organic compounds
Bis(3,5-diamino-4H-1,2,4-triazol-1-ium) 3,4-dioxocyclobutane-1,2-diolate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, cH. E. J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan, and dDepartment of Pure and Applied Chemistry, University of Calabar, P. M. B. 1115, Calabar, Nigeria
*Correspondence e-mail: hkfun@usm.my
The 2H6N5+·C4O42−, contains two 3,5-diamino-4H-1,2,4-triazolium cations and one squarate dianion. The squaric acid molecule donated one H atom to each of the two 3,5-diamino-1,2,4-triazole molecules at their N atoms. The squaric acid dianion has four C—O bonds which are shorter than a normal single C—O bond (1.426 Å) and are slightly longer than a normal C=O bond (1.23 Å), which indicates the degree of electron delocalization in the dianion. In the crystal, the cations and dianions are linked by N—H⋯N and N—H⋯O hydrogen bonds into a three-dimensional network.
of the title compound, 2CRelated literature
For background to the acid–base chemistry of squarate acid, see: Mathew et al. (2002); Frankenbach et al. (1992); Yeşilel et al. (2008); Bertolasi et al. (2001); Correa et al. (2007). For a related structure, see: Uçar et al. (2004). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S160053681300322X/rz5040sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681300322X/rz5040Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681300322X/rz5040Isup3.cml
Zinc chloride (1 mmol, 0.136 g) and 3,5-diamino-1,2,4-triazole (1 mmol, 0.099 g) were dissolved in 10 ml of distilled water. The solution was heated gently for 5 minutes, followed by drop-wise addition of an aqueous solution of squaric acid (0.057 g, 0.5 mmol) dissolved in 5 ml of hot water. The mixture was heated on a steam bath for 15 minutes and filtered while hot. The filtrate was allowed to crystallize at ambient temperature. The compound crystallized out after two weeks. CHN-analysis: found, C, 30.79; H, 3.82; N, 44.89; calcd. for C8H12N10O4: C, 30.76; H, 3.85; N, 44.93.
All the H atoms were located in a difference Fourier map and were refined freely [N–H = 0.867 (13) to 1.001 (15) Å].
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. | |
Fig. 2. The crystal packing of the title compound, approximately viewed along the b axis, showing the three dimensional network. |
2C2H6N5+·C4O42− | F(000) = 648 |
Mr = 312.28 | Dx = 1.651 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7050 reflections |
a = 15.7186 (2) Å | θ = 2.2–33.7° |
b = 11.6533 (2) Å | µ = 0.14 mm−1 |
c = 6.8618 (1) Å | T = 100 K |
β = 91.734 (1)° | Block, colourless |
V = 1256.32 (3) Å3 | 0.44 × 0.20 × 0.14 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 4965 independent reflections |
Radiation source: fine-focus sealed tube | 3911 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 33.7°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −24→23 |
Tmin = 0.943, Tmax = 0.982 | k = −18→12 |
19113 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | All H-atom parameters refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0597P)2 + 0.1328P] where P = (Fo2 + 2Fc2)/3 |
4965 reflections | (Δ/σ)max = 0.001 |
247 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
2C2H6N5+·C4O42− | V = 1256.32 (3) Å3 |
Mr = 312.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.7186 (2) Å | µ = 0.14 mm−1 |
b = 11.6533 (2) Å | T = 100 K |
c = 6.8618 (1) Å | 0.44 × 0.20 × 0.14 mm |
β = 91.734 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 4965 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3911 reflections with I > 2σ(I) |
Tmin = 0.943, Tmax = 0.982 | Rint = 0.028 |
19113 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.108 | All H-atom parameters refined |
S = 1.03 | Δρmax = 0.43 e Å−3 |
4965 reflections | Δρmin = −0.32 e Å−3 |
247 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.21331 (4) | 1.07699 (5) | 0.54430 (10) | 0.01452 (13) | |
O2 | 0.37416 (4) | 0.94620 (5) | 0.36357 (10) | 0.01592 (14) | |
O3 | 0.29531 (4) | 0.70043 (5) | 0.48973 (11) | 0.01665 (14) | |
O4 | 0.13065 (4) | 0.82957 (5) | 0.65486 (10) | 0.01628 (14) | |
C1 | 0.23528 (5) | 0.97349 (7) | 0.52898 (13) | 0.01176 (15) | |
C2 | 0.30810 (5) | 0.91452 (7) | 0.44836 (13) | 0.01202 (15) | |
C3 | 0.27269 (5) | 0.80280 (7) | 0.50302 (13) | 0.01267 (16) | |
C4 | 0.19890 (5) | 0.86217 (7) | 0.57988 (13) | 0.01233 (16) | |
N1A | −0.07849 (5) | 0.38750 (6) | 0.31736 (11) | 0.01324 (15) | |
N2A | −0.06499 (5) | 0.57809 (6) | 0.31893 (11) | 0.01364 (15) | |
N3A | 0.00592 (5) | 0.52443 (6) | 0.23974 (12) | 0.01388 (15) | |
N4A | −0.19073 (5) | 0.49920 (7) | 0.44806 (13) | 0.01773 (17) | |
N5A | 0.05462 (5) | 0.33657 (7) | 0.17618 (13) | 0.01821 (17) | |
C5A | −0.11444 (5) | 0.49176 (7) | 0.36330 (13) | 0.01248 (16) | |
C6A | −0.00190 (5) | 0.41097 (7) | 0.24079 (13) | 0.01293 (16) | |
N1B | 0.58254 (5) | 0.65997 (6) | 0.21916 (11) | 0.01269 (14) | |
N2B | 0.57382 (5) | 0.84985 (6) | 0.24748 (12) | 0.01463 (15) | |
N3B | 0.49823 (5) | 0.79658 (6) | 0.29850 (12) | 0.01433 (15) | |
N4B | 0.70576 (5) | 0.77532 (7) | 0.14462 (12) | 0.01499 (15) | |
N5B | 0.44176 (5) | 0.60870 (7) | 0.31739 (13) | 0.01730 (16) | |
C5B | 0.62343 (5) | 0.76414 (7) | 0.20276 (13) | 0.01231 (16) | |
C6B | 0.50327 (5) | 0.68311 (7) | 0.27941 (13) | 0.01274 (16) | |
H1N1 | −0.1018 (10) | 0.3160 (14) | 0.327 (2) | 0.040 (4)* | |
H1N3 | 0.0528 (9) | 0.5685 (13) | 0.204 (2) | 0.032 (4)* | |
H1N4 | −0.2223 (9) | 0.4367 (13) | 0.460 (2) | 0.037 (4)* | |
H2N4 | −0.2172 (9) | 0.5679 (13) | 0.456 (2) | 0.033 (4)* | |
H1N5 | 0.0480 (9) | 0.2572 (13) | 0.186 (2) | 0.037 (4)* | |
H2N5 | 0.1053 (10) | 0.3664 (13) | 0.134 (2) | 0.039 (4)* | |
H2N1 | 0.6019 (10) | 0.5916 (13) | 0.193 (2) | 0.037 (4)* | |
H2N3 | 0.4496 (9) | 0.8444 (13) | 0.323 (2) | 0.037 (4)* | |
H3N4 | 0.7334 (8) | 0.7088 (12) | 0.112 (2) | 0.028 (3)* | |
H4N4 | 0.7362 (8) | 0.8208 (11) | 0.2184 (19) | 0.028 (3)* | |
H3N5 | 0.4482 (9) | 0.5311 (13) | 0.295 (2) | 0.039 (4)* | |
H4N5 | 0.3877 (10) | 0.6390 (14) | 0.371 (2) | 0.044 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0142 (3) | 0.0081 (2) | 0.0215 (3) | 0.0007 (2) | 0.0043 (2) | −0.0010 (2) |
O2 | 0.0124 (3) | 0.0102 (3) | 0.0256 (4) | −0.0002 (2) | 0.0086 (2) | 0.0010 (2) |
O3 | 0.0149 (3) | 0.0082 (3) | 0.0272 (4) | 0.0016 (2) | 0.0067 (2) | 0.0004 (2) |
O4 | 0.0124 (3) | 0.0103 (3) | 0.0267 (4) | −0.0010 (2) | 0.0088 (2) | −0.0001 (2) |
C1 | 0.0109 (3) | 0.0092 (3) | 0.0154 (4) | −0.0008 (3) | 0.0023 (3) | −0.0004 (3) |
C2 | 0.0105 (3) | 0.0092 (3) | 0.0165 (4) | −0.0001 (3) | 0.0030 (3) | 0.0002 (3) |
C3 | 0.0115 (3) | 0.0098 (3) | 0.0168 (4) | −0.0001 (3) | 0.0032 (3) | 0.0005 (3) |
C4 | 0.0115 (3) | 0.0091 (3) | 0.0166 (4) | −0.0002 (3) | 0.0035 (3) | −0.0002 (3) |
N1A | 0.0128 (3) | 0.0090 (3) | 0.0182 (4) | −0.0020 (2) | 0.0044 (3) | 0.0001 (3) |
N2A | 0.0124 (3) | 0.0107 (3) | 0.0180 (4) | −0.0002 (2) | 0.0043 (3) | −0.0002 (3) |
N3A | 0.0130 (3) | 0.0091 (3) | 0.0198 (4) | −0.0011 (2) | 0.0053 (3) | 0.0010 (3) |
N4A | 0.0149 (4) | 0.0120 (3) | 0.0268 (5) | −0.0015 (3) | 0.0091 (3) | −0.0011 (3) |
N5A | 0.0152 (4) | 0.0103 (3) | 0.0297 (5) | −0.0001 (3) | 0.0101 (3) | 0.0001 (3) |
C5A | 0.0131 (4) | 0.0102 (3) | 0.0143 (4) | −0.0008 (3) | 0.0021 (3) | 0.0000 (3) |
C6A | 0.0132 (4) | 0.0102 (3) | 0.0156 (4) | −0.0014 (3) | 0.0034 (3) | 0.0009 (3) |
N1B | 0.0120 (3) | 0.0091 (3) | 0.0172 (4) | 0.0013 (2) | 0.0036 (3) | −0.0021 (3) |
N2B | 0.0129 (3) | 0.0115 (3) | 0.0198 (4) | 0.0000 (3) | 0.0055 (3) | −0.0004 (3) |
N3B | 0.0118 (3) | 0.0097 (3) | 0.0217 (4) | 0.0009 (2) | 0.0050 (3) | −0.0017 (3) |
N4B | 0.0132 (3) | 0.0134 (3) | 0.0186 (4) | 0.0002 (3) | 0.0043 (3) | −0.0025 (3) |
N5B | 0.0131 (3) | 0.0121 (3) | 0.0271 (4) | −0.0007 (3) | 0.0062 (3) | −0.0037 (3) |
C5B | 0.0139 (4) | 0.0105 (3) | 0.0127 (4) | 0.0004 (3) | 0.0027 (3) | −0.0006 (3) |
C6B | 0.0127 (4) | 0.0106 (3) | 0.0150 (4) | 0.0010 (3) | 0.0020 (3) | −0.0012 (3) |
O1—C1 | 1.2599 (10) | N4A—H2N4 | 0.904 (15) |
O2—C2 | 1.2608 (10) | N5A—C6A | 1.3272 (12) |
O3—C3 | 1.2490 (10) | N5A—H1N5 | 0.934 (15) |
O4—C4 | 1.2622 (10) | N5A—H2N5 | 0.922 (15) |
C1—C2 | 1.4582 (12) | N1B—C6B | 1.3517 (11) |
C1—C4 | 1.4642 (11) | N1B—C5B | 1.3798 (11) |
C2—C3 | 1.4690 (12) | N1B—H2N1 | 0.873 (15) |
C3—C4 | 1.4627 (12) | N2B—C5B | 1.3092 (11) |
N1A—C6A | 1.3559 (11) | N2B—N3B | 1.3947 (10) |
N1A—C5A | 1.3805 (11) | N3B—C6B | 1.3313 (11) |
N1A—H1N1 | 0.913 (16) | N3B—H2N3 | 0.965 (15) |
N2A—C5A | 1.3127 (11) | N4B—C5B | 1.3719 (12) |
N2A—N3A | 1.4020 (11) | N4B—H3N4 | 0.919 (14) |
N3A—C6A | 1.3280 (11) | N4B—H4N4 | 0.867 (13) |
N3A—H1N3 | 0.937 (15) | N5B—C6B | 1.3305 (11) |
N4A—C5A | 1.3513 (12) | N5B—H3N5 | 0.922 (15) |
N4A—H1N4 | 0.887 (16) | N5B—H4N5 | 1.001 (15) |
O1—C1—C2 | 134.67 (8) | N2A—C5A—N4A | 126.16 (8) |
O1—C1—C4 | 135.90 (8) | N2A—C5A—N1A | 111.86 (8) |
C2—C1—C4 | 89.41 (6) | N4A—C5A—N1A | 121.97 (8) |
O2—C2—C1 | 134.74 (8) | N5A—C6A—N3A | 125.85 (8) |
O2—C2—C3 | 134.50 (8) | N5A—C6A—N1A | 127.51 (8) |
C1—C2—C3 | 90.75 (7) | N3A—C6A—N1A | 106.64 (8) |
O3—C3—C4 | 135.13 (8) | C6B—N1B—C5B | 106.58 (7) |
O3—C3—C2 | 135.81 (8) | C6B—N1B—H2N1 | 125.0 (10) |
C4—C3—C2 | 89.06 (6) | C5B—N1B—H2N1 | 128.4 (10) |
O4—C4—C3 | 134.24 (8) | C5B—N2B—N3B | 103.72 (7) |
O4—C4—C1 | 134.98 (8) | C6B—N3B—N2B | 111.33 (7) |
C3—C4—C1 | 90.76 (7) | C6B—N3B—H2N3 | 129.8 (9) |
C6A—N1A—C5A | 106.58 (7) | N2B—N3B—H2N3 | 118.2 (9) |
C6A—N1A—H1N1 | 125.0 (10) | C5B—N4B—H3N4 | 116.6 (8) |
C5A—N1A—H1N1 | 128.3 (10) | C5B—N4B—H4N4 | 113.4 (8) |
C5A—N2A—N3A | 103.37 (7) | H3N4—N4B—H4N4 | 113.5 (11) |
C6A—N3A—N2A | 111.54 (7) | C6B—N5B—H3N5 | 121.5 (9) |
C6A—N3A—H1N3 | 128.4 (9) | C6B—N5B—H4N5 | 118.2 (9) |
N2A—N3A—H1N3 | 119.8 (9) | H3N5—N5B—H4N5 | 120.3 (13) |
C5A—N4A—H1N4 | 119.5 (10) | N2B—C5B—N4B | 124.71 (8) |
C5A—N4A—H2N4 | 119.9 (9) | N2B—C5B—N1B | 111.71 (8) |
H1N4—N4A—H2N4 | 117.5 (13) | N4B—C5B—N1B | 123.58 (8) |
C6A—N5A—H1N5 | 123.2 (9) | N5B—C6B—N3B | 125.61 (8) |
C6A—N5A—H2N5 | 116.8 (10) | N5B—C6B—N1B | 127.73 (8) |
H1N5—N5A—H2N5 | 119.6 (13) | N3B—C6B—N1B | 106.64 (7) |
O1—C1—C2—O2 | −1.04 (18) | N3A—N2A—C5A—N4A | 178.72 (9) |
C4—C1—C2—O2 | 177.98 (11) | N3A—N2A—C5A—N1A | 0.26 (9) |
O1—C1—C2—C3 | 179.83 (10) | C6A—N1A—C5A—N2A | 0.32 (10) |
C4—C1—C2—C3 | −1.15 (7) | C6A—N1A—C5A—N4A | −178.20 (8) |
O2—C2—C3—O3 | 1.85 (19) | N2A—N3A—C6A—N5A | −179.82 (9) |
C1—C2—C3—O3 | −179.02 (11) | N2A—N3A—C6A—N1A | 1.01 (10) |
O2—C2—C3—C4 | −177.99 (11) | C5A—N1A—C6A—N5A | −179.95 (9) |
C1—C2—C3—C4 | 1.15 (7) | C5A—N1A—C6A—N3A | −0.80 (10) |
O3—C3—C4—O4 | −2.60 (18) | C5B—N2B—N3B—C6B | −1.43 (10) |
C2—C3—C4—O4 | 177.24 (10) | N3B—N2B—C5B—N4B | −179.41 (8) |
O3—C3—C4—C1 | 179.02 (11) | N3B—N2B—C5B—N1B | 1.21 (10) |
C2—C3—C4—C1 | −1.14 (7) | C6B—N1B—C5B—N2B | −0.61 (10) |
O1—C1—C4—O4 | 1.79 (19) | C6B—N1B—C5B—N4B | 180.00 (8) |
C2—C1—C4—O4 | −177.21 (11) | N2B—N3B—C6B—N5B | 179.79 (9) |
O1—C1—C4—C3 | −179.85 (11) | N2B—N3B—C6B—N1B | 1.09 (10) |
C2—C1—C4—C3 | 1.15 (7) | C5B—N1B—C6B—N5B | −178.98 (9) |
C5A—N2A—N3A—C6A | −0.80 (9) | C5B—N1B—C6B—N3B | −0.32 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1N1···O4i | 0.913 (16) | 1.761 (16) | 2.6677 (9) | 171.3 (15) |
N3A—H1N3···O4ii | 0.937 (15) | 1.746 (15) | 2.6734 (10) | 170.2 (14) |
N4A—H1N4···O3i | 0.887 (15) | 2.003 (15) | 2.8877 (10) | 175.2 (13) |
N4A—H2N4···N4Biii | 0.904 (15) | 2.565 (15) | 3.3917 (12) | 152.3 (12) |
N5A—H1N5···N2Aiv | 0.933 (15) | 2.105 (15) | 3.0167 (11) | 165.3 (13) |
N5A—H2N5···O1ii | 0.922 (15) | 1.940 (15) | 2.8621 (11) | 177.7 (14) |
N1B—H2N1···O2v | 0.874 (15) | 1.781 (15) | 2.6485 (9) | 171.8 (15) |
N3B—H2N3···O2 | 0.965 (15) | 1.706 (15) | 2.6637 (10) | 171.2 (14) |
N4B—H3N4···O1v | 0.920 (14) | 2.065 (14) | 2.9564 (10) | 162.8 (12) |
N4B—H4N4···O1vi | 0.867 (13) | 2.150 (13) | 2.9954 (10) | 164.9 (12) |
N5B—H3N5···N2Bv | 0.923 (15) | 2.159 (15) | 3.0579 (11) | 164.3 (12) |
N5B—H4N5···O3 | 1.001 (16) | 1.832 (15) | 2.8293 (10) | 174.2 (12) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+3/2, z−1/2; (iii) x−1, −y+3/2, z+1/2; (iv) −x, y−1/2, −z+1/2; (v) −x+1, y−1/2, −z+1/2; (vi) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | 2C2H6N5+·C4O42− |
Mr | 312.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 15.7186 (2), 11.6533 (2), 6.8618 (1) |
β (°) | 91.734 (1) |
V (Å3) | 1256.32 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.44 × 0.20 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.943, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19113, 4965, 3911 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.780 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.108, 1.03 |
No. of reflections | 4965 |
No. of parameters | 247 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.43, −0.32 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1N1···O4i | 0.913 (16) | 1.761 (16) | 2.6677 (9) | 171.3 (15) |
N3A—H1N3···O4ii | 0.937 (15) | 1.746 (15) | 2.6734 (10) | 170.2 (14) |
N4A—H1N4···O3i | 0.887 (15) | 2.003 (15) | 2.8877 (10) | 175.2 (13) |
N4A—H2N4···N4Biii | 0.904 (15) | 2.565 (15) | 3.3917 (12) | 152.3 (12) |
N5A—H1N5···N2Aiv | 0.933 (15) | 2.105 (15) | 3.0167 (11) | 165.3 (13) |
N5A—H2N5···O1ii | 0.922 (15) | 1.940 (15) | 2.8621 (11) | 177.7 (14) |
N1B—H2N1···O2v | 0.874 (15) | 1.781 (15) | 2.6485 (9) | 171.8 (15) |
N3B—H2N3···O2 | 0.965 (15) | 1.706 (15) | 2.6637 (10) | 171.2 (14) |
N4B—H3N4···O1v | 0.920 (14) | 2.065 (14) | 2.9564 (10) | 162.8 (12) |
N4B—H4N4···O1vi | 0.867 (13) | 2.150 (13) | 2.9954 (10) | 164.9 (12) |
N5B—H3N5···N2Bv | 0.923 (15) | 2.159 (15) | 3.0579 (11) | 164.3 (12) |
N5B—H4N5···O3 | 1.001 (16) | 1.832 (15) | 2.8293 (10) | 174.2 (12) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+3/2, z−1/2; (iii) x−1, −y+3/2, z+1/2; (iv) −x, y−1/2, −z+1/2; (v) −x+1, y−1/2, −z+1/2; (vi) −x+1, −y+2, −z+1. |
Acknowledgements
HKF and WSL thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Grant (1001/CIPPM813040). WSL also thanks the Malaysian Government and USM for the post of Research Officer under the Research University Grant (1001/PFIZIK/811160). AJ thanks the Academy of Science for the Developing World (TWAS) for the award of a Research and Advanced Training Fellowship and the H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan, for providing research facilities. SY thanks the School of Physics, Universiti Sains Malaysia, for providing X-ray diffraction research facilities.
References
Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (2001). Acta Cryst. B57, 591–598. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2009). APEX22, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Correa, C. C., Diniz, R., Chagas, L. H., Rodrigues, B. L., Yoshida, M. I., Teles, W. M., Machado, F. C. & de Oliveira, L. F. C. (2007). Polyhedron, 26, 989–995. CAS Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Frankenbach, G. M., Beno, M. A., Kini, A. M., Williams, J. M., Welp, U., Thompson, J. E. & Whangbo, M. H. (1992). Inorg. Chim. Acta, 192, 195–200. CSD CrossRef CAS Web of Science Google Scholar
Mathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263–279. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uçar, I., Bulut, A., Yeşilel, O. Z. & Büyükgüngör, O. (2004). Acta Cryst. C60, o585–o588. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yeşilel, O. Z., Odabaşoğlu, M. & Büyükgüngör, O. (2008). J. Mol. Struct. 874, 151–158. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Supramolecularly organized systems with a variety of novel features are widely generated through hydrogen-bonding. Hydrogen-bonded systems generated from organic cations and anions are of special interest since they are likely to show stronger hydrogen bonds than neutral molecules thus enabling the simple acid-base chemistry to tune the donor and acceptor properties of the counter ions (Mathew et al., 2002). Squaric acid (H2C4O4, 3,4-dihydroxy-3-cyclobutene-1,2-dione) has been of much interests because of its cyclic structure and possible aromaticity (Frankenbach et al., 1992; Yeşilel et al., 2008). The molecule possesses a certain degree of electron delocalization, but it is most pronounced in the dianion (Mathew et al. 2002). This property is important in crystal packing (Bertolasi et al., 2001). The squarate dianion does not act like a chelating ligand but rather like a bridge between two or more metal atoms as a mono- or polydentate ligand. The 1,3-bis (monodentate) bridging coordination mode is very useful in generating one dimensional polymeric structures and the dimensionality can be expanded to two-dimensional or three-dimensional arrays using multidentate spacer ligands (Correa et al., 2007). We have been interested in the preparation of metal complexes by organic amines and carboxylic acids. In line with our interests, it was our design to synthesize a squarato-bridged zinc(II) complex. However, our proposed structure was not obtained; instead a new polymeric supramolecular triazolium squarate structure was formed. Herein we present the crystal structure of the new compound.
The asymmetric unit of the title compound, Fig. 1, contains two 3,5-diamino-4H-1,2,4-triazolium cations (C5/C6/N1–N5) and one squarate dianion (C1–C4/O1–O4). The squaric acid molecule donates one proton to each of the 3,5-diamino-1,2,4-triazole at N3A and N3B atoms which result in the formation of the 3,5-diamino-4H-1,2,4-triazolium squarate salt. The squaric acid dianion has four C–O bonds [C1—O1 = 1.2599 (10) Å, C2—O2 = 1.2608 (10) Å, C3—O3 = 1.2490 (10) Å, C4—O4 = 1.2622 (10) Å] which are shorter than normal single C—O bond (1.426 Å). These bonds, however, are slightly longer than normal C═O bond (1.23 Å). These bond lengths are indicative of the degree of electron delocalization in the dianion (Mathew et al. 2002; Bertolasi et al., 2001; Uçar et al., 2004).
In the crystal packing (Fig. 2), the structure of the compound is stabilized by intermolecular N—H···N and N—H···O hydrogen bonds (Table 1) into a three dimensional network.