organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Pyrazin-2-yl)-1,8-naphthyridin-2-amine

aSchool of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, People's Republic of China, bInstitute of Chemistry, Academia Sinica, Taipei, Taiwan, and cDepartment of Chemistry, National Taiwan University, Taipei 106, Taiwan
*Correspondence e-mail: wzwang@xsyu.edu.cn, smpeng@ntu.edu.tw

(Received 30 November 2012; accepted 31 January 2013; online 6 February 2013)

There are two independent mol­ecules in the asymmetric unit of the title compound, C12H9N5, in which the C—N(amine)—C angles differ slightly [129.63 (11) and 132.02 (11)°]. In each independent mol­ecule, an intra­molecular C—H⋯N hydrogen bond stabilizes the mol­ecular structure, forming an S(6) ring motif. The independent mol­ecules are linked via an N—H⋯N hydrogen bond. Further N—H⋯N and C—H⋯N hydrogen bonds connect the mol­ecules into chains along c axis. Pairs of C—H⋯π inter­actions between the chains lead to sheets parallel to the b axis. These are linked by ππ inter­actions between the naphthyridine and pyrazine rings [centroid–centroid separations of 3.553 (8) Å] into a three-dimensional supra­molecular network.

Related literature

For related structures, see: Alvarez-Rua et al. (2004[Alvarez-Rua, C., García-Granda, S., Goswami, S., Mukherjee, R., Dey, S., Claramunt, R. M., María, M. D. S., Rozas, I., Jagerovic, N., Alkortae, I. & Elguero, J. (2004). New J. Chem. 28, 700-707.]); Basato et al. (2006[Basato, M., Biffis, A., Martinati, G., Tubaro, C., Graiff, C., Tiripicchio, A., Aronica, L. A. & Caporusso, A. M. (2006). J. Organomet. Chem. 691, 3464-3471.]); Ghosh et al. (2010[Ghosh, K., Sen, T. & Fröhlich, R. (2010). J. Incl. Phenom. Macrocycl. Chem. 68, 193-199.]); Jin et al. (2010[Jin, S.-W., Zhang, W.-B., Liu, L., Gao, H.-F., Wang, D.-Q., Chen, R.-P. & Xu, X.-L. (2010). J. Mol. Struct. 975, 128-136.], 2011[Jin, S.-W., Liu, L., Wang, D.-Q. & Guo, J.-Z. (2011). J. Mol. Struct. 1005, 59-69.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9N5

  • Mr = 223.24

  • Triclinic, [P \overline 1]

  • a = 7.8608 (3) Å

  • b = 11.8200 (5) Å

  • c = 11.9356 (4) Å

  • α = 105.096 (2)°

  • β = 98.086 (2)°

  • γ = 101.854 (2)°

  • V = 1025.53 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.28 × 0.2 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.991

  • 16351 measured reflections

  • 3606 independent reflections

  • 2557 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.074

  • S = 0.93

  • 3606 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N22/C23–C25/C29/C30 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯N33 0.93 2.33 2.9318 (17) 122
C17—H17⋯N1 0.93 2.24 2.8518 (17) 123
N31—H31⋯N2 0.86 2.14 2.9396 (15) 154
N11—H11⋯N22i 0.86 2.23 3.0766 (15) 171
C26—H26⋯N16ii 0.93 2.51 3.3608 (17) 152
C15—H15⋯Cg1iii 0.93 2.74 3.472 (2) 136
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

1,8-Naphthyridine, a simple heterocycle compound with two ring nitrogen atoms as hydrogen bond acceptors, has been widely used by various groups in the area of molecular recognition research as hydrogen bonding building block. Some interesting coordination polymers assembled with 1,8-naphthyridine have been reported, showing various structural motifs (Alvarez-Rua et al., 2004; Basato et al., 2006; Ghosh et al., 2010; Jin et al., 2010; Jin et al., 2011). The title compound, C12H9N5, I, contains an array of hydrogen bond NH donors and N acceptors and therefore follow different hydrogen bonding packing patterns. In this paper, we report its crystal structure, which crystallizes with two unique molecules, A & B (Fig. 1), focusing on three-dimensional supramolecular network via weak noncovalent interactions.

The molecular structure of the title compound is shown in Fig. 1. The C—N(amine)—C angles of the two chemically equal molecules in the dimer are slightly diferent, showing 129.63 (11)° and 132.02 (11)°, for molecule A and B, respectively. Two intramolecular hydrogen bonds C27—H27···N33 and C17—H17···N1 (Table 1) stabilize the molecular structure and result in an S(6) ring motif (Bernstein et al., 1995). Two independent molecules in the title compound form a molecular pair via N31—H31···N2 hydrogen bonds (Fig. 1). N11—H11···N22i intermolecular hydrogen bonds link dimer molecules into rings as basic expanding units, which are joined into one-dimensional chains along c axis through C26—H26···N16ii hydrogen bonds (Fig. 2). Pairs of C15—H15···Cgiii interactions between the chains construct sheets parallel to b axis (Fig. 3). Extensive three dimensional supramolecular networks are formed by ππ interactions between the naphthyridine and pyrazine rings with centroid–centroid separations of 3.553 (8)Å propagating along a axis (Fig. 4). Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) x, y+1, z.

Related literature top

For related structures, see: Alvarez-Rua et al. (2004); Basato et al. (2006); Ghosh et al. (2010); Jin et al. (2010, 2011). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

A mixture of 2-chloro-1,8-naphthyridine (8.0 g, 40 mmol), pyrazin-2-amine (4.6 g, 48 mmol), Pd2(dba)3 (0.73 g, 0.80 mmol) (dba is dibenzylideneacetone), 1,3-bis(diphenylphosphino)propane (0.66 g, 1.6 mmol) and ButOK (13.1 g, 136 mmol) in dry toluene (350 ml) was refluxed under argon with stirring for 4 days. The crude product was washed with water, benzene and methanol and recrystallized from acetone.

Refinement top

The H atoms attached to C and N atoms were positioned geometrically and refined using in the riding model, with C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2 Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. H bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Chains parallel c axis in the crystal structure of I. H bonds are indicated with dashed lines. Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+1, -z+1.
[Figure 3] Fig. 3. A sheet parallels b axis in the crystal structure of I. H bonds are indicated with dashed lines. Symmetry code: (iii) x, y+1, z.
[Figure 4] Fig. 4. Three dimensional network in the crystal structure of I via ππ interactions between the naphthyridine and pyrazine rings. H bonds are indicated with dashed lines. Naphthyridine and pyrazine rings paired with ππ interaction are presented as spacefilled.
N-(Pyrazin-2-yl)-1,8-naphthyridin-2-amine top
Crystal data top
C12H9N5Z = 4
Mr = 223.24F(000) = 464
Triclinic, P1Dx = 1.446 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8608 (3) ÅCell parameters from 5652 reflections
b = 11.8200 (5) Åθ = 2.7–29.1°
c = 11.9356 (4) ŵ = 0.09 mm1
α = 105.096 (2)°T = 100 K
β = 98.086 (2)°Prism, yellow
γ = 101.854 (2)°0.28 × 0.2 × 0.18 mm
V = 1025.53 (7) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3606 independent reflections
Radiation source: fine-focus sealed tube2557 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 89
Tmin = 0.927, Tmax = 0.991k = 1414
16351 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0411P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
3606 reflectionsΔρmax = 0.18 e Å3
308 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (11)
Crystal data top
C12H9N5γ = 101.854 (2)°
Mr = 223.24V = 1025.53 (7) Å3
Triclinic, P1Z = 4
a = 7.8608 (3) ÅMo Kα radiation
b = 11.8200 (5) ŵ = 0.09 mm1
c = 11.9356 (4) ÅT = 100 K
α = 105.096 (2)°0.28 × 0.2 × 0.18 mm
β = 98.086 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3606 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2557 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.991Rint = 0.037
16351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 0.93Δρmax = 0.18 e Å3
3606 reflectionsΔρmin = 0.20 e Å3
308 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.22552 (13)0.57902 (10)0.04843 (9)0.0189 (3)
N20.21678 (14)0.40952 (10)0.10986 (9)0.0201 (3)
N110.22899 (14)0.75053 (10)0.01282 (9)0.0209 (3)
H110.25650.78450.06560.025*
N130.14424 (14)0.92338 (10)0.06217 (10)0.0222 (3)
N160.09496 (15)0.86566 (11)0.26882 (10)0.0260 (3)
N210.04515 (14)0.29804 (9)0.29392 (9)0.0196 (3)
N220.27965 (14)0.13223 (10)0.21168 (10)0.0234 (3)
N310.18130 (14)0.46608 (10)0.35900 (9)0.0213 (3)
H310.16250.46020.28470.026*
N330.36229 (14)0.58552 (10)0.54390 (10)0.0238 (3)
N360.52942 (15)0.73882 (10)0.42486 (10)0.0277 (3)
C30.23662 (17)0.29818 (12)0.09116 (12)0.0230 (3)
H30.21640.26070.14930.028*
C40.28551 (17)0.23258 (12)0.00894 (12)0.0238 (3)
H40.29980.15500.01620.029*
C50.31171 (17)0.28572 (12)0.09594 (12)0.0232 (3)
H50.34340.24440.16420.028*
C60.31156 (17)0.46677 (13)0.16631 (12)0.0229 (3)
H60.34050.43030.23760.027*
C70.28987 (17)0.57976 (13)0.14393 (12)0.0227 (3)
H70.30260.62190.19930.027*
C80.24673 (16)0.63419 (12)0.03287 (12)0.0188 (3)
C90.24464 (16)0.46328 (12)0.02396 (11)0.0177 (3)
C100.29047 (16)0.40294 (12)0.08155 (11)0.0190 (3)
C120.17354 (17)0.82116 (12)0.07953 (11)0.0182 (3)
C140.08721 (18)0.99392 (12)0.14756 (12)0.0237 (3)
H140.06261.06470.13740.028*
C150.06335 (18)0.96630 (12)0.24991 (12)0.0235 (3)
H150.02431.01890.30720.028*
C170.14880 (18)0.79278 (13)0.18385 (11)0.0234 (3)
H170.17050.72130.19390.028*
C230.38828 (18)0.03571 (13)0.22223 (13)0.0261 (4)
H230.47180.01410.15530.031*
C240.38621 (19)0.00346 (13)0.32681 (13)0.0281 (4)
H240.46340.06700.32820.034*
C250.26920 (18)0.07709 (12)0.42639 (13)0.0257 (4)
H250.26720.05840.49750.031*
C260.02570 (17)0.26653 (12)0.51840 (12)0.0224 (3)
H260.01750.25590.59330.027*
C270.08325 (18)0.36368 (12)0.50309 (12)0.0223 (3)
H270.16390.42140.56700.027*
C280.07114 (17)0.37501 (12)0.38708 (12)0.0191 (3)
C290.15825 (17)0.20387 (12)0.31086 (12)0.0194 (3)
C300.15148 (18)0.18136 (12)0.42162 (12)0.0201 (3)
C320.31538 (17)0.56440 (12)0.42761 (12)0.0188 (3)
C340.49447 (18)0.68540 (13)0.60011 (13)0.0268 (4)
H340.53170.70460.68180.032*
C350.57667 (19)0.76004 (13)0.54274 (13)0.0291 (4)
H350.66790.82750.58650.035*
C370.39957 (17)0.64185 (12)0.36948 (13)0.0228 (3)
H370.36170.62370.28800.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0177 (6)0.0199 (7)0.0191 (7)0.0044 (5)0.0036 (5)0.0062 (6)
N20.0206 (7)0.0181 (7)0.0208 (7)0.0028 (5)0.0040 (5)0.0064 (5)
N110.0256 (7)0.0230 (7)0.0192 (6)0.0083 (5)0.0100 (5)0.0103 (6)
N130.0249 (7)0.0188 (7)0.0238 (7)0.0058 (5)0.0058 (6)0.0072 (6)
N160.0345 (7)0.0259 (7)0.0207 (7)0.0129 (6)0.0076 (6)0.0071 (6)
N210.0220 (7)0.0188 (7)0.0187 (6)0.0062 (5)0.0059 (5)0.0051 (6)
N220.0243 (7)0.0218 (7)0.0230 (7)0.0043 (6)0.0071 (6)0.0049 (6)
N310.0258 (7)0.0228 (7)0.0155 (6)0.0050 (6)0.0051 (5)0.0067 (5)
N330.0217 (7)0.0272 (7)0.0213 (7)0.0096 (6)0.0043 (6)0.0027 (6)
N360.0244 (7)0.0252 (7)0.0313 (8)0.0060 (6)0.0050 (6)0.0049 (6)
C30.0210 (8)0.0208 (9)0.0249 (8)0.0006 (7)0.0022 (7)0.0083 (7)
C40.0205 (8)0.0186 (8)0.0285 (9)0.0038 (6)0.0014 (7)0.0034 (7)
C50.0179 (8)0.0242 (9)0.0227 (8)0.0056 (7)0.0026 (6)0.0006 (7)
C60.0208 (8)0.0321 (9)0.0157 (8)0.0093 (7)0.0056 (6)0.0042 (7)
C70.0230 (8)0.0291 (9)0.0194 (8)0.0085 (7)0.0069 (7)0.0098 (7)
C80.0136 (7)0.0221 (8)0.0201 (8)0.0041 (6)0.0016 (6)0.0066 (7)
C90.0129 (7)0.0193 (8)0.0180 (8)0.0011 (6)0.0002 (6)0.0046 (6)
C100.0134 (7)0.0216 (8)0.0186 (8)0.0030 (6)0.0007 (6)0.0028 (7)
C120.0157 (7)0.0184 (8)0.0183 (8)0.0031 (6)0.0017 (6)0.0040 (6)
C140.0252 (8)0.0175 (8)0.0269 (9)0.0053 (7)0.0039 (7)0.0051 (7)
C150.0264 (8)0.0209 (8)0.0220 (8)0.0082 (7)0.0043 (7)0.0031 (7)
C170.0302 (9)0.0248 (9)0.0188 (8)0.0127 (7)0.0063 (7)0.0075 (7)
C230.0252 (8)0.0226 (8)0.0293 (9)0.0052 (7)0.0097 (7)0.0041 (7)
C240.0302 (9)0.0226 (9)0.0349 (9)0.0062 (7)0.0147 (8)0.0106 (8)
C250.0324 (9)0.0271 (9)0.0259 (9)0.0132 (7)0.0140 (7)0.0132 (7)
C260.0276 (8)0.0285 (9)0.0184 (8)0.0141 (7)0.0097 (7)0.0112 (7)
C270.0242 (8)0.0269 (9)0.0178 (8)0.0108 (7)0.0050 (6)0.0064 (7)
C280.0208 (8)0.0189 (8)0.0218 (8)0.0103 (7)0.0080 (7)0.0071 (7)
C290.0212 (8)0.0182 (8)0.0221 (8)0.0092 (6)0.0091 (7)0.0059 (7)
C300.0228 (8)0.0210 (8)0.0219 (8)0.0113 (7)0.0100 (7)0.0083 (7)
C320.0174 (8)0.0183 (8)0.0205 (8)0.0086 (6)0.0038 (6)0.0023 (7)
C340.0210 (8)0.0309 (9)0.0245 (9)0.0096 (7)0.0024 (7)0.0003 (7)
C350.0217 (8)0.0259 (9)0.0326 (10)0.0058 (7)0.0023 (7)0.0012 (7)
C370.0217 (8)0.0228 (8)0.0241 (8)0.0081 (7)0.0043 (7)0.0059 (7)
Geometric parameters (Å, º) top
N1—C81.3134 (15)C6—C71.3434 (18)
N1—C91.3669 (16)C6—C101.4190 (17)
N2—C31.3218 (16)C6—H60.9300
N2—C91.3596 (15)C7—C81.4346 (18)
N11—C81.3727 (16)C7—H70.9300
N11—C121.3810 (16)C9—C101.4105 (18)
N11—H110.8600C12—C171.4000 (17)
N13—C141.3321 (17)C14—C151.3715 (17)
N13—C121.3368 (16)C14—H140.9300
N16—C171.3286 (16)C15—H150.9300
N16—C151.3316 (16)C17—H170.9300
N21—C281.3211 (16)C23—C241.3957 (19)
N21—C291.3534 (15)C23—H230.9300
N22—C231.3234 (16)C24—C251.3568 (19)
N22—C291.3628 (16)C24—H240.9300
N31—C321.3748 (16)C25—C301.4005 (18)
N31—C281.3812 (15)C25—H250.9300
N31—H310.8600C26—C271.3545 (18)
N33—C321.3277 (16)C26—C301.4105 (18)
N33—C341.3456 (17)C26—H260.9300
N36—C371.3143 (16)C27—C281.4174 (17)
N36—C351.3459 (17)C27—H270.9300
C3—C41.3947 (19)C29—C301.4108 (17)
C3—H30.9300C32—C371.4030 (17)
C4—C51.3645 (18)C34—C351.3674 (19)
C4—H40.9300C34—H340.9300
C5—C101.3987 (19)C35—H350.9300
C5—H50.9300C37—H370.9300
C8—N1—C9117.38 (11)C15—C14—H14118.7
C3—N2—C9117.13 (11)N16—C15—C14121.31 (13)
C8—N11—C12129.63 (11)N16—C15—H15119.3
C8—N11—H11115.2C14—C15—H15119.3
C12—N11—H11115.2N16—C17—C12121.52 (13)
C14—N13—C12116.49 (12)N16—C17—H17119.2
C17—N16—C15117.14 (12)C12—C17—H17119.2
C28—N21—C29117.94 (11)N22—C23—C24124.57 (14)
C23—N22—C29116.70 (12)N22—C23—H23117.7
C32—N31—C28132.02 (11)C24—C23—H23117.7
C32—N31—H31114.0C25—C24—C23118.61 (13)
C28—N31—H31114.0C25—C24—H24120.7
C32—N33—C34115.12 (12)C23—C24—H24120.7
C37—N36—C35115.33 (12)C24—C25—C30119.71 (13)
N2—C3—C4125.08 (13)C24—C25—H25120.1
N2—C3—H3117.5C30—C25—H25120.1
C4—C3—H3117.5C27—C26—C30120.52 (12)
C5—C4—C3117.96 (13)C27—C26—H26119.7
C5—C4—H4121.0C30—C26—H26119.7
C3—C4—H4121.0C26—C27—C28118.26 (13)
C4—C5—C10119.43 (13)C26—C27—H27120.9
C4—C5—H5120.3C28—C27—H27120.9
C10—C5—H5120.3N21—C28—N31112.89 (11)
C7—C6—C10120.20 (12)N21—C28—C27123.37 (12)
C7—C6—H6119.9N31—C28—C27123.73 (13)
C10—C6—H6119.9N21—C29—N22114.31 (11)
C6—C7—C8118.70 (13)N21—C29—C30123.03 (12)
C6—C7—H7120.7N22—C29—C30122.66 (12)
C8—C7—H7120.7C25—C30—C26125.60 (12)
N1—C8—N11119.77 (12)C25—C30—C29117.65 (13)
N1—C8—C7123.49 (13)C26—C30—C29116.75 (12)
N11—C8—C7116.74 (12)N33—C32—N31121.43 (12)
N2—C9—N1114.86 (11)N33—C32—C37121.48 (13)
N2—C9—C10121.80 (12)N31—C32—C37117.09 (12)
N1—C9—C10123.33 (12)N33—C34—C35123.07 (13)
C5—C10—C9118.57 (12)N33—C34—H34118.5
C5—C10—C6124.57 (12)C35—C34—H34118.5
C9—C10—C6116.86 (12)N36—C35—C34121.93 (14)
N13—C12—N11113.96 (11)N36—C35—H35119.0
N13—C12—C17120.91 (12)C34—C35—H35119.0
N11—C12—C17125.13 (12)N36—C37—C32123.07 (13)
N13—C14—C15122.60 (13)N36—C37—H37118.5
N13—C14—H14118.7C32—C37—H37118.5
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N22/C23–C25/C29/C30 ring.
D—H···AD—HH···AD···AD—H···A
C27—H27···N330.932.332.9318 (17)122
C17—H17···N10.932.242.8518 (17)123
N31—H31···N20.862.142.9396 (15)154
N11—H11···N22i0.862.233.0766 (15)171
C26—H26···N16ii0.932.513.3608 (17)152
C15—H15···Cg1iii0.932.743.472 (2)136
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H9N5
Mr223.24
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8608 (3), 11.8200 (5), 11.9356 (4)
α, β, γ (°)105.096 (2), 98.086 (2), 101.854 (2)
V3)1025.53 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.2 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.927, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
16351, 3606, 2557
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.074, 0.93
No. of reflections3606
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N22/C23–C25/C29/C30 ring.
D—H···AD—HH···AD···AD—H···A
C27—H27···N330.932.332.9318 (17)122.1
C17—H17···N10.932.242.8518 (17)122.7
N31—H31···N20.862.142.9396 (15)153.5
N11—H11···N22i0.862.233.0766 (15)170.5
C26—H26···N16ii0.932.513.3608 (17)152.3
C15—H15···Cg1iii0.932.743.472 (2)136.0
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

Financial support for this study came from the National Science Council of the Republic of China, the Natural Science Foundation of Shaanxi Province (No. 2012JM2011) and the Education Department of Shaanxi Province special scientific research plan (No. 11JK0606).

References

First citationAlvarez-Rua, C., García-Granda, S., Goswami, S., Mukherjee, R., Dey, S., Claramunt, R. M., María, M. D. S., Rozas, I., Jagerovic, N., Alkortae, I. & Elguero, J. (2004). New J. Chem. 28, 700–707.  CAS Google Scholar
First citationBasato, M., Biffis, A., Martinati, G., Tubaro, C., Graiff, C., Tiripicchio, A., Aronica, L. A. & Caporusso, A. M. (2006). J. Organomet. Chem. 691, 3464–3471.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, K., Sen, T. & Fröhlich, R. (2010). J. Incl. Phenom. Macrocycl. Chem. 68, 193–199.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, S.-W., Liu, L., Wang, D.-Q. & Guo, J.-Z. (2011). J. Mol. Struct. 1005, 59–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, S.-W., Zhang, W.-B., Liu, L., Gao, H.-F., Wang, D.-Q., Chen, R.-P. & Xu, X.-L. (2010). J. Mol. Struct. 975, 128–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds