organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl 2-anilino-5-[3-(di­methyl­amino)­acrylo­yl]-4-phenyl­thio­phene-3-carboxyl­ate

aDepartment of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, Alexandria University, PO Box 426, Ibrahimia, 21321 Alexandria, Egypt, and cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: yahia@ksu.edu.sa, dr.sammer.yousuf@gmail.com

(Received 28 January 2013; accepted 31 January 2013; online 6 February 2013)

In the title compound, C24H24N2O3S, the phenyl rings form dihedral angles of 55.65 (11) and 79.60 (11)° with the plane of the thio­phene ring. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond, generating an S(6) ring motif. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by two pairs of C—H⋯O inter­actions.

Related literature

For background to biological activity of thio­phene derivatives see: Mishra et al. (2011[Mishra, R., Tomar, I., Singhal, S. & Jha, K. K. (2011). Pharma Chem. 3, 38-54.]). For the synthesis of different thio­phene derivatives, see: Mabkhot et al. (2011[Mabkhot, Y. N., Barakat, A., Al-Majid, A. M., Al-Othman, Z. A. & Alamary, A. S. (2011). Int. J. Mol. Sci. 12, 7824-7834.]); Mabkhot, Barakat & Alshahrani (2012[Mabkhot, Y. N., Barakat, A. & Alshahrani, S. (2012). J. Mol. Struct., 1027, 15-19.]); Mabkhot, Barakat, Al-Majid, Alamary & Al-Nahary (2012[Mabkhot, Y. N., Barakat, A., Al-Majid, A. M., Alamary, A. S. & Al-Nahary, T. T. (2012). Int. J. Mol. Sci. 13, 5035-5047.]); Mabkhot, Barakat, Al-Majid & Alshahrani (2012[Mabkhot, Y. N., Barakat, A., Al-Majid, A. M. & Alshahrani, S. A. (2012). Int. J. Mol. Sci. 13, 2263-2275.]). For related structures, see: Cao et al. (2003[Cao, K.-G., Wang, Z.-W., Zhao, X.-Q. & Fang, T. (2003). Chin. J. Org. Chem. 23, 1411-1415.]).

[Scheme 1]

Experimental

Crystal data
  • C24H24N2O3S

  • Mr = 420.51

  • Triclinic, [P \overline 1]

  • a = 6.5776 (9) Å

  • b = 10.7119 (14) Å

  • c = 16.516 (2) Å

  • α = 78.459 (3)°

  • β = 79.743 (3)°

  • γ = 80.765 (3)°

  • V = 1112.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 273 K

  • 0.28 × 0.27 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.970

  • 12618 measured reflections

  • 4123 independent reflections

  • 3373 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.142

  • S = 1.05

  • 4123 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 2.07 2.709 (3) 130
C19—H19A⋯O3i 0.93 2.42 3.294 (3) 157
C21—H21A⋯O3i 0.96 2.60 3.491 (4) 155
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiophene moeities containing hetereocyclic compounds are well known for their wide range of biological activities such as antidiabetic, antiinflammatory, antibacterial, antidepressent and antiellergic (Mishra et al., 2011). Mabkhot and co-workers have been extensively involved in the synthesis of biologically valuable thiophene derivatives (Mabkhot et al., 2011; Mabkhot, Barakat & Alshahrani, 2012; Mabkhot, Barakat, Al-Majid Alamary & Al-Nahary, 2012; Mabkhot, Barakat, Al-Majid & Alshahrani, 2012). The title compound is an enaminone derivative of a substituted thiophene nucleus, and was synthesized in order to create a library for the evaluation of different biological activities.

The structure of the title compound is composed of a central thiophene unit (S1/C7–C9/C16) with an aminophenyl (N1/C1–C6), an ethyl acyl (O1–O2/C22—C24), a phenyl (C10–C15) and an enaminone (O3/N2/C17–C21) susbtituent attached to C7, C8, C9 and C16, respectively. The thiophene and phenyl rings form dihedral angles of 55.65 (11), 79.60 (11) and 24.67 (12)° between S1/C7–C9/C16 and C1–C6, S1/C7–C9/C16 and C10–C15) and C1–C6 and C10–C15, respectively. The C18–C19 (1.357 (3) Å) olefinic bond of the enaminone side chain has an E configuration. The shorter C—C bond length of C17–C18 (1.423 (3) Å), as compared to single bond (1.54 Å), indicates that the olefinic bond is involved in conjugation with a carbonyl functionality (C17–O3, 1.240 (2) Å). The bond lengths and angles were found to be in same range as in other related compounds (Cao et al., 2003). The conformation of the molecule is stabilized by an N1—H1A···O2 intramolecular hydrogen bond to form an S6 graph set ring motif (Fig. 1, Table 1). In the crystal (Fig. 2), centrosymmetrically related molecules are linked via C19—H19A···O3 and C21—H21A···O3 intermolecular hydrogen bonds (symmetry codes as in Table 1) into dimers.

Related literature top

For background to biological activity of thiophene derivatives see: Mishra et al. (2011). For the synthesis of different thiophene derivatives, see: Mabkhot et al. (2011); Mabkhot, Barakat & Alshahrani (2012); Mabkhot, Barakat, Al-Majid, Alamary & Al-Nahary (2012); Mabkhot, Barakat, Al-Majid & Alshahrani (2012). For related structures, see: Cao et al. (2003).

Experimental top

The title compound was synthesized by following the same procedure as described by Mabkhot et al., 2011). The compound was recrystallized from a 95% ethanol solution to obtain dark yellow crystals (m. p. 440 K) found to be suitable for single-crystal X-ray data collection. All chemicals were purchased from Sigma- Aldrich.

Refinement top

H atoms on methyl, methylene, methine and nitrogen atoms were positioned geometrically with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq (CH2, CH, NH) or 1.5Ueq(CH3).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with displacement ellipsoids drawn at the 30% probability level. Dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis. Only hydrogen atoms involved in hydrogen bonding (dashed lines) are shown.
(E)-Ethyl 2-anilino-5-[3-(dimethylamino)acryloyl]-4-phenylthiophene-3-carboxylate top
Crystal data top
C24H24N2O3SZ = 2
Mr = 420.51F(000) = 444
Triclinic, P1Dx = 1.255 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5776 (9) ÅCell parameters from 4320 reflections
b = 10.7119 (14) Åθ = 1.3–25.5°
c = 16.516 (2) ŵ = 0.17 mm1
α = 78.459 (3)°T = 273 K
β = 79.743 (3)°Block, yellow
γ = 80.765 (3)°0.28 × 0.27 × 0.18 mm
V = 1112.5 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4123 independent reflections
Radiation source: fine-focus sealed tube3373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scanθmax = 25.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.953, Tmax = 0.970k = 1212
12618 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0761P)2 + 0.2541P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4123 reflectionsΔρmax = 0.27 e Å3
272 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.004 (2)
Crystal data top
C24H24N2O3Sγ = 80.765 (3)°
Mr = 420.51V = 1112.5 (3) Å3
Triclinic, P1Z = 2
a = 6.5776 (9) ÅMo Kα radiation
b = 10.7119 (14) ŵ = 0.17 mm1
c = 16.516 (2) ÅT = 273 K
α = 78.459 (3)°0.28 × 0.27 × 0.18 mm
β = 79.743 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4123 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3373 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.970Rint = 0.021
12618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
4123 reflectionsΔρmin = 0.20 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88423 (8)0.46635 (5)0.24436 (3)0.0586 (2)
O10.9061 (3)0.04813 (14)0.16466 (10)0.0714 (4)
O21.1246 (3)0.16911 (16)0.07700 (11)0.0837 (5)
O30.5995 (3)0.49861 (18)0.38688 (12)0.0932 (6)
N11.1535 (3)0.40198 (17)0.11137 (11)0.0613 (5)
H1A1.19710.35050.07630.074*
N20.0937 (3)0.31677 (18)0.51004 (11)0.0648 (5)
C11.2694 (3)0.5907 (2)0.01997 (14)0.0666 (6)
H1B1.21360.56980.02280.080*
C21.3713 (4)0.6972 (2)0.00528 (18)0.0797 (7)
H2B1.38390.74810.04760.096*
C31.4536 (4)0.7293 (2)0.0667 (2)0.0851 (8)
H3A1.52330.80120.05580.102*
C41.4336 (4)0.6544 (3)0.14570 (19)0.0851 (8)
H4A1.48810.67670.18830.102*
C51.3326 (3)0.5465 (2)0.16131 (16)0.0712 (6)
H5A1.32050.49550.21420.085*
C61.2499 (3)0.51465 (19)0.09836 (14)0.0572 (5)
C70.9978 (3)0.36762 (18)0.17430 (12)0.0511 (5)
C80.9084 (3)0.25406 (17)0.18880 (11)0.0488 (4)
C90.7401 (3)0.25055 (17)0.25779 (11)0.0464 (4)
C100.6210 (3)0.13903 (17)0.28969 (11)0.0477 (4)
C110.4610 (3)0.1211 (2)0.25139 (14)0.0670 (6)
H11A0.42470.17990.20500.080*
C120.3543 (4)0.0164 (3)0.28151 (19)0.0899 (8)
H12A0.24580.00510.25560.108*
C130.4077 (5)0.0709 (3)0.34945 (19)0.0919 (9)
H13A0.33820.14270.36880.110*
C140.5630 (5)0.0524 (2)0.38873 (17)0.0837 (8)
H14A0.59690.11050.43580.100*
C150.6697 (4)0.0519 (2)0.35904 (14)0.0652 (6)
H15A0.77580.06370.38610.078*
C160.7077 (3)0.35877 (18)0.29284 (12)0.0510 (5)
C170.5610 (3)0.4031 (2)0.36344 (13)0.0592 (5)
C180.3834 (3)0.33914 (19)0.39894 (13)0.0560 (5)
H18A0.34610.28000.37180.067*
C190.2683 (3)0.3641 (2)0.47208 (13)0.0578 (5)
H19A0.31650.42010.49840.069*
C200.0008 (4)0.2328 (3)0.47236 (17)0.0910 (9)
H20A0.07540.22770.41730.136*
H20B0.14220.26650.46870.136*
H20C0.00780.14860.50610.136*
C210.0001 (4)0.3365 (3)0.59369 (16)0.0827 (7)
H21A0.07540.39260.61200.124*
H21B0.00490.25540.63110.124*
H21C0.14240.37450.59330.124*
C220.9907 (3)0.15623 (19)0.13755 (13)0.0578 (5)
C230.9697 (5)0.0552 (2)0.11770 (18)0.0968 (9)
H23A0.92200.03060.06370.116*
H23B1.12050.07320.10830.116*
C240.8828 (6)0.1672 (3)0.1632 (2)0.1179 (12)
H24A0.92610.23630.13240.177*
H24B0.73350.14940.17130.177*
H24C0.93020.19100.21660.177*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0597 (3)0.0517 (3)0.0638 (3)0.0230 (2)0.0070 (2)0.0104 (2)
O10.0851 (11)0.0547 (8)0.0723 (10)0.0266 (8)0.0191 (8)0.0197 (7)
O20.0937 (12)0.0687 (10)0.0789 (11)0.0259 (9)0.0347 (9)0.0200 (8)
O30.1033 (13)0.0889 (12)0.0949 (13)0.0538 (11)0.0363 (10)0.0462 (10)
N10.0593 (10)0.0572 (10)0.0626 (10)0.0223 (8)0.0135 (8)0.0077 (8)
N20.0615 (10)0.0710 (11)0.0586 (10)0.0229 (9)0.0085 (8)0.0076 (9)
C10.0562 (12)0.0691 (14)0.0638 (13)0.0128 (10)0.0044 (10)0.0052 (11)
C20.0621 (14)0.0681 (15)0.0893 (18)0.0143 (12)0.0089 (13)0.0193 (13)
C30.0613 (14)0.0622 (14)0.121 (2)0.0241 (11)0.0048 (15)0.0067 (15)
C40.0691 (15)0.0835 (17)0.106 (2)0.0331 (13)0.0149 (14)0.0050 (15)
C50.0605 (13)0.0720 (14)0.0771 (15)0.0246 (11)0.0114 (11)0.0097 (12)
C60.0418 (10)0.0529 (11)0.0688 (13)0.0110 (8)0.0034 (9)0.0015 (9)
C70.0478 (10)0.0496 (10)0.0522 (10)0.0124 (8)0.0020 (8)0.0007 (8)
C80.0486 (10)0.0471 (10)0.0484 (10)0.0126 (8)0.0014 (8)0.0030 (8)
C90.0460 (10)0.0475 (10)0.0444 (9)0.0119 (8)0.0062 (8)0.0009 (8)
C100.0478 (10)0.0465 (10)0.0466 (10)0.0121 (8)0.0008 (8)0.0041 (8)
C110.0658 (13)0.0723 (14)0.0640 (13)0.0282 (11)0.0150 (11)0.0052 (11)
C120.0818 (17)0.099 (2)0.0988 (19)0.0515 (15)0.0179 (15)0.0043 (16)
C130.097 (2)0.0732 (16)0.103 (2)0.0499 (15)0.0031 (17)0.0069 (15)
C140.101 (2)0.0623 (14)0.0775 (16)0.0230 (14)0.0109 (15)0.0192 (12)
C150.0724 (14)0.0579 (12)0.0632 (13)0.0174 (10)0.0158 (11)0.0062 (10)
C160.0487 (10)0.0520 (11)0.0513 (10)0.0174 (8)0.0003 (8)0.0048 (8)
C170.0621 (12)0.0575 (12)0.0577 (12)0.0190 (10)0.0036 (10)0.0117 (9)
C180.0569 (12)0.0549 (11)0.0556 (11)0.0150 (9)0.0013 (9)0.0106 (9)
C190.0581 (12)0.0532 (11)0.0594 (12)0.0149 (9)0.0022 (9)0.0071 (9)
C200.0783 (17)0.130 (2)0.0743 (16)0.0554 (17)0.0024 (13)0.0165 (16)
C210.0838 (17)0.0813 (16)0.0765 (16)0.0251 (13)0.0255 (13)0.0201 (13)
C220.0592 (12)0.0525 (11)0.0578 (12)0.0138 (9)0.0019 (10)0.0049 (9)
C230.135 (3)0.0640 (15)0.0864 (18)0.0254 (16)0.0287 (17)0.0319 (13)
C240.144 (3)0.0774 (19)0.135 (3)0.0471 (19)0.028 (2)0.0445 (19)
Geometric parameters (Å, º) top
S1—C71.716 (2)C10—C151.376 (3)
S1—C161.7454 (18)C10—C111.376 (3)
O1—C221.327 (2)C11—C121.380 (3)
O1—C231.443 (3)C11—H11A0.9300
O2—C221.211 (2)C12—C131.368 (4)
O3—C171.240 (2)C12—H12A0.9300
N1—C71.361 (2)C13—C141.362 (4)
N1—C61.414 (3)C13—H13A0.9300
N1—H1A0.8600C14—C151.375 (3)
N2—C191.332 (3)C14—H14A0.9300
N2—C201.451 (3)C15—H15A0.9300
N2—C211.451 (3)C16—C171.480 (3)
C1—C21.374 (3)C17—C181.425 (3)
C1—C61.381 (3)C18—C191.357 (3)
C1—H1B0.9300C18—H18A0.9300
C2—C31.354 (4)C19—H19A0.9300
C2—H2B0.9300C20—H20A0.9600
C3—C41.385 (4)C20—H20B0.9600
C3—H3A0.9300C20—H20C0.9600
C4—C51.382 (3)C21—H21A0.9600
C4—H4A0.9300C21—H21B0.9600
C5—C61.377 (3)C21—H21C0.9600
C5—H5A0.9300C23—C241.426 (4)
C7—C81.395 (3)C23—H23A0.9700
C8—C91.440 (2)C23—H23B0.9700
C8—C221.455 (3)C24—H24A0.9600
C9—C161.367 (3)C24—H24B0.9600
C9—C101.490 (2)C24—H24C0.9600
C7—S1—C1691.40 (9)C12—C13—H13A120.1
C22—O1—C23118.51 (17)C13—C14—C15120.2 (2)
C7—N1—C6125.94 (18)C13—C14—H14A119.9
C7—N1—H1A117.0C15—C14—H14A119.9
C6—N1—H1A117.0C14—C15—C10120.6 (2)
C19—N2—C20120.91 (19)C14—C15—H15A119.7
C19—N2—C21121.6 (2)C10—C15—H15A119.7
C20—N2—C21117.18 (19)C9—C16—C17134.44 (18)
C2—C1—C6119.8 (2)C9—C16—S1112.14 (14)
C2—C1—H1B120.1C17—C16—S1113.40 (14)
C6—C1—H1B120.1O3—C17—C18123.6 (2)
C3—C2—C1121.0 (2)O3—C17—C16116.37 (18)
C3—C2—H2B119.5C18—C17—C16120.04 (18)
C1—C2—H2B119.5C19—C18—C17120.38 (19)
C2—C3—C4119.7 (2)C19—C18—H18A119.8
C2—C3—H3A120.2C17—C18—H18A119.8
C4—C3—H3A120.2N2—C19—C18126.8 (2)
C5—C4—C3120.0 (3)N2—C19—H19A116.6
C5—C4—H4A120.0C18—C19—H19A116.6
C3—C4—H4A120.0N2—C20—H20A109.5
C6—C5—C4119.8 (2)N2—C20—H20B109.5
C6—C5—H5A120.1H20A—C20—H20B109.5
C4—C5—H5A120.1N2—C20—H20C109.5
C5—C6—C1119.7 (2)H20A—C20—H20C109.5
C5—C6—N1121.13 (19)H20B—C20—H20C109.5
C1—C6—N1119.1 (2)N2—C21—H21A109.5
N1—C7—C8125.77 (18)N2—C21—H21B109.5
N1—C7—S1121.90 (15)H21A—C21—H21B109.5
C8—C7—S1112.31 (14)N2—C21—H21C109.5
C7—C8—C9111.73 (17)H21A—C21—H21C109.5
C7—C8—C22120.01 (17)H21B—C21—H21C109.5
C9—C8—C22128.25 (17)O2—C22—O1122.38 (19)
C16—C9—C8112.39 (16)O2—C22—C8124.57 (19)
C16—C9—C10123.85 (17)O1—C22—C8113.04 (17)
C8—C9—C10123.71 (16)C24—C23—O1109.3 (2)
C15—C10—C11118.77 (18)C24—C23—H23A109.8
C15—C10—C9119.88 (17)O1—C23—H23A109.8
C11—C10—C9121.34 (17)C24—C23—H23B109.8
C10—C11—C12120.3 (2)O1—C23—H23B109.8
C10—C11—H11A119.8H23A—C23—H23B108.3
C12—C11—H11A119.8C23—C24—H24A109.5
C13—C12—C11120.2 (2)C23—C24—H24B109.5
C13—C12—H12A119.9H24A—C24—H24B109.5
C11—C12—H12A119.9C23—C24—H24C109.5
C14—C13—C12119.8 (2)H24A—C24—H24C109.5
C14—C13—H13A120.1H24B—C24—H24C109.5
C6—C1—C2—C30.0 (4)C10—C11—C12—C130.4 (4)
C1—C2—C3—C40.6 (4)C11—C12—C13—C141.8 (5)
C2—C3—C4—C51.0 (4)C12—C13—C14—C151.7 (5)
C3—C4—C5—C60.8 (4)C13—C14—C15—C100.2 (4)
C4—C5—C6—C10.2 (3)C11—C10—C15—C141.1 (3)
C4—C5—C6—N1177.3 (2)C9—C10—C15—C14179.2 (2)
C2—C1—C6—C50.2 (3)C8—C9—C16—C17179.4 (2)
C2—C1—C6—N1177.0 (2)C10—C9—C16—C171.9 (4)
C7—N1—C6—C552.8 (3)C8—C9—C16—S11.2 (2)
C7—N1—C6—C1130.1 (2)C10—C9—C16—S1176.24 (14)
C6—N1—C7—C8177.4 (2)C7—S1—C16—C91.72 (16)
C6—N1—C7—S14.4 (3)C7—S1—C16—C17179.70 (16)
C16—S1—C7—N1176.63 (17)C9—C16—C17—O3168.0 (2)
C16—S1—C7—C81.78 (16)S1—C16—C17—O310.2 (3)
N1—C7—C8—C9176.91 (18)C9—C16—C17—C1813.9 (4)
S1—C7—C8—C91.4 (2)S1—C16—C17—C18167.92 (16)
N1—C7—C8—C224.2 (3)O3—C17—C18—C1913.4 (4)
S1—C7—C8—C22177.48 (15)C16—C17—C18—C19168.64 (19)
C7—C8—C9—C160.1 (2)C20—N2—C19—C182.6 (4)
C22—C8—C9—C16178.68 (19)C21—N2—C19—C18171.4 (2)
C7—C8—C9—C10177.58 (17)C17—C18—C19—N2176.3 (2)
C22—C8—C9—C101.2 (3)C23—O1—C22—O23.0 (4)
C16—C9—C10—C1578.4 (3)C23—O1—C22—C8178.1 (2)
C8—C9—C10—C1598.8 (2)C7—C8—C22—O26.2 (3)
C16—C9—C10—C11101.3 (2)C9—C8—C22—O2175.1 (2)
C8—C9—C10—C1181.5 (3)C7—C8—C22—O1172.74 (18)
C15—C10—C11—C121.0 (4)C9—C8—C22—O16.0 (3)
C9—C10—C11—C12179.3 (2)C22—O1—C23—C24172.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.072.709 (3)130
C19—H19A···O3i0.932.423.294 (3)157
C21—H21A···O3i0.962.603.491 (4)155
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H24N2O3S
Mr420.51
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)6.5776 (9), 10.7119 (14), 16.516 (2)
α, β, γ (°)78.459 (3), 79.743 (3), 80.765 (3)
V3)1112.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.28 × 0.27 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.953, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
12618, 4123, 3373
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.142, 1.05
No. of reflections4123
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.86002.07002.709 (3)130.00
C19—H19A···O3i0.93002.42003.294 (3)157.00
C21—H21A···O3i0.96002.60003.491 (4)155.00
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, K.-G., Wang, Z.-W., Zhao, X.-Q. & Fang, T. (2003). Chin. J. Org. Chem. 23, 1411–1415.  CAS Google Scholar
First citationMabkhot, Y. N., Barakat, A., Al-Majid, A. M., Alamary, A. S. & Al-Nahary, T. T. (2012). Int. J. Mol. Sci. 13, 5035–5047.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMabkhot, Y. N., Barakat, A., Al-Majid, A. M., Al-Othman, Z. A. & Alamary, A. S. (2011). Int. J. Mol. Sci. 12, 7824–7834.  Web of Science CAS PubMed Google Scholar
First citationMabkhot, Y. N., Barakat, A., Al-Majid, A. M. & Alshahrani, S. A. (2012). Int. J. Mol. Sci. 13, 2263–2275.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMabkhot, Y. N., Barakat, A. & Alshahrani, S. (2012). J. Mol. Struct., 1027, 15–19.  Web of Science CrossRef CAS Google Scholar
First citationMishra, R., Tomar, I., Singhal, S. & Jha, K. K. (2011). Pharma Chem. 3, 38–54.  CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds