metal-organic compounds
Di-μ2-chlorido-bis[chlorido(η5-2,3,4,5-tetramethyl-1-propylcyclopentadienyl)iridium(III)]
aDepartment of Chemistry 0212, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: jmerola@vt.edu
The 2Cl4(C12H19)2], a versatile starting material for the preparation of uniquely substituted pentaalkylcyclopentadienyl–iridium complexes, consists of an iridium(III) atom, a substituted cyclopentadienyl ligand and two chlorine ligands. The full dimer is generated by an inversion center. In the dimer, the two IrIII atoms and two bridging Cl atoms form a perfectly planar ring. The two IrIII atoms and the two terminal Cl atoms also form a rigorous plane that is orthogonal [89.48 (3)°] to the Ir2Cl2 ring. The plane of the cyclopentadienyl ligand forms a dihedral angle of 54.06 (7)° with respect to the Ir2Cl2 ring.
of the title complex, [IrRelated literature
For the structure of the analogous pentamethylcyclopentadienyl compound (CCDC 508943), see: Churchill & Julius (1977). For the structure of the 1-phenyl-2,3,4,5-tetramethylcyclopentadienyl complex (CCDC 802289), see: Liu et al. (2011).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
10.1107/S1600536813005072/pk2466sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813005072/pk2466Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813005072/pk2466Isup3.cml
Iridium(III)chloride hydrate was purchased from Pressure Chemical Company. 1-Propyl-2,3,4,5-tetramethyl cyclopentadiene was purchased from Sigma-Aldrich. The iridium(III)chloride hydrate (1.00 g, 2.84 mmol) was dissolved in 100 ml methanol. 1-Propyl-2,3,4,5-tetramethyl cyclopentadiene (0.70 g,4.25 mmol) was added and the mixture refluxed under nitrogen for 48 hrs. The methanol was removed under vacuum, the solid dissolved in dichloromethane and precipitated with diethylether to yield crystals of the title material. A suitable single-crystal was chosen from those that formed.
Hydrogen atoms were treated with a riding model with C—H distances of 0.99 Å (methylene) and 0.98 Å (methyl). Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (methyl only) of the attached atom.
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Ir2Cl4(C12H19)2] | F(000) = 808 |
Mr = 852.74 | Dx = 2.159 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.7107 Å |
a = 8.84367 (12) Å | Cell parameters from 11826 reflections |
b = 8.83900 (12) Å | θ = 3.6–32.4° |
c = 17.2662 (2) Å | µ = 10.56 mm−1 |
β = 103.6737 (14)° | T = 100 K |
V = 1311.43 (3) Å3 | Irregular, red |
Z = 2 | 0.26 × 0.12 × 0.05 mm |
Agilent Xcalibur (Eos, Gemini ultra) diffractometer | 4440 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3968 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
Detector resolution: 16.0122 pixels mm-1 | θmax = 32.5°, θmin = 3.7° |
ω scans | h = −13→13 |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2011) | k = −13→13 |
Tmin = 0.225, Tmax = 0.647 | l = −25→25 |
20544 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.040 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0107P)2 + 0.0112P] where P = (Fo2 + 2Fc2)/3 |
4440 reflections | (Δ/σ)max = 0.003 |
141 parameters | Δρmax = 1.02 e Å−3 |
0 restraints | Δρmin = −1.18 e Å−3 |
[Ir2Cl4(C12H19)2] | V = 1311.43 (3) Å3 |
Mr = 852.74 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.84367 (12) Å | µ = 10.56 mm−1 |
b = 8.83900 (12) Å | T = 100 K |
c = 17.2662 (2) Å | 0.26 × 0.12 × 0.05 mm |
β = 103.6737 (14)° |
Agilent Xcalibur (Eos, Gemini ultra) diffractometer | 4440 independent reflections |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2011) | 3968 reflections with I > 2σ(I) |
Tmin = 0.225, Tmax = 0.647 | Rint = 0.043 |
20544 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 0 restraints |
wR(F2) = 0.040 | H-atom parameters constrained |
S = 1.06 | Δρmax = 1.02 e Å−3 |
4440 reflections | Δρmin = −1.18 e Å−3 |
141 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ir1 | 0.648925 (10) | 0.848148 (9) | 0.034000 (5) | 0.00818 (3) | |
Cl1 | 0.61998 (8) | 0.77491 (7) | −0.10212 (4) | 0.01940 (13) | |
Cl2 | 0.36739 (7) | 0.88743 (6) | 0.00829 (4) | 0.01276 (11) | |
C1 | 0.8565 (3) | 0.8778 (3) | 0.12571 (14) | 0.0114 (4) | |
C2 | 0.8698 (3) | 0.7453 (3) | 0.07978 (14) | 0.0107 (4) | |
C3 | 0.7466 (3) | 0.6410 (2) | 0.08763 (14) | 0.0107 (4) | |
C4 | 0.6597 (3) | 0.7121 (3) | 0.13820 (14) | 0.0111 (4) | |
C5 | 0.7257 (3) | 0.8590 (3) | 0.16167 (14) | 0.0114 (4) | |
C6 | 0.9915 (3) | 0.7111 (3) | 0.03555 (16) | 0.0169 (5) | |
H6A | 0.9426 | 0.6665 | −0.0163 | 0.025* | |
H6B | 1.0669 | 0.6397 | 0.0664 | 0.025* | |
H6C | 1.0449 | 0.8048 | 0.0274 | 0.025* | |
C7 | 0.7237 (3) | 0.4861 (3) | 0.05290 (15) | 0.0164 (5) | |
H7A | 0.6226 | 0.4468 | 0.0575 | 0.025* | |
H7B | 0.8067 | 0.4195 | 0.0818 | 0.025* | |
H7C | 0.7269 | 0.4901 | −0.0034 | 0.025* | |
C8 | 0.5254 (3) | 0.6462 (3) | 0.16461 (16) | 0.0158 (5) | |
H8A | 0.4363 | 0.7149 | 0.1503 | 0.024* | |
H8B | 0.5538 | 0.6318 | 0.2225 | 0.024* | |
H8C | 0.4978 | 0.5483 | 0.1384 | 0.024* | |
C9 | 0.6723 (3) | 0.9646 (3) | 0.21693 (15) | 0.0186 (5) | |
H9A | 0.6986 | 1.0687 | 0.2055 | 0.028* | |
H9B | 0.7237 | 0.9391 | 0.2721 | 0.028* | |
H9C | 0.5593 | 0.9556 | 0.2095 | 0.028* | |
C10 | 0.9598 (3) | 1.0150 (3) | 0.13630 (15) | 0.0162 (5) | |
H10A | 0.8951 | 1.1073 | 0.1332 | 0.019* | |
H10B | 1.0147 | 1.0192 | 0.0926 | 0.019* | |
C11 | 1.0796 (3) | 1.0121 (3) | 0.21638 (16) | 0.0202 (5) | |
H11A | 1.1392 | 1.1079 | 0.2231 | 0.024* | |
H11B | 1.0244 | 1.0054 | 0.2599 | 0.024* | |
C12 | 1.1919 (3) | 0.8801 (3) | 0.22310 (19) | 0.0268 (6) | |
H12A | 1.2463 | 0.8856 | 0.1799 | 0.040* | |
H12B | 1.1340 | 0.7848 | 0.2192 | 0.040* | |
H12C | 1.2679 | 0.8847 | 0.2745 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.00843 (5) | 0.00775 (5) | 0.00831 (4) | 0.00059 (3) | 0.00184 (3) | 0.00011 (3) |
Cl1 | 0.0274 (3) | 0.0203 (3) | 0.0095 (3) | 0.0054 (3) | 0.0024 (2) | −0.0022 (2) |
Cl2 | 0.0094 (2) | 0.0104 (2) | 0.0176 (3) | −0.00074 (19) | 0.0014 (2) | 0.0035 (2) |
C1 | 0.0090 (10) | 0.0135 (11) | 0.0104 (10) | 0.0028 (8) | −0.0002 (8) | 0.0016 (9) |
C2 | 0.0084 (10) | 0.0128 (11) | 0.0103 (10) | 0.0033 (8) | 0.0011 (8) | 0.0022 (9) |
C3 | 0.0118 (11) | 0.0103 (10) | 0.0099 (10) | 0.0025 (8) | 0.0024 (9) | 0.0019 (9) |
C4 | 0.0132 (11) | 0.0097 (10) | 0.0100 (10) | 0.0026 (9) | 0.0018 (9) | 0.0028 (9) |
C5 | 0.0129 (11) | 0.0125 (11) | 0.0083 (10) | 0.0014 (9) | 0.0013 (9) | 0.0003 (9) |
C6 | 0.0133 (12) | 0.0180 (12) | 0.0203 (13) | 0.0026 (10) | 0.0060 (10) | 0.0000 (10) |
C7 | 0.0189 (13) | 0.0112 (11) | 0.0186 (12) | 0.0007 (10) | 0.0031 (10) | −0.0027 (10) |
C8 | 0.0161 (12) | 0.0173 (12) | 0.0156 (12) | 0.0009 (10) | 0.0067 (10) | 0.0040 (10) |
C9 | 0.0239 (14) | 0.0199 (13) | 0.0119 (11) | 0.0052 (11) | 0.0042 (10) | −0.0027 (10) |
C10 | 0.0156 (12) | 0.0126 (11) | 0.0184 (12) | −0.0018 (9) | −0.0002 (10) | −0.0015 (10) |
C11 | 0.0184 (13) | 0.0193 (13) | 0.0198 (13) | −0.0030 (10) | −0.0016 (10) | −0.0023 (11) |
C12 | 0.0211 (14) | 0.0257 (15) | 0.0280 (16) | 0.0005 (12) | −0.0053 (12) | −0.0009 (12) |
Ir1—Cl1 | 2.3924 (6) | C6—H6B | 0.9800 |
Ir1—Cl2 | 2.4483 (6) | C6—H6C | 0.9800 |
Ir1—Cl2i | 2.4427 (6) | C7—H7A | 0.9800 |
Ir1—C1 | 2.138 (2) | C7—H7B | 0.9800 |
Ir1—C2 | 2.130 (2) | C7—H7C | 0.9800 |
Ir1—C3 | 2.139 (2) | C8—H8A | 0.9800 |
Ir1—C4 | 2.148 (2) | C8—H8B | 0.9800 |
Ir1—C5 | 2.150 (2) | C8—H8C | 0.9800 |
Cl2—Ir1i | 2.4427 (6) | C9—H9A | 0.9800 |
C1—C2 | 1.434 (3) | C9—H9B | 0.9800 |
C1—C5 | 1.446 (3) | C9—H9C | 0.9800 |
C1—C10 | 1.504 (3) | C10—H10A | 0.9900 |
C2—C3 | 1.458 (3) | C10—H10B | 0.9900 |
C2—C6 | 1.490 (3) | C10—C11 | 1.530 (4) |
C3—C4 | 1.437 (3) | C11—H11A | 0.9900 |
C3—C7 | 1.489 (3) | C11—H11B | 0.9900 |
C4—C5 | 1.442 (3) | C11—C12 | 1.519 (4) |
C4—C8 | 1.488 (3) | C12—H12A | 0.9800 |
C5—C9 | 1.490 (3) | C12—H12B | 0.9800 |
C6—H6A | 0.9800 | C12—H12C | 0.9800 |
Cl1—Ir1—Cl2i | 88.87 (2) | C5—C4—C8 | 124.5 (2) |
Cl1—Ir1—Cl2 | 89.55 (2) | C8—C4—Ir1 | 126.53 (17) |
Cl2i—Ir1—Cl2 | 79.89 (2) | C1—C5—Ir1 | 69.86 (13) |
C1—Ir1—Cl1 | 129.38 (7) | C1—C5—C9 | 127.6 (2) |
C1—Ir1—Cl2i | 94.81 (6) | C4—C5—Ir1 | 70.30 (13) |
C1—Ir1—Cl2 | 140.82 (6) | C4—C5—C1 | 107.1 (2) |
C1—Ir1—C3 | 66.19 (9) | C4—C5—C9 | 125.2 (2) |
C1—Ir1—C4 | 65.65 (9) | C9—C5—Ir1 | 127.85 (17) |
C1—Ir1—C5 | 39.40 (9) | C2—C6—H6A | 109.5 |
C2—Ir1—Cl1 | 97.18 (6) | C2—C6—H6B | 109.5 |
C2—Ir1—Cl2i | 120.22 (6) | C2—C6—H6C | 109.5 |
C2—Ir1—Cl2 | 158.74 (6) | H6A—C6—H6B | 109.5 |
C2—Ir1—C1 | 39.28 (9) | H6A—C6—H6C | 109.5 |
C2—Ir1—C3 | 39.94 (9) | H6B—C6—H6C | 109.5 |
C2—Ir1—C4 | 66.10 (9) | C3—C7—H7A | 109.5 |
C2—Ir1—C5 | 66.35 (9) | C3—C7—H7B | 109.5 |
C3—Ir1—Cl1 | 97.59 (6) | C3—C7—H7C | 109.5 |
C3—Ir1—Cl2i | 159.63 (7) | H7A—C7—H7B | 109.5 |
C3—Ir1—Cl2 | 119.28 (7) | H7A—C7—H7C | 109.5 |
C3—Ir1—C4 | 39.16 (8) | H7B—C7—H7C | 109.5 |
C3—Ir1—C5 | 66.24 (9) | C4—C8—H8A | 109.5 |
C4—Ir1—Cl1 | 130.14 (6) | C4—C8—H8B | 109.5 |
C4—Ir1—Cl2 | 94.21 (6) | C4—C8—H8C | 109.5 |
C4—Ir1—Cl2i | 140.73 (6) | H8A—C8—H8B | 109.5 |
C4—Ir1—C5 | 39.22 (9) | H8A—C8—H8C | 109.5 |
C5—Ir1—Cl1 | 162.53 (6) | H8B—C8—H8C | 109.5 |
C5—Ir1—Cl2 | 103.93 (7) | C5—C9—H9A | 109.5 |
C5—Ir1—Cl2i | 104.23 (6) | C5—C9—H9B | 109.5 |
Ir1i—Cl2—Ir1 | 100.11 (2) | C5—C9—H9C | 109.5 |
C2—C1—Ir1 | 70.05 (13) | H9A—C9—H9B | 109.5 |
C2—C1—C5 | 108.8 (2) | H9A—C9—H9C | 109.5 |
C2—C1—C10 | 126.8 (2) | H9B—C9—H9C | 109.5 |
C5—C1—Ir1 | 70.74 (13) | C1—C10—H10A | 109.3 |
C5—C1—C10 | 124.4 (2) | C1—C10—H10B | 109.3 |
C10—C1—Ir1 | 125.42 (17) | C1—C10—C11 | 111.5 (2) |
C1—C2—Ir1 | 70.67 (13) | H10A—C10—H10B | 108.0 |
C1—C2—C3 | 107.7 (2) | C11—C10—H10A | 109.3 |
C1—C2—C6 | 127.8 (2) | C11—C10—H10B | 109.3 |
C3—C2—Ir1 | 70.38 (13) | C10—C11—H11A | 109.1 |
C3—C2—C6 | 124.4 (2) | C10—C11—H11B | 109.1 |
C6—C2—Ir1 | 127.32 (17) | H11A—C11—H11B | 107.8 |
C2—C3—Ir1 | 69.68 (12) | C12—C11—C10 | 112.5 (2) |
C2—C3—C7 | 125.3 (2) | C12—C11—H11A | 109.1 |
C4—C3—Ir1 | 70.73 (13) | C12—C11—H11B | 109.1 |
C4—C3—C2 | 107.4 (2) | C11—C12—H12A | 109.5 |
C4—C3—C7 | 127.3 (2) | C11—C12—H12B | 109.5 |
C7—C3—Ir1 | 127.59 (17) | C11—C12—H12C | 109.5 |
C3—C4—Ir1 | 70.12 (13) | H12A—C12—H12B | 109.5 |
C3—C4—C5 | 109.0 (2) | H12A—C12—H12C | 109.5 |
C3—C4—C8 | 126.5 (2) | H12B—C12—H12C | 109.5 |
C5—C4—Ir1 | 70.48 (13) |
Symmetry code: (i) −x+1, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ir2Cl4(C12H19)2] |
Mr | 852.74 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 8.84367 (12), 8.83900 (12), 17.2662 (2) |
β (°) | 103.6737 (14) |
V (Å3) | 1311.43 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 10.56 |
Crystal size (mm) | 0.26 × 0.12 × 0.05 |
Data collection | |
Diffractometer | Agilent Xcalibur (Eos, Gemini ultra) diffractometer |
Absorption correction | Gaussian (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.225, 0.647 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20544, 4440, 3968 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.755 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.040, 1.06 |
No. of reflections | 4440 |
No. of parameters | 141 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.02, −1.18 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
We thank the National Science Foundation for funds (grant CHE-01311288) for the purchase of the Oxford Diffraction Xcalibur2 single-crystal diffractometer.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Churchill, M. R. & Julius, S. A. (1977). Inorg. Chem. 16, 1488–1494. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Liu, Z., Habtemariam, A., Pizarro, A. M., Fletcher, S. A., Kisova, A., Vrana, O., Salassa, L., Bruijnincx, P. C. A., Clarkson, G. J., Brabec, V. & Sadler, P. J. (2011). J. Med. Chem. 54, 3011–3026. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Di-µ2-chlorido-bis[chlorido(η5-2,3,4,5-tetramethyl-1-propylcyclopentadienyl)iridium(III)] is a useful starting material for half-sandwich complexes of iridium. Compared with the pentamethycylopentadienyl variety, complexes of the propyl-tetramethyl complexes are more soluble in organic solvents. Structurally, the core of the title compound is superimposable with the parent pentamethylcyclopentadiene complex.
The unit-cell dimensions for the pentamethylcyclopentadienyl compound (Churchill, et al. (1977) are quite similar with the exception of the c axis being 1.5 A longer due to the longer chain on the cyclopentadienyl ligand.