organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o353-o354

Bis­(3,5-di­amino-4H-1,2,4-triazol-1-ium) 3,4-dioxo­cyclo­butane-1,2-diolate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, cH. E. J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan, and dDepartment of Pure and Applied Chemistry, University of Calabar, P. M. B. 1115, Calabar, Nigeria
*Correspondence e-mail: hkfun@usm.my

(Received 25 January 2013; accepted 31 January 2013; online 6 February 2013)

The asymmetric unit of the title compound, 2C2H6N5+·C4O42−, contains two 3,5-diamino-4H-1,2,4-triazolium cations and one squarate dianion. The squaric acid mol­ecule donated one H atom to each of the two 3,5-diamino-1,2,4-triazole mol­ecules at their N atoms. The squaric acid dianion has four C—O bonds which are shorter than a normal single C—O bond (1.426 Å) and are slightly longer than a normal C=O bond (1.23 Å), which indicates the degree of electron delocalization in the dianion. In the crystal, the cations and dianions are linked by N—H⋯N and N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For background to the acid–base chemistry of squarate acid, see: Mathew et al. (2002[Mathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263-279.]); Frankenbach et al. (1992[Frankenbach, G. M., Beno, M. A., Kini, A. M., Williams, J. M., Welp, U., Thompson, J. E. & Whangbo, M. H. (1992). Inorg. Chim. Acta, 192, 195-200.]); Yeşilel et al. (2008[Yeşilel, O. Z., Odabaşoğlu, M. & Büyükgüngör, O. (2008). J. Mol. Struct. 874, 151-158.]); Bertolasi et al. (2001[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (2001). Acta Cryst. B57, 591-598.]); Correa et al. (2007[Correa, C. C., Diniz, R., Chagas, L. H., Rodrigues, B. L., Yoshida, M. I., Teles, W. M., Machado, F. C. & de Oliveira, L. F. C. (2007). Polyhedron, 26, 989-995.]). For a related structure, see: Uçar et al. (2004[Uçar, I., Bulut, A., Yeşilel, O. Z. & Büyükgüngör, O. (2004). Acta Cryst. C60, o585-o588.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 2C2H6N5+·C4O42−

  • Mr = 312.28

  • Monoclinic, P 21 /c

  • a = 15.7186 (2) Å

  • b = 11.6533 (2) Å

  • c = 6.8618 (1) Å

  • β = 91.734 (1)°

  • V = 1256.32 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.44 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX22, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.982

  • 19113 measured reflections

  • 4965 independent reflections

  • 3911 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.03

  • 4965 reflections

  • 247 parameters

  • All H-atom parameters refined

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1N1⋯O4i 0.913 (16) 1.761 (16) 2.6677 (9) 171.3 (15)
N3A—H1N3⋯O4ii 0.937 (15) 1.746 (15) 2.6734 (10) 170.2 (14)
N4A—H1N4⋯O3i 0.887 (15) 2.003 (15) 2.8877 (10) 175.2 (13)
N4A—H2N4⋯N4Biii 0.904 (15) 2.565 (15) 3.3917 (12) 152.3 (12)
N5A—H1N5⋯N2Aiv 0.933 (15) 2.105 (15) 3.0167 (11) 165.3 (13)
N5A—H2N5⋯O1ii 0.922 (15) 1.940 (15) 2.8621 (11) 177.7 (14)
N1B—H2N1⋯O2v 0.874 (15) 1.781 (15) 2.6485 (9) 171.8 (15)
N3B—H2N3⋯O2 0.965 (15) 1.706 (15) 2.6637 (10) 171.2 (14)
N4B—H3N4⋯O1v 0.920 (14) 2.065 (14) 2.9564 (10) 162.8 (12)
N4B—H4N4⋯O1vi 0.867 (13) 2.150 (13) 2.9954 (10) 164.9 (12)
N5B—H3N5⋯N2Bv 0.923 (15) 2.159 (15) 3.0579 (11) 164.3 (12)
N5B—H4N5⋯O3 1.001 (16) 1.832 (15) 2.8293 (10) 174.2 (12)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX22, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX22, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Supramolecularly organized systems with a variety of novel features are widely generated through hydrogen-bonding. Hydrogen-bonded systems generated from organic cations and anions are of special interest since they are likely to show stronger hydrogen bonds than neutral molecules thus enabling the simple acid-base chemistry to tune the donor and acceptor properties of the counter ions (Mathew et al., 2002). Squaric acid (H2C4O4, 3,4-dihydroxy-3-cyclobutene-1,2-dione) has been of much interests because of its cyclic structure and possible aromaticity (Frankenbach et al., 1992; Yeşilel et al., 2008). The molecule possesses a certain degree of electron delocalization, but it is most pronounced in the dianion (Mathew et al. 2002). This property is important in crystal packing (Bertolasi et al., 2001). The squarate dianion does not act like a chelating ligand but rather like a bridge between two or more metal atoms as a mono- or polydentate ligand. The 1,3-bis (monodentate) bridging coordination mode is very useful in generating one dimensional polymeric structures and the dimensionality can be expanded to two-dimensional or three-dimensional arrays using multidentate spacer ligands (Correa et al., 2007). We have been interested in the preparation of metal complexes by organic amines and carboxylic acids. In line with our interests, it was our design to synthesize a squarato-bridged zinc(II) complex. However, our proposed structure was not obtained; instead a new polymeric supramolecular triazolium squarate structure was formed. Herein we present the crystal structure of the new compound.

The asymmetric unit of the title compound, Fig. 1, contains two 3,5-diamino-4H-1,2,4-triazolium cations (C5/C6/N1–N5) and one squarate dianion (C1–C4/O1–O4). The squaric acid molecule donates one proton to each of the 3,5-diamino-1,2,4-triazole at N3A and N3B atoms which result in the formation of the 3,5-diamino-4H-1,2,4-triazolium squarate salt. The squaric acid dianion has four C–O bonds [C1—O1 = 1.2599 (10) Å, C2—O2 = 1.2608 (10) Å, C3—O3 = 1.2490 (10) Å, C4—O4 = 1.2622 (10) Å] which are shorter than normal single C—O bond (1.426 Å). These bonds, however, are slightly longer than normal CO bond (1.23 Å). These bond lengths are indicative of the degree of electron delocalization in the dianion (Mathew et al. 2002; Bertolasi et al., 2001; Uçar et al., 2004).

In the crystal packing (Fig. 2), the structure of the compound is stabilized by intermolecular N—H···N and N—H···O hydrogen bonds (Table 1) into a three dimensional network.

Related literature top

For background to the acid–base chemistry of squarate acid, see: Mathew et al. (2002); Frankenbach et al. (1992); Yeşilel et al. (2008); Bertolasi et al. (2001); Correa et al. (2007). For a related structure, see: Uçar et al. (2004). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Zinc chloride (1 mmol, 0.136 g) and 3,5-diamino-1,2,4-triazole (1 mmol, 0.099 g) were dissolved in 10 ml of distilled water. The solution was heated gently for 5 minutes, followed by drop-wise addition of an aqueous solution of squaric acid (0.057 g, 0.5 mmol) dissolved in 5 ml of hot water. The mixture was heated on a steam bath for 15 minutes and filtered while hot. The filtrate was allowed to crystallize at ambient temperature. The compound crystallized out after two weeks. CHN-analysis: found, C, 30.79; H, 3.82; N, 44.89; calcd. for C8H12N10O4: C, 30.76; H, 3.85; N, 44.93.

Refinement top

All the H atoms were located in a difference Fourier map and were refined freely [N–H = 0.867 (13) to 1.001 (15) Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, approximately viewed along the b axis, showing the three dimensional network.
bis(3,5-diamino-4H-1,2,4-triazol-1-ium) 3,4-dioxocyclobutane-1,2-diolate top
Crystal data top
2C2H6N5+·C4O42F(000) = 648
Mr = 312.28Dx = 1.651 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7050 reflections
a = 15.7186 (2) Åθ = 2.2–33.7°
b = 11.6533 (2) ŵ = 0.14 mm1
c = 6.8618 (1) ÅT = 100 K
β = 91.734 (1)°Block, colourless
V = 1256.32 (3) Å30.44 × 0.20 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4965 independent reflections
Radiation source: fine-focus sealed tube3911 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 33.7°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2423
Tmin = 0.943, Tmax = 0.982k = 1812
19113 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.1328P]
where P = (Fo2 + 2Fc2)/3
4965 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
2C2H6N5+·C4O42V = 1256.32 (3) Å3
Mr = 312.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.7186 (2) ŵ = 0.14 mm1
b = 11.6533 (2) ÅT = 100 K
c = 6.8618 (1) Å0.44 × 0.20 × 0.14 mm
β = 91.734 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4965 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3911 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.982Rint = 0.028
19113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108All H-atom parameters refined
S = 1.03Δρmax = 0.43 e Å3
4965 reflectionsΔρmin = 0.32 e Å3
247 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21331 (4)1.07699 (5)0.54430 (10)0.01452 (13)
O20.37416 (4)0.94620 (5)0.36357 (10)0.01592 (14)
O30.29531 (4)0.70043 (5)0.48973 (11)0.01665 (14)
O40.13065 (4)0.82957 (5)0.65486 (10)0.01628 (14)
C10.23528 (5)0.97349 (7)0.52898 (13)0.01176 (15)
C20.30810 (5)0.91452 (7)0.44836 (13)0.01202 (15)
C30.27269 (5)0.80280 (7)0.50302 (13)0.01267 (16)
C40.19890 (5)0.86217 (7)0.57988 (13)0.01233 (16)
N1A0.07849 (5)0.38750 (6)0.31736 (11)0.01324 (15)
N2A0.06499 (5)0.57809 (6)0.31893 (11)0.01364 (15)
N3A0.00592 (5)0.52443 (6)0.23974 (12)0.01388 (15)
N4A0.19073 (5)0.49920 (7)0.44806 (13)0.01773 (17)
N5A0.05462 (5)0.33657 (7)0.17618 (13)0.01821 (17)
C5A0.11444 (5)0.49176 (7)0.36330 (13)0.01248 (16)
C6A0.00190 (5)0.41097 (7)0.24079 (13)0.01293 (16)
N1B0.58254 (5)0.65997 (6)0.21916 (11)0.01269 (14)
N2B0.57382 (5)0.84985 (6)0.24748 (12)0.01463 (15)
N3B0.49823 (5)0.79658 (6)0.29850 (12)0.01433 (15)
N4B0.70576 (5)0.77532 (7)0.14462 (12)0.01499 (15)
N5B0.44176 (5)0.60870 (7)0.31739 (13)0.01730 (16)
C5B0.62343 (5)0.76414 (7)0.20276 (13)0.01231 (16)
C6B0.50327 (5)0.68311 (7)0.27941 (13)0.01274 (16)
H1N10.1018 (10)0.3160 (14)0.327 (2)0.040 (4)*
H1N30.0528 (9)0.5685 (13)0.204 (2)0.032 (4)*
H1N40.2223 (9)0.4367 (13)0.460 (2)0.037 (4)*
H2N40.2172 (9)0.5679 (13)0.456 (2)0.033 (4)*
H1N50.0480 (9)0.2572 (13)0.186 (2)0.037 (4)*
H2N50.1053 (10)0.3664 (13)0.134 (2)0.039 (4)*
H2N10.6019 (10)0.5916 (13)0.193 (2)0.037 (4)*
H2N30.4496 (9)0.8444 (13)0.323 (2)0.037 (4)*
H3N40.7334 (8)0.7088 (12)0.112 (2)0.028 (3)*
H4N40.7362 (8)0.8208 (11)0.2184 (19)0.028 (3)*
H3N50.4482 (9)0.5311 (13)0.295 (2)0.039 (4)*
H4N50.3877 (10)0.6390 (14)0.371 (2)0.044 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0142 (3)0.0081 (2)0.0215 (3)0.0007 (2)0.0043 (2)0.0010 (2)
O20.0124 (3)0.0102 (3)0.0256 (4)0.0002 (2)0.0086 (2)0.0010 (2)
O30.0149 (3)0.0082 (3)0.0272 (4)0.0016 (2)0.0067 (2)0.0004 (2)
O40.0124 (3)0.0103 (3)0.0267 (4)0.0010 (2)0.0088 (2)0.0001 (2)
C10.0109 (3)0.0092 (3)0.0154 (4)0.0008 (3)0.0023 (3)0.0004 (3)
C20.0105 (3)0.0092 (3)0.0165 (4)0.0001 (3)0.0030 (3)0.0002 (3)
C30.0115 (3)0.0098 (3)0.0168 (4)0.0001 (3)0.0032 (3)0.0005 (3)
C40.0115 (3)0.0091 (3)0.0166 (4)0.0002 (3)0.0035 (3)0.0002 (3)
N1A0.0128 (3)0.0090 (3)0.0182 (4)0.0020 (2)0.0044 (3)0.0001 (3)
N2A0.0124 (3)0.0107 (3)0.0180 (4)0.0002 (2)0.0043 (3)0.0002 (3)
N3A0.0130 (3)0.0091 (3)0.0198 (4)0.0011 (2)0.0053 (3)0.0010 (3)
N4A0.0149 (4)0.0120 (3)0.0268 (5)0.0015 (3)0.0091 (3)0.0011 (3)
N5A0.0152 (4)0.0103 (3)0.0297 (5)0.0001 (3)0.0101 (3)0.0001 (3)
C5A0.0131 (4)0.0102 (3)0.0143 (4)0.0008 (3)0.0021 (3)0.0000 (3)
C6A0.0132 (4)0.0102 (3)0.0156 (4)0.0014 (3)0.0034 (3)0.0009 (3)
N1B0.0120 (3)0.0091 (3)0.0172 (4)0.0013 (2)0.0036 (3)0.0021 (3)
N2B0.0129 (3)0.0115 (3)0.0198 (4)0.0000 (3)0.0055 (3)0.0004 (3)
N3B0.0118 (3)0.0097 (3)0.0217 (4)0.0009 (2)0.0050 (3)0.0017 (3)
N4B0.0132 (3)0.0134 (3)0.0186 (4)0.0002 (3)0.0043 (3)0.0025 (3)
N5B0.0131 (3)0.0121 (3)0.0271 (4)0.0007 (3)0.0062 (3)0.0037 (3)
C5B0.0139 (4)0.0105 (3)0.0127 (4)0.0004 (3)0.0027 (3)0.0006 (3)
C6B0.0127 (4)0.0106 (3)0.0150 (4)0.0010 (3)0.0020 (3)0.0012 (3)
Geometric parameters (Å, º) top
O1—C11.2599 (10)N4A—H2N40.904 (15)
O2—C21.2608 (10)N5A—C6A1.3272 (12)
O3—C31.2490 (10)N5A—H1N50.934 (15)
O4—C41.2622 (10)N5A—H2N50.922 (15)
C1—C21.4582 (12)N1B—C6B1.3517 (11)
C1—C41.4642 (11)N1B—C5B1.3798 (11)
C2—C31.4690 (12)N1B—H2N10.873 (15)
C3—C41.4627 (12)N2B—C5B1.3092 (11)
N1A—C6A1.3559 (11)N2B—N3B1.3947 (10)
N1A—C5A1.3805 (11)N3B—C6B1.3313 (11)
N1A—H1N10.913 (16)N3B—H2N30.965 (15)
N2A—C5A1.3127 (11)N4B—C5B1.3719 (12)
N2A—N3A1.4020 (11)N4B—H3N40.919 (14)
N3A—C6A1.3280 (11)N4B—H4N40.867 (13)
N3A—H1N30.937 (15)N5B—C6B1.3305 (11)
N4A—C5A1.3513 (12)N5B—H3N50.922 (15)
N4A—H1N40.887 (16)N5B—H4N51.001 (15)
O1—C1—C2134.67 (8)N2A—C5A—N4A126.16 (8)
O1—C1—C4135.90 (8)N2A—C5A—N1A111.86 (8)
C2—C1—C489.41 (6)N4A—C5A—N1A121.97 (8)
O2—C2—C1134.74 (8)N5A—C6A—N3A125.85 (8)
O2—C2—C3134.50 (8)N5A—C6A—N1A127.51 (8)
C1—C2—C390.75 (7)N3A—C6A—N1A106.64 (8)
O3—C3—C4135.13 (8)C6B—N1B—C5B106.58 (7)
O3—C3—C2135.81 (8)C6B—N1B—H2N1125.0 (10)
C4—C3—C289.06 (6)C5B—N1B—H2N1128.4 (10)
O4—C4—C3134.24 (8)C5B—N2B—N3B103.72 (7)
O4—C4—C1134.98 (8)C6B—N3B—N2B111.33 (7)
C3—C4—C190.76 (7)C6B—N3B—H2N3129.8 (9)
C6A—N1A—C5A106.58 (7)N2B—N3B—H2N3118.2 (9)
C6A—N1A—H1N1125.0 (10)C5B—N4B—H3N4116.6 (8)
C5A—N1A—H1N1128.3 (10)C5B—N4B—H4N4113.4 (8)
C5A—N2A—N3A103.37 (7)H3N4—N4B—H4N4113.5 (11)
C6A—N3A—N2A111.54 (7)C6B—N5B—H3N5121.5 (9)
C6A—N3A—H1N3128.4 (9)C6B—N5B—H4N5118.2 (9)
N2A—N3A—H1N3119.8 (9)H3N5—N5B—H4N5120.3 (13)
C5A—N4A—H1N4119.5 (10)N2B—C5B—N4B124.71 (8)
C5A—N4A—H2N4119.9 (9)N2B—C5B—N1B111.71 (8)
H1N4—N4A—H2N4117.5 (13)N4B—C5B—N1B123.58 (8)
C6A—N5A—H1N5123.2 (9)N5B—C6B—N3B125.61 (8)
C6A—N5A—H2N5116.8 (10)N5B—C6B—N1B127.73 (8)
H1N5—N5A—H2N5119.6 (13)N3B—C6B—N1B106.64 (7)
O1—C1—C2—O21.04 (18)N3A—N2A—C5A—N4A178.72 (9)
C4—C1—C2—O2177.98 (11)N3A—N2A—C5A—N1A0.26 (9)
O1—C1—C2—C3179.83 (10)C6A—N1A—C5A—N2A0.32 (10)
C4—C1—C2—C31.15 (7)C6A—N1A—C5A—N4A178.20 (8)
O2—C2—C3—O31.85 (19)N2A—N3A—C6A—N5A179.82 (9)
C1—C2—C3—O3179.02 (11)N2A—N3A—C6A—N1A1.01 (10)
O2—C2—C3—C4177.99 (11)C5A—N1A—C6A—N5A179.95 (9)
C1—C2—C3—C41.15 (7)C5A—N1A—C6A—N3A0.80 (10)
O3—C3—C4—O42.60 (18)C5B—N2B—N3B—C6B1.43 (10)
C2—C3—C4—O4177.24 (10)N3B—N2B—C5B—N4B179.41 (8)
O3—C3—C4—C1179.02 (11)N3B—N2B—C5B—N1B1.21 (10)
C2—C3—C4—C11.14 (7)C6B—N1B—C5B—N2B0.61 (10)
O1—C1—C4—O41.79 (19)C6B—N1B—C5B—N4B180.00 (8)
C2—C1—C4—O4177.21 (11)N2B—N3B—C6B—N5B179.79 (9)
O1—C1—C4—C3179.85 (11)N2B—N3B—C6B—N1B1.09 (10)
C2—C1—C4—C31.15 (7)C5B—N1B—C6B—N5B178.98 (9)
C5A—N2A—N3A—C6A0.80 (9)C5B—N1B—C6B—N3B0.32 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1N1···O4i0.913 (16)1.761 (16)2.6677 (9)171.3 (15)
N3A—H1N3···O4ii0.937 (15)1.746 (15)2.6734 (10)170.2 (14)
N4A—H1N4···O3i0.887 (15)2.003 (15)2.8877 (10)175.2 (13)
N4A—H2N4···N4Biii0.904 (15)2.565 (15)3.3917 (12)152.3 (12)
N5A—H1N5···N2Aiv0.933 (15)2.105 (15)3.0167 (11)165.3 (13)
N5A—H2N5···O1ii0.922 (15)1.940 (15)2.8621 (11)177.7 (14)
N1B—H2N1···O2v0.874 (15)1.781 (15)2.6485 (9)171.8 (15)
N3B—H2N3···O20.965 (15)1.706 (15)2.6637 (10)171.2 (14)
N4B—H3N4···O1v0.920 (14)2.065 (14)2.9564 (10)162.8 (12)
N4B—H4N4···O1vi0.867 (13)2.150 (13)2.9954 (10)164.9 (12)
N5B—H3N5···N2Bv0.923 (15)2.159 (15)3.0579 (11)164.3 (12)
N5B—H4N5···O31.001 (16)1.832 (15)2.8293 (10)174.2 (12)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x1, y+3/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula2C2H6N5+·C4O42
Mr312.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.7186 (2), 11.6533 (2), 6.8618 (1)
β (°) 91.734 (1)
V3)1256.32 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.44 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.943, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
19113, 4965, 3911
Rint0.028
(sin θ/λ)max1)0.780
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.03
No. of reflections4965
No. of parameters247
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.43, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1N1···O4i0.913 (16)1.761 (16)2.6677 (9)171.3 (15)
N3A—H1N3···O4ii0.937 (15)1.746 (15)2.6734 (10)170.2 (14)
N4A—H1N4···O3i0.887 (15)2.003 (15)2.8877 (10)175.2 (13)
N4A—H2N4···N4Biii0.904 (15)2.565 (15)3.3917 (12)152.3 (12)
N5A—H1N5···N2Aiv0.933 (15)2.105 (15)3.0167 (11)165.3 (13)
N5A—H2N5···O1ii0.922 (15)1.940 (15)2.8621 (11)177.7 (14)
N1B—H2N1···O2v0.874 (15)1.781 (15)2.6485 (9)171.8 (15)
N3B—H2N3···O20.965 (15)1.706 (15)2.6637 (10)171.2 (14)
N4B—H3N4···O1v0.920 (14)2.065 (14)2.9564 (10)162.8 (12)
N4B—H4N4···O1vi0.867 (13)2.150 (13)2.9954 (10)164.9 (12)
N5B—H3N5···N2Bv0.923 (15)2.159 (15)3.0579 (11)164.3 (12)
N5B—H4N5···O31.001 (16)1.832 (15)2.8293 (10)174.2 (12)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x1, y+3/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Grant (1001/CIPPM813040). WSL also thanks the Malaysian Government and USM for the post of Research Officer under the Research University Grant (1001/PFIZIK/811160). AJ thanks the Academy of Science for the Developing World (TWAS) for the award of a Research and Advanced Training Fellowship and the H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan, for providing research facilities. SY thanks the School of Physics, Universiti Sains Malaysia, for providing X-ray diffraction research facilities.

References

First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (2001). Acta Cryst. B57, 591–598.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX22, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorrea, C. C., Diniz, R., Chagas, L. H., Rodrigues, B. L., Yoshida, M. I., Teles, W. M., Machado, F. C. & de Oliveira, L. F. C. (2007). Polyhedron, 26, 989–995.  CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrankenbach, G. M., Beno, M. A., Kini, A. M., Williams, J. M., Welp, U., Thompson, J. E. & Whangbo, M. H. (1992). Inorg. Chim. Acta, 192, 195–200.  CSD CrossRef CAS Web of Science Google Scholar
First citationMathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263–279.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUçar, I., Bulut, A., Yeşilel, O. Z. & Büyükgüngör, O. (2004). Acta Cryst. C60, o585–o588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYeşilel, O. Z., Odabaşoğlu, M. & Büyükgüngör, O. (2008). J. Mol. Struct. 874, 151–158.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o353-o354
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds