6)0.0008 (4)0.0037 (4)0.0008 (4)
O20.0388 (5)0.0573 (6)0.0324 (5)0.0005 (4)0.0015 (4)0.0039 (4)
O30.0376 (5)0.0627 (6)0.0380 (5)0.0012 (4)0.0039 (4)0.0055 (4)
O40.0325 (4)0.0321 (5)0.0529 (5)0.0025 (3)0.0004 (4)0.0000 (4)
C10.0305 (6)0.0302 (6)0.0367 (6)0.0026 (5)0.0038 (5)0.0014 (5)
C20.0346 (6)0.0349 (7)0.0372 (6)0.0039 (5)0.0023 (5)0.0005 (5)
C30.0399 (7)0.0416 (7)0.0403 (7)0.0006 (5)0.0102 (5)0.0040 (5)
C40.0333 (6)0.0401 (7)0.0510 (7)0.0027 (5)0.0099 (5)0.0013 (6)
C50.0283 (6)0.0479 (8)0.0506 (7)0.0013 (5)0.0022 (5)0.0041 (6)
C60.0323 (6)0.0517 (8)0.0446 (7)0.0013 (5)0.0045 (5)0.0040 (6)
C70.0348 (6)0.0389 (7)0.0380 (6)0.0036 (5)0.0003 (5)0.0011 (5)
C80.0292 (6)0.0339 (6)0.0396 (7)0.0014 (5)0.0021 (5)0.0011 (5)
C90.0302 (6)0.0288 (6)0.0385 (6)0.0028 (4)0.0028 (5)0.0028 (5)
C100.0303 (6)0.0351 (7)0.0442 (7)0.0013 (5)0.0046 (5)0.0028 (5)
C110.0328 (6)0.0345 (7)0.0281 (6)0.0024 (5)0.0002 (4)0.0020 (5)
C120.0306 (6)0.0310 (6)0.0264 (5)0.0016 (4)0.0009 (4)0.0011 (4)
C130.0285 (5)0.0350 (6)0.0298 (5)0.0042 (5)0.0009 (4)0.0014 (5)
C140.0351 (6)0.0294 (6)0.0306 (6)0.0039 (5)0.0008 (4)0.0010 (5)
C150.0314 (6)0.0329 (6)0.0289 (5)0.0007 (5)0.0008 (4)0.0010 (5)
C160.0271 (6)0.0351 (7)0.0419 (7)0.0044 (5)0.0000 (5)0.0002 (5)
C170.0339 (6)0.0294 (6)0.0365 (6)0.0050 (5)0.0010 (5)0.0015 (5)
C180.0548 (8)0.0635 (10)0.0348 (7)0.0035 (7)0.0044 (6)0.0049 (6)
C190.0430 (7)0.0600 (9)0.0393 (7)0.0039 (6)0.0021 (6)0.0061 (6)
C200.0441 (7)0.0321 (7)0.0379 (6)0.0042 (5)0.0004 (5)0.0006 (5)
Geometric parameters (Å, º) top
O1—C111.2199 (15)C8—H80.9500
O2—C21.3773 (15)C9—C101.4270 (17)
O2—C181.4245 (16)C11—C121.4819 (16)
O3—C71.3648 (15)C12—C131.3941 (17)
O3—C191.4210 (16)C12—C171.4004 (16)
O4—C151.3580 (14)C13—C141.3867 (17)
O4—C201.4286 (15)C13—H130.9500
C1—C21.3807 (17)C14—C151.3936 (16)
C1—C91.4216 (17)C14—H140.9500
C1—C111.5108 (16)C15—C161.3951 (17)
C2—C31.4066 (17)C16—C171.3736 (17)
C3—C41.3638 (19)C16—H160.9500
C3—H30.9500C17—H170.9500
C4—C101.4063 (18)C18—H18A0.9800
C4—H40.9500C18—H18B0.9800
C5—C61.3556 (19)C18—H18C0.9800
C5—C101.4217 (18)C19—H19A0.9800
C5—H50.9500C19—H19B0.9800
C6—C71.4172 (18)C19—H19C0.9800
C6—H60.9500C20—H20A0.9800
C7—C81.3735 (17)C20—H20B0.9800
C8—C91.4262 (17)C20—H20C0.9800
C2—O2—C18117.58 (10)C13—C12—C17118.17 (11)
C7—O3—C19118.23 (10)C13—C12—C11122.25 (10)
C15—O4—C20117.68 (9)C17—C12—C11119.57 (11)
C2—C1—C9120.09 (11)C14—C13—C12121.71 (10)
C2—C1—C11118.84 (10)C14—C13—H13119.1
C9—C1—C11121.05 (10)C12—C13—H13119.1
O2—C2—C1115.90 (10)C13—C14—C15118.89 (11)
O2—C2—C3122.82 (11)C13—C14—H14120.6
C1—C2—C3121.28 (12)C15—C14—H14120.6
C4—C3—C2119.21 (12)O4—C15—C14124.64 (11)
C4—C3—H3120.4O4—C15—C16115.18 (10)
C2—C3—H3120.4C14—C15—C16120.17 (11)
C3—C4—C10121.75 (11)C17—C16—C15120.12 (11)
C3—C4—H4119.1C17—C16—H16119.9
C10—C4—H4119.1C15—C16—H16119.9
C6—C5—C10121.54 (12)C16—C17—C12120.91 (11)
C6—C5—H5119.2C16—C17—H17119.5
C10—C5—H5119.2C12—C17—H17119.5
C5—C6—C7119.69 (12)O2—C18—H18A109.5
C5—C6—H6120.2O2—C18—H18B109.5
C7—C6—H6120.2H18A—C18—H18B109.5
O3—C7—C8125.13 (11)O2—C18—H18C109.5
O3—C7—C6113.58 (11)H18A—C18—H18C109.5
C8—C7—C6121.29 (12)H18B—C18—H18C109.5
C7—C8—C9119.71 (11)O3—C19—H19A109.5
C7—C8—H8120.1O3—C19—H19B109.5
C9—C8—H8120.1H19A—C19—H19B109.5
C1—C9—C8122.65 (11)O3—C19—H19C109.5
C1—C9—C10118.25 (11)H19A—C19—H19C109.5
C8—C9—C10119.10 (11)H19B—C19—H19C109.5
C4—C10—C5122.03 (11)O4—C20—H20A109.5
C4—C10—C9119.33 (12)O4—C20—H20B109.5
C5—C10—C9118.64 (11)H20A—C20—H20B109.5
O1—C11—C12122.00 (11)O4—C20—H20C109.5
O1—C11—C1121.09 (11)H20A—C20—H20C109.5
C12—C11—C1116.90 (10)H20B—C20—H20C109.5
C18—O2—C2—C1165.55 (12)C6—C5—C10—C91.9 (2)
C18—O2—C2—C314.60 (18)C1—C9—C10—C41.07 (17)
C9—C1—C2—O2177.39 (10)C8—C9—C10—C4178.91 (11)
C11—C1—C2—O24.15 (17)C1—C9—C10—C5179.46 (11)
C9—C1—C2—C32.75 (19)C8—C9—C10—C50.56 (18)
C11—C1—C2—C3175.71 (11)C2—C1—C11—O1105.40 (14)
O2—C2—C3—C4179.84 (12)C9—C1—C11—O176.15 (15)
C1—C2—C3—C40.0 (2)C2—C1—C11—C1275.42 (14)
C2—C3—C4—C102.2 (2)C9—C1—C11—C12103.03 (13)
C10—C5—C6—C71.5 (2)O1—C11—C12—C13165.98 (11)
C19—O3—C7—C88.7 (2)C1—C11—C12—C1313.19 (16)
C19—O3—C7—C6171.37 (12)O1—C11—C12—C1712.62 (17)
C5—C6—C7—O3179.62 (12)C1—C11—C12—C17168.21 (10)
C5—C6—C7—C80.3 (2)C17—C12—C13—C141.17 (16)
O3—C7—C8—C9178.27 (12)C11—C12—C13—C14177.45 (10)
C6—C7—C8—C91.65 (19)C12—C13—C14—C151.44 (17)
C2—C1—C9—C8176.75 (11)C20—O4—C15—C144.39 (16)
C11—C1—C9—C84.82 (18)C20—O4—C15—C16174.64 (10)
C2—C1—C9—C103.23 (17)C13—C14—C15—O4178.69 (10)
C11—C1—C9—C10175.20 (11)C13—C14—C15—C160.29 (17)
C7—C8—C9—C1178.80 (11)O4—C15—C16—C17179.82 (10)
C7—C8—C9—C101.18 (18)C14—C15—C16—C171.10 (17)
C3—C4—C10—C5177.77 (13)C15—C16—C17—C121.38 (18)
C3—C4—C10—C91.68 (19)C13—C12—C17—C160.26 (17)
C6—C5—C10—C4177.53 (13)C11—C12—C17—C16178.92 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.513.4592 (16)178
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC20H18O4
Mr322.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)14.9638 (2), 7.9191 (1), 13.6394 (2)
β (°) 92.56
V3)1614.64 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.75
Crystal size (mm)0.60 × 0.40 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.662, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
27665, 2957, 2701
Rint0.051
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.05
No. of reflections2957
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.513.4592 (16)178
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors express their gratitude to Master Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice. This work was partially supported by the Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTsumuki, T., Isogai, A., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2595.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds