metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(3,4,7,8-tetra­methyl-1,10-phenanthrolin-1-ium) hexa­cyanidocobaltate(III) penta­hydrate

aSchool of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 31 January 2013; accepted 5 February 2013; online 9 February 2013)

The structure of the title compound, (C16H17N2)3[Co(CN)6]·5H2O, consists of three 3,4,7,8-tetra­methyl-1,10-phenanthrolin-1-ium cations, a [Co(CN)6]3− anion and five water mol­ecules of crystallization, one of which is disordered over two sets of sites in a 0.587 (15):0.413 (15) ratio. The [Co(CN)6]3− anion exhibits an octa­hedral geometry. In the structure, cations and anions are linked alternatively through O—H⋯O, O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds, ππ inter­actions [centroid–centroid distances = 3.523 (2)–4.099 (2) Å] and van der Waals forces, forming a three-dimensional supra­molecular network.

Related literature

For general background to hexacyanidometallate-based compounds, see: Andruh et al. (2009[Andruh, M., Costes, J. P., Diaz, C. & Gao, S. (2009). Inorg. Chem. 48, 3342-3359.]); Tokoro & Ohkoshi (2011[Tokoro, H. & Ohkoshi, S. (2011). Dalton Trans. 40, 6825-6833.]). For related structures, see: Qian et al. (2011[Qian, S. Y., Zhou, H., Yuan, A. H. & Song, Y. (2011). Cryst. Growth Des. 11, 5676-5681.]); Shatruk et al. (2007[Shatruk, M., Chambers, K. E., Prosvirin, A. V. & Dunbar, K. R. (2007). Inorg. Chem. 46, 5155-5165.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H17N2)3[Co(CN)6]·5H2O

  • Mr = 1017.08

  • Triclinic, [P \overline 1]

  • a = 12.836 (2) Å

  • b = 14.458 (2) Å

  • c = 16.645 (3) Å

  • α = 97.216 (2)°

  • β = 110.934 (2)°

  • γ = 112.179 (2)°

  • V = 2547.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 173 K

  • 0.16 × 0.15 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.950

  • 19411 measured reflections

  • 9402 independent reflections

  • 6096 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.155

  • S = 1.05

  • 9402 reflections

  • 671 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5′ 0.82 1.84 2.616 (7) 157
O1—H1A⋯O5 0.82 2.02 2.823 (8) 165
O1—H1B⋯N5i 0.82 2.27 3.068 (4) 163
O2—H2A⋯N3ii 0.82 2.25 3.044 (4) 164
O2—H2B⋯N3 0.82 2.09 2.901 (4) 169
O3—H3A⋯N2 0.82 2.11 2.909 (4) 163
O3—H3B⋯O2ii 0.82 2.01 2.813 (3) 168
O4—H4A⋯O3 0.82 1.89 2.707 (3) 173
O4—H4B⋯O1 0.82 1.94 2.735 (4) 164
N8—H8N⋯O4iii 0.95 1.72 2.636 (4) 161
N9—H9N⋯N5iv 0.95 2.14 2.919 (4) 138
N11—H11N⋯N4i 0.95 2.11 2.799 (4) 128
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z; (iv) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, hexacyanometallates [M(CN)6]3- (M = Fe, Co, Cr) have been employed usually as building blocks to react with the second metal ions in the presence of organic ligands, forming several types of bimetallic assemblies with various dimensional structures and interesting properties (Andruh et al., 2009; Tokoro et al., 2011). However, the development of hexacyano- and lanthanide-based assemblies has been somewhat hampered by the tendency of the lanthanide ions to adopt higher coordination numbers, and their ability to easily adapt to a given environment. Recently, we used the [Co(CN)6]3- presursor to react with lanthanide ion Ce3+ and the chelated ligand 3,4,7,8-tetramethyl-1,10-phenanthrolin (tmphen), to construct organic-inorganic hybrid materials. Unexpectedly, a new ion-pair compound (Htmphen)3Co(CN)6.5H2O without Ce3+ ions was obtained instead.

The structure of the title compound, (C16H17N2)3Co(CN)6.5H2O, consists of three 3,4,7,8-tetramethyl-1,10-phenanthrolin-1-ium cations, a [Co(CN)6]3- anion and five water molecules of crystallization (Fig. 1). The six-coordinated [Co(CN)6]3- unit exhibits an octahedral geometry, in which the mean Co—C and C—N bond distances are 1.946 (4) Å and 1.151 (2) Å, respectively, while the Co-CN bonds are almost linear with the maximum deviation from linearity of 2.9°. The cations and anions are linked alternatively through hydrogen bonds (Table 1), π···π interactions (centroid-to-centroid distances = 3.523 (2)–4.099 (2) Å) and van der Waals forces to form a three-dimensional supramolecular network (Fig. 2). The structure of the title compound is different from those of hexacyanide-based family of pentanuclear clusters {[M(tmphen)2]3[M'(CN)6]2]} (M = Cr, Mn, Co, Ni, Zn; M' = Co, Cr, Fe) (Shatruk et al., 2007) and octacyanide-based helical chains [Ln(tmphen)2(DMF)n][M(CN)8].xsolvents (Ln = Sm, Pr; n = 2, 5; M = Mo, W) (Qian et al., 2011) reported previously.

Related literature top

For general background to hexacyanometallate-based compounds, see: Andruh et al. (2009); Tokoro & Ohkoshi (2011). For related structures, see: Qian et al. (2011); Shatruk et al. (2007).

Experimental top

The title compound was prepared at room temperature by slow diffusion of an ethanol solution containing Ce(NO3)3.6H2O (0.10 mmol) and 3,4,7,8-tetramethyl-1,10-phenanthrolin (0.20 mmol) into an aqueous solution of K3[Co(CN)6].H2O (0.10 mmol). After two weeks, colourless plate-like crystals were obtained.

Refinement top

All non-hydrogen atoms were refined anisotropically. The (C)H atoms of 3,4,7,8-tetramethyl-1,10-phenanthrolin were calculated at idealized positions and included in the refinement in a riding mode. The (N)H atoms of 3,4,7,8-tetramethyl-1,10-phenanthrolin and (O)H atoms of water molecules were located from difference Fourier maps and refined as riding (N–H = 0.95 Å, U(H) = 1.2Ueq(N); O–H = 0.82 or 0.99 Å, U(H) = 1.5Ueq(O)). The O5 atom was disordered over two sites in a 0.587 (15):0.413 (15) ratio, sharing the hydrogen atoms. The temperature factors of the atoms C3, C5, N3 and N5 were restrained to be nearly isotropic.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound, showing the 30% probability thermal motion ellipsoid. The (C)H atoms of 3,4,7,8-tetramethyl-1,10-phenanthrolin have been omitted for clarity.
[Figure 2] Fig. 2. The three-dimensional supramolecular network.
Tris(3,4,7,8-tetramethyl-1,10-phenanthrolin-1-ium) hexacyanidocobaltate(III) pentahydrate top
Crystal data top
(C16H17N2)3[Co(CN)6]·5H2OZ = 2
Mr = 1017.08F(000) = 1072
Triclinic, P1Dx = 1.326 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.836 (2) ÅCell parameters from 2791 reflections
b = 14.458 (2) Åθ = 2.4–25.6°
c = 16.645 (3) ŵ = 0.40 mm1
α = 97.216 (2)°T = 173 K
β = 110.934 (2)°Plate, colourless
γ = 112.179 (2)°0.16 × 0.15 × 0.13 mm
V = 2547.6 (7) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
9402 independent reflections
Radiation source: fine-focus sealed tube6096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
phi and ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.939, Tmax = 0.950k = 1717
19411 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0725P)2]
where P = (Fo2 + 2Fc2)/3
9402 reflections(Δ/σ)max < 0.001
671 parametersΔρmax = 0.49 e Å3
2 restraintsΔρmin = 0.53 e Å3
Crystal data top
(C16H17N2)3[Co(CN)6]·5H2Oγ = 112.179 (2)°
Mr = 1017.08V = 2547.6 (7) Å3
Triclinic, P1Z = 2
a = 12.836 (2) ÅMo Kα radiation
b = 14.458 (2) ŵ = 0.40 mm1
c = 16.645 (3) ÅT = 173 K
α = 97.216 (2)°0.16 × 0.15 × 0.13 mm
β = 110.934 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
9402 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
6096 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.950Rint = 0.046
19411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0582 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
9402 reflectionsΔρmin = 0.53 e Å3
671 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.51825 (4)0.24448 (3)0.26906 (3)0.02730 (15)
O10.5715 (2)0.91825 (19)0.24394 (19)0.0541 (8)
H1A0.56930.92760.19590.081*
H1B0.57400.96590.27820.081*
O20.6322 (2)0.50998 (19)0.61099 (15)0.0434 (7)
H2A0.60870.55530.60570.065*
H2B0.59360.46110.56420.065*
O30.4375 (2)0.5764 (2)0.26299 (17)0.0476 (7)
H3A0.43500.52840.22910.071*
H3B0.41460.55830.30100.071*
O40.3853 (2)0.7174 (2)0.18589 (19)0.0585 (8)
H4A0.39580.67330.20970.088*
H4B0.44260.77690.21340.088*
N10.7884 (3)0.4121 (2)0.3205 (2)0.0377 (8)
N20.4217 (3)0.3833 (2)0.1708 (2)0.0401 (8)
N30.5063 (3)0.3588 (2)0.4335 (2)0.0353 (7)
N40.2517 (3)0.0686 (2)0.21248 (19)0.0358 (7)
N50.6395 (3)0.1225 (2)0.37695 (19)0.0339 (7)
N60.5074 (3)0.1270 (2)0.0956 (2)0.0417 (8)
N71.1132 (2)0.5540 (2)0.16078 (18)0.0277 (7)
N81.1715 (2)0.7221 (2)0.09908 (17)0.0280 (7)
H8N1.23930.71140.13620.034*
N91.0938 (2)0.8048 (2)0.51172 (17)0.0261 (6)
H9N1.17900.85210.52990.031*
N101.1690 (3)0.9788 (2)0.45850 (18)0.0301 (7)
N110.1916 (3)0.8911 (2)0.27169 (19)0.0337 (7)
H11N0.15700.92360.23080.040*
N120.0457 (3)0.8539 (2)0.16862 (18)0.0309 (7)
C10.6879 (3)0.3501 (3)0.3019 (2)0.0253 (7)
C20.4557 (3)0.3297 (2)0.2058 (2)0.0258 (8)
C30.5136 (3)0.3162 (2)0.3737 (2)0.0261 (8)
C40.3490 (3)0.1353 (3)0.2331 (2)0.0262 (8)
C50.5921 (3)0.1661 (2)0.3369 (2)0.0264 (8)
C60.5133 (3)0.1713 (3)0.1613 (2)0.0294 (8)
C71.0826 (3)0.4713 (3)0.1899 (2)0.0311 (8)
H71.14900.46150.23030.037*
C80.9595 (3)0.3967 (3)0.1658 (2)0.0315 (8)
C90.8617 (3)0.4075 (3)0.1050 (2)0.0313 (8)
C100.8899 (3)0.4943 (3)0.0708 (2)0.0261 (8)
C110.7977 (3)0.5151 (3)0.0080 (2)0.0305 (8)
H110.71160.46690.01470.037*
C120.8288 (3)0.6010 (3)0.0200 (2)0.0311 (8)
H120.76420.61200.06110.037*
C130.9569 (3)0.6759 (3)0.0105 (2)0.0260 (8)
C140.9947 (3)0.7681 (3)0.0155 (2)0.0312 (8)
C151.1214 (3)0.8357 (3)0.0182 (2)0.0325 (8)
C161.2062 (3)0.8085 (3)0.0748 (2)0.0342 (9)
H161.29310.85370.09720.041*
C171.0486 (3)0.6550 (2)0.0698 (2)0.0250 (8)
C181.0173 (3)0.5644 (2)0.1015 (2)0.0244 (7)
C190.9394 (4)0.3094 (3)0.2078 (2)0.0416 (10)
H19A0.89250.31340.24230.062*
H19B1.02070.31570.24820.062*
H19C0.89180.24190.16030.062*
C200.7263 (3)0.3302 (3)0.0763 (3)0.0435 (10)
H20A0.72330.26840.09590.065*
H20B0.67990.30880.01050.065*
H20C0.68840.36330.10400.065*
C210.8980 (4)0.7920 (3)0.0795 (3)0.0452 (10)
H21A0.83770.79080.05600.068*
H21B0.85400.73920.13870.068*
H21C0.93940.86140.08550.068*
C221.1710 (4)0.9373 (3)0.0036 (3)0.0478 (11)
H22A1.14160.92270.06900.072*
H22B1.26280.97150.02630.072*
H22C1.14070.98360.01780.072*
C231.0645 (3)0.7197 (3)0.5392 (2)0.0288 (8)
H231.12960.70650.57660.035*
C240.9409 (3)0.6502 (3)0.5141 (2)0.0291 (8)
C250.8452 (3)0.6699 (3)0.4588 (2)0.0290 (8)
C260.8779 (3)0.7604 (3)0.4303 (2)0.0262 (8)
C270.7880 (3)0.7885 (3)0.3745 (2)0.0306 (8)
H270.70140.74490.35530.037*
C280.8232 (3)0.8757 (3)0.3482 (2)0.0303 (8)
H280.76050.89180.31130.036*
C290.9525 (3)0.9445 (3)0.3743 (2)0.0281 (8)
C300.9927 (3)1.0352 (3)0.3466 (2)0.0310 (8)
C311.1196 (3)1.0955 (3)0.3763 (2)0.0324 (8)
C321.2021 (3)1.0632 (3)0.4316 (2)0.0350 (9)
H321.28921.10560.45140.042*
C331.0445 (3)0.9205 (3)0.4294 (2)0.0262 (8)
C341.0047 (3)0.8277 (3)0.4572 (2)0.0256 (8)
C350.9124 (3)0.5551 (3)0.5469 (2)0.0378 (9)
H35A0.99110.55560.58540.057*
H35B0.86260.49160.49510.057*
H35C0.86510.55640.58170.057*
C360.7113 (3)0.5964 (3)0.4300 (2)0.0379 (9)
H36A0.70610.54730.46570.057*
H36B0.67230.55740.36600.057*
H36C0.66730.63620.43950.057*
C370.8988 (4)1.0638 (3)0.2853 (2)0.0430 (10)
H37A0.94141.13640.28600.065*
H37B0.83461.05650.30620.065*
H37C0.85911.01710.22370.065*
C381.1727 (4)1.1939 (3)0.3510 (3)0.0439 (10)
H38A1.14781.17560.28600.066*
H38B1.26441.22840.38390.066*
H38C1.14051.24150.36680.066*
C390.3131 (3)0.9164 (3)0.3214 (2)0.0360 (9)
H390.37730.97880.32370.043*
C400.3438 (3)0.8516 (3)0.3688 (2)0.0368 (9)
C410.2516 (3)0.7609 (3)0.3660 (2)0.0317 (8)
C420.1219 (3)0.7367 (3)0.3140 (2)0.0309 (8)
C430.0205 (3)0.6466 (3)0.3087 (2)0.0318 (8)
H430.03660.59940.34040.038*
C440.1032 (4)0.6266 (3)0.2572 (2)0.0330 (9)
H440.17030.56630.25480.040*
C450.1296 (3)0.6947 (3)0.2088 (2)0.0309 (8)
C460.2560 (3)0.6764 (3)0.1541 (2)0.0360 (9)
C470.2714 (3)0.7463 (3)0.1094 (2)0.0347 (9)
C480.1634 (4)0.8334 (3)0.1188 (2)0.0375 (9)
H480.17630.88110.08680.045*
C490.0317 (3)0.7835 (3)0.2123 (2)0.0287 (8)
C500.0968 (3)0.8043 (2)0.2669 (2)0.0255 (8)
C510.4817 (4)0.8833 (3)0.4242 (3)0.0543 (12)
H51A0.49820.88590.48680.081*
H51B0.53270.95240.42210.081*
H51C0.50320.83180.39920.081*
C520.2805 (4)0.6868 (3)0.4130 (3)0.0490 (11)
H52A0.36840.70300.43070.074*
H52B0.22630.61500.37240.074*
H52C0.26600.69350.46690.074*
C530.3644 (4)0.5837 (3)0.1475 (3)0.0545 (12)
H53A0.36940.59280.20520.082*
H53B0.35390.52090.13340.082*
H53C0.44160.57620.09970.082*
C540.3971 (4)0.7352 (3)0.0503 (3)0.0563 (12)
H54A0.44620.66660.00430.084*
H54B0.38680.79050.02100.084*
H54C0.44070.74110.08700.084*
O50.6090 (10)0.9793 (6)0.0979 (3)0.068 (3)0.587 (15)
O5'0.4980 (14)0.9293 (7)0.0788 (5)0.057 (4)0.413 (15)
H5A0.54721.00600.09680.086*
H5B0.54420.91600.04610.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0261 (3)0.0243 (3)0.0291 (3)0.0111 (2)0.0102 (2)0.0079 (2)
O10.0565 (19)0.0345 (16)0.0607 (19)0.0151 (14)0.0237 (15)0.0061 (14)
O20.0562 (18)0.0448 (16)0.0354 (15)0.0327 (14)0.0168 (13)0.0109 (12)
O30.0563 (18)0.0501 (17)0.0472 (17)0.0315 (15)0.0239 (14)0.0215 (14)
O40.0308 (15)0.0395 (16)0.081 (2)0.0111 (13)0.0029 (15)0.0265 (16)
N10.0292 (18)0.0346 (18)0.0413 (19)0.0100 (16)0.0124 (16)0.0105 (15)
N20.0347 (18)0.0395 (19)0.049 (2)0.0226 (16)0.0125 (16)0.0211 (16)
N30.0436 (19)0.0335 (18)0.0297 (17)0.0197 (16)0.0162 (15)0.0055 (14)
N40.0308 (18)0.0282 (18)0.0392 (19)0.0074 (15)0.0132 (15)0.0079 (15)
N50.0273 (16)0.0311 (17)0.0393 (18)0.0139 (14)0.0087 (14)0.0146 (15)
N60.051 (2)0.0357 (19)0.0380 (19)0.0159 (17)0.0244 (17)0.0066 (16)
N70.0252 (16)0.0272 (16)0.0298 (16)0.0143 (14)0.0093 (13)0.0069 (13)
N80.0251 (16)0.0278 (16)0.0271 (16)0.0114 (14)0.0084 (13)0.0073 (13)
N90.0208 (15)0.0272 (16)0.0240 (15)0.0075 (13)0.0077 (12)0.0049 (13)
N100.0252 (16)0.0287 (17)0.0318 (17)0.0102 (14)0.0113 (14)0.0051 (14)
N110.0371 (18)0.0330 (17)0.0316 (17)0.0150 (15)0.0155 (15)0.0132 (14)
N120.0335 (17)0.0268 (16)0.0329 (17)0.0134 (14)0.0151 (14)0.0102 (14)
C10.028 (2)0.0218 (19)0.0249 (18)0.0144 (17)0.0078 (16)0.0068 (15)
C20.0192 (18)0.0230 (18)0.0268 (19)0.0056 (15)0.0071 (15)0.0035 (16)
C30.0210 (18)0.0200 (18)0.031 (2)0.0078 (15)0.0056 (16)0.0110 (16)
C40.028 (2)0.0246 (19)0.0243 (19)0.0119 (17)0.0090 (16)0.0099 (15)
C50.0226 (18)0.0226 (18)0.0246 (18)0.0050 (15)0.0084 (15)0.0013 (15)
C60.0255 (19)0.0230 (19)0.037 (2)0.0084 (16)0.0134 (17)0.0116 (17)
C70.038 (2)0.034 (2)0.0273 (19)0.0232 (18)0.0132 (17)0.0095 (17)
C80.046 (2)0.029 (2)0.028 (2)0.0211 (19)0.0204 (18)0.0092 (16)
C90.038 (2)0.0253 (19)0.032 (2)0.0120 (17)0.0213 (18)0.0062 (16)
C100.0301 (19)0.0281 (19)0.0214 (17)0.0137 (16)0.0134 (15)0.0041 (15)
C110.0258 (19)0.035 (2)0.0267 (19)0.0114 (17)0.0119 (16)0.0035 (16)
C120.030 (2)0.042 (2)0.0250 (19)0.0196 (18)0.0122 (16)0.0104 (17)
C130.031 (2)0.0270 (19)0.0223 (18)0.0144 (16)0.0132 (16)0.0052 (15)
C140.041 (2)0.034 (2)0.0258 (19)0.0215 (19)0.0170 (17)0.0094 (16)
C150.045 (2)0.026 (2)0.027 (2)0.0145 (18)0.0172 (18)0.0076 (16)
C160.030 (2)0.027 (2)0.034 (2)0.0043 (17)0.0133 (17)0.0031 (17)
C170.029 (2)0.0240 (19)0.0202 (17)0.0103 (16)0.0115 (15)0.0025 (15)
C180.0309 (19)0.0248 (18)0.0221 (18)0.0151 (16)0.0145 (16)0.0044 (15)
C190.055 (3)0.037 (2)0.040 (2)0.023 (2)0.024 (2)0.0150 (19)
C200.037 (2)0.043 (2)0.051 (3)0.013 (2)0.024 (2)0.019 (2)
C210.054 (3)0.046 (2)0.048 (2)0.030 (2)0.023 (2)0.027 (2)
C220.057 (3)0.031 (2)0.044 (2)0.013 (2)0.017 (2)0.0133 (19)
C230.028 (2)0.032 (2)0.0253 (19)0.0151 (17)0.0095 (16)0.0079 (16)
C240.030 (2)0.031 (2)0.0238 (19)0.0128 (17)0.0129 (16)0.0045 (16)
C250.030 (2)0.030 (2)0.0238 (18)0.0121 (17)0.0117 (16)0.0036 (15)
C260.0244 (19)0.031 (2)0.0226 (18)0.0118 (16)0.0114 (15)0.0037 (15)
C270.0224 (19)0.034 (2)0.033 (2)0.0103 (16)0.0137 (16)0.0047 (17)
C280.032 (2)0.036 (2)0.0268 (19)0.0204 (18)0.0120 (16)0.0082 (16)
C290.031 (2)0.033 (2)0.0231 (18)0.0172 (17)0.0136 (16)0.0024 (16)
C300.043 (2)0.031 (2)0.0263 (19)0.0218 (19)0.0191 (18)0.0062 (16)
C310.040 (2)0.029 (2)0.032 (2)0.0168 (18)0.0201 (18)0.0069 (16)
C320.030 (2)0.031 (2)0.038 (2)0.0079 (17)0.0165 (18)0.0057 (18)
C330.0263 (19)0.0286 (19)0.0243 (18)0.0120 (16)0.0132 (15)0.0052 (15)
C340.0256 (19)0.029 (2)0.0210 (18)0.0140 (16)0.0094 (15)0.0026 (15)
C350.038 (2)0.034 (2)0.037 (2)0.0132 (18)0.0143 (18)0.0162 (18)
C360.032 (2)0.035 (2)0.040 (2)0.0110 (18)0.0131 (18)0.0139 (18)
C370.048 (3)0.040 (2)0.045 (2)0.025 (2)0.017 (2)0.0172 (19)
C380.052 (3)0.037 (2)0.056 (3)0.022 (2)0.033 (2)0.020 (2)
C390.032 (2)0.039 (2)0.031 (2)0.0140 (18)0.0110 (18)0.0086 (18)
C400.038 (2)0.045 (2)0.030 (2)0.022 (2)0.0145 (18)0.0094 (18)
C410.043 (2)0.030 (2)0.0228 (19)0.0201 (19)0.0131 (17)0.0053 (16)
C420.048 (2)0.028 (2)0.0258 (19)0.0223 (18)0.0198 (18)0.0102 (16)
C430.050 (2)0.0225 (19)0.031 (2)0.0163 (18)0.0248 (19)0.0128 (16)
C440.048 (2)0.0243 (19)0.032 (2)0.0157 (18)0.0243 (19)0.0091 (16)
C450.038 (2)0.0246 (19)0.033 (2)0.0118 (17)0.0221 (18)0.0054 (16)
C460.037 (2)0.037 (2)0.034 (2)0.0156 (19)0.0181 (18)0.0045 (18)
C470.030 (2)0.037 (2)0.029 (2)0.0129 (18)0.0106 (17)0.0029 (17)
C480.047 (2)0.041 (2)0.032 (2)0.028 (2)0.0154 (19)0.0151 (18)
C490.039 (2)0.0254 (19)0.0269 (19)0.0171 (17)0.0171 (17)0.0077 (16)
C500.032 (2)0.0208 (18)0.0228 (18)0.0085 (16)0.0156 (16)0.0026 (15)
C510.037 (2)0.067 (3)0.055 (3)0.026 (2)0.013 (2)0.021 (2)
C520.052 (3)0.044 (2)0.048 (3)0.027 (2)0.012 (2)0.016 (2)
C530.039 (2)0.055 (3)0.058 (3)0.012 (2)0.023 (2)0.008 (2)
C540.054 (3)0.066 (3)0.053 (3)0.035 (3)0.020 (2)0.019 (2)
O50.095 (8)0.081 (5)0.038 (3)0.064 (6)0.017 (3)0.010 (3)
O5'0.106 (11)0.038 (5)0.049 (5)0.040 (6)0.047 (6)0.018 (4)
Geometric parameters (Å, º) top
Co1—C61.932 (4)C23—H230.9500
Co1—C21.934 (3)C24—C251.400 (4)
Co1—C31.944 (4)C24—C351.507 (5)
Co1—C11.950 (4)C25—C261.413 (5)
Co1—C41.953 (4)C25—C361.489 (5)
Co1—C51.956 (3)C26—C341.403 (4)
O1—H1A0.8198C26—C271.429 (5)
O1—H1B0.8201C27—C281.354 (5)
O2—H2A0.8200C27—H270.9500
O2—H2B0.8201C28—C291.436 (5)
O3—H3A0.8196C28—H280.9500
O3—H3B0.8198C29—C331.403 (4)
O4—H4A0.8198C29—C301.419 (5)
O4—H4B0.8200C30—C311.379 (5)
N1—C11.155 (4)C30—C371.506 (5)
N2—C21.148 (4)C31—C321.405 (5)
N3—C31.156 (4)C31—C381.513 (5)
N4—C41.143 (4)C32—H320.9500
N5—C51.148 (4)C33—C341.444 (5)
N6—C61.158 (4)C35—H35A0.9800
N7—C71.322 (4)C35—H35B0.9800
N7—C181.349 (4)C35—H35C0.9800
N8—C161.326 (4)C36—H36A0.9800
N8—C171.358 (4)C36—H36B0.9800
N8—H8N0.9499C36—H36C0.9800
N9—C231.334 (4)C37—H37A0.9800
N9—C341.364 (4)C37—H37B0.9800
N9—H9N0.9500C37—H37C0.9800
N10—C321.324 (4)C38—H38A0.9800
N10—C331.351 (4)C38—H38B0.9800
N11—C501.347 (4)C38—H38C0.9800
N11—C391.349 (4)C39—C401.379 (5)
N11—H11N0.9497C39—H390.9500
N12—C481.328 (4)C40—C411.376 (5)
N12—C491.351 (4)C40—C511.520 (5)
C7—C81.404 (5)C41—C421.448 (5)
C7—H70.9500C41—C521.483 (5)
C8—C91.380 (5)C42—C501.387 (4)
C8—C191.501 (5)C42—C431.417 (5)
C9—C101.420 (5)C43—C441.400 (5)
C9—C201.518 (5)C43—H430.9500
C10—C181.408 (4)C44—C451.411 (5)
C10—C111.432 (4)C44—H440.9500
C11—C121.350 (5)C45—C491.394 (5)
C11—H110.9500C45—C461.445 (5)
C12—C131.434 (4)C46—C471.359 (5)
C12—H120.9500C46—C531.481 (5)
C13—C171.402 (4)C47—C481.417 (5)
C13—C141.416 (5)C47—C541.492 (5)
C14—C151.388 (5)C48—H480.9500
C14—C211.505 (5)C49—C501.458 (5)
C15—C161.382 (5)C51—H51A0.9800
C15—C221.512 (5)C51—H51B0.9800
C16—H160.9500C51—H51C0.9800
C17—C181.443 (4)C52—H52A0.9800
C19—H19A0.9800C52—H52B0.9800
C19—H19B0.9800C52—H52C0.9800
C19—H19C0.9800C53—H53A0.9800
C20—H20A0.9800C53—H53B0.9800
C20—H20B0.9800C53—H53C0.9800
C20—H20C0.9800C54—H54A0.9800
C21—H21A0.9800C54—H54B0.9800
C21—H21B0.9800C54—H54C0.9800
C21—H21C0.9800O5—H5A1.0000
C22—H22A0.9800O5—H5B0.9939
C22—H22B0.9800O5'—H5A0.9855
C22—H22C0.9800O5'—H5B0.9867
C23—C241.385 (5)
C6—Co1—C290.88 (13)C28—C27—H27119.1
C6—Co1—C3176.86 (14)C26—C27—H27119.1
C2—Co1—C387.28 (13)C27—C28—C29121.9 (3)
C6—Co1—C190.03 (14)C27—C28—H28119.1
C2—Co1—C188.46 (13)C29—C28—H28119.1
C3—Co1—C192.46 (13)C33—C29—C30117.9 (3)
C6—Co1—C487.95 (13)C33—C29—C28118.7 (3)
C2—Co1—C492.18 (13)C30—C29—C28123.5 (3)
C3—Co1—C489.57 (13)C31—C30—C29118.3 (3)
C1—Co1—C4177.90 (14)C31—C30—C37121.1 (3)
C6—Co1—C590.10 (13)C29—C30—C37120.6 (3)
C2—Co1—C5176.33 (14)C30—C31—C32118.3 (3)
C3—Co1—C591.90 (13)C30—C31—C38122.7 (3)
C1—Co1—C588.00 (13)C32—C31—C38119.0 (3)
C4—Co1—C591.39 (13)N10—C32—C31125.6 (3)
H1A—O1—H1B115.0N10—C32—H32117.2
H2A—O2—H2B111.5C31—C32—H32117.2
H3A—O3—H3B112.9N10—C33—C29124.3 (3)
H4A—O4—H4B113.3N10—C33—C34117.3 (3)
C7—N7—C18116.3 (3)C29—C33—C34118.4 (3)
C16—N8—C17121.2 (3)N9—C34—C26118.9 (3)
C16—N8—H8N114.3N9—C34—C33118.6 (3)
C17—N8—H8N124.5C26—C34—C33122.5 (3)
C23—N9—C34122.2 (3)C24—C35—H35A109.5
C23—N9—H9N120.3C24—C35—H35B109.5
C34—N9—H9N117.5H35A—C35—H35B109.5
C32—N10—C33115.7 (3)C24—C35—H35C109.5
C50—N11—C39122.5 (3)H35A—C35—H35C109.5
C50—N11—H11N108.2H35B—C35—H35C109.5
C39—N11—H11N129.0C25—C36—H36A109.5
C48—N12—C49115.3 (3)C25—C36—H36B109.5
N1—C1—Co1179.3 (3)H36A—C36—H36B109.5
N2—C2—Co1177.6 (3)C25—C36—H36C109.5
N3—C3—Co1177.1 (3)H36A—C36—H36C109.5
N4—C4—Co1177.3 (3)H36B—C36—H36C109.5
N5—C5—Co1177.5 (3)C30—C37—H37A109.5
N6—C6—Co1178.4 (3)C30—C37—H37B109.5
N7—C7—C8125.0 (3)H37A—C37—H37B109.5
N7—C7—H7117.5C30—C37—H37C109.5
C8—C7—H7117.5H37A—C37—H37C109.5
C9—C8—C7118.4 (3)H37B—C37—H37C109.5
C9—C8—C19122.6 (3)C31—C38—H38A109.5
C7—C8—C19118.9 (3)C31—C38—H38B109.5
C8—C9—C10118.6 (3)H38A—C38—H38B109.5
C8—C9—C20121.3 (3)C31—C38—H38C109.5
C10—C9—C20120.1 (3)H38A—C38—H38C109.5
C18—C10—C9117.3 (3)H38B—C38—H38C109.5
C18—C10—C11118.4 (3)N11—C39—C40119.9 (4)
C9—C10—C11124.3 (3)N11—C39—H39120.1
C12—C11—C10122.2 (3)C40—C39—H39120.1
C12—C11—H11118.9C41—C40—C39120.6 (3)
C10—C11—H11118.9C41—C40—C51121.2 (3)
C11—C12—C13121.7 (3)C39—C40—C51118.1 (4)
C11—C12—H12119.2C40—C41—C42118.5 (3)
C13—C12—H12119.2C40—C41—C52122.4 (3)
C17—C13—C14119.1 (3)C42—C41—C52119.1 (3)
C17—C13—C12116.9 (3)C50—C42—C43119.1 (3)
C14—C13—C12124.0 (3)C50—C42—C41118.2 (3)
C15—C14—C13119.4 (3)C43—C42—C41122.7 (3)
C15—C14—C21120.4 (3)C44—C43—C42120.4 (3)
C13—C14—C21120.2 (3)C44—C43—H43119.8
C16—C15—C14118.0 (3)C42—C43—H43119.8
C16—C15—C22118.6 (3)C43—C44—C45120.9 (3)
C14—C15—C22123.4 (3)C43—C44—H44119.5
N8—C16—C15122.9 (3)C45—C44—H44119.5
N8—C16—H16118.5C49—C45—C44119.9 (3)
C15—C16—H16118.5C49—C45—C46117.4 (3)
N8—C17—C13119.3 (3)C44—C45—C46122.7 (3)
N8—C17—C18118.4 (3)C47—C46—C45118.1 (3)
C13—C17—C18122.3 (3)C47—C46—C53121.7 (4)
N7—C18—C10124.2 (3)C45—C46—C53120.2 (3)
N7—C18—C17117.2 (3)C46—C47—C48118.7 (3)
C10—C18—C17118.5 (3)C46—C47—C54122.9 (4)
C8—C19—H19A109.5C48—C47—C54118.4 (4)
C8—C19—H19B109.5N12—C48—C47125.4 (3)
H19A—C19—H19B109.5N12—C48—H48117.3
C8—C19—H19C109.5C47—C48—H48117.3
H19A—C19—H19C109.5N12—C49—C45125.1 (3)
H19B—C19—H19C109.5N12—C49—C50116.1 (3)
C9—C20—H20A109.5C45—C49—C50118.8 (3)
C9—C20—H20B109.5N11—C50—C42120.2 (3)
H20A—C20—H20B109.5N11—C50—C49118.9 (3)
C9—C20—H20C109.5C42—C50—C49120.9 (3)
H20A—C20—H20C109.5C40—C51—H51A109.5
H20B—C20—H20C109.5C40—C51—H51B109.5
C14—C21—H21A109.5H51A—C51—H51B109.5
C14—C21—H21B109.5C40—C51—H51C109.5
H21A—C21—H21B109.5H51A—C51—H51C109.5
C14—C21—H21C109.5H51B—C51—H51C109.5
H21A—C21—H21C109.5C41—C52—H52A109.5
H21B—C21—H21C109.5C41—C52—H52B109.5
C15—C22—H22A109.5H52A—C52—H52B109.5
C15—C22—H22B109.5C41—C52—H52C109.5
H22A—C22—H22B109.5H52A—C52—H52C109.5
C15—C22—H22C109.5H52B—C52—H52C109.5
H22A—C22—H22C109.5C46—C53—H53A109.5
H22B—C22—H22C109.5C46—C53—H53B109.5
N9—C23—C24121.3 (3)H53A—C53—H53B109.5
N9—C23—H23119.4C46—C53—H53C109.5
C24—C23—H23119.4H53A—C53—H53C109.5
C23—C24—C25119.1 (3)H53B—C53—H53C109.5
C23—C24—C35119.4 (3)C47—C54—H54A109.5
C25—C24—C35121.5 (3)C47—C54—H54B109.5
C24—C25—C26118.8 (3)H54A—C54—H54B109.5
C24—C25—C36120.6 (3)C47—C54—H54C109.5
C26—C25—C36120.6 (3)H54A—C54—H54C109.5
C34—C26—C25119.6 (3)H54B—C54—H54C109.5
C34—C26—C27116.9 (3)H5A—O5—H5B92.3
C25—C26—C27123.5 (3)H5A—O5'—H5B93.6
C28—C27—C26121.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O50.821.842.616 (7)157
O1—H1A···O50.822.022.823 (8)165
O1—H1B···N5i0.822.273.068 (4)163
O2—H2A···N3ii0.822.253.044 (4)164
O2—H2B···N30.822.092.901 (4)169
O3—H3A···N20.822.112.909 (4)163
O3—H3B···O2ii0.822.012.813 (3)168
O4—H4A···O30.821.892.707 (3)173
O4—H4B···O10.821.942.735 (4)164
N8—H8N···O4iii0.951.722.636 (4)161
N9—H9N···N5iv0.952.142.919 (4)138
N11—H11N···N4i0.952.112.799 (4)128
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C16H17N2)3[Co(CN)6]·5H2O
Mr1017.08
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)12.836 (2), 14.458 (2), 16.645 (3)
α, β, γ (°)97.216 (2), 110.934 (2), 112.179 (2)
V3)2547.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.16 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.939, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
19411, 9402, 6096
Rint0.046
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.155, 1.05
No. of reflections9402
No. of parameters671
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.53

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5'0.821.842.616 (7)156.9
O1—H1A···O50.822.022.823 (8)165.3
O1—H1B···N5i0.822.273.068 (4)162.9
O2—H2A···N3ii0.822.253.044 (4)164.3
O2—H2B···N30.822.092.901 (4)168.9
O3—H3A···N20.822.112.909 (4)163.1
O3—H3B···O2ii0.822.012.813 (3)168.2
O4—H4A···O30.821.892.707 (3)173.4
O4—H4B···O10.821.942.735 (4)163.6
N8—H8N···O4iii0.951.722.636 (4)161.2
N9—H9N···N5iv0.952.142.919 (4)137.9
N11—H11N···N4i0.952.112.799 (4)127.8
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z+1.
 

References

First citationAndruh, M., Costes, J. P., Diaz, C. & Gao, S. (2009). Inorg. Chem. 48, 3342–3359.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQian, S. Y., Zhou, H., Yuan, A. H. & Song, Y. (2011). Cryst. Growth Des. 11, 5676-5681.  Web of Science CSD CrossRef CAS Google Scholar
First citationShatruk, M., Chambers, K. E., Prosvirin, A. V. & Dunbar, K. R. (2007). Inorg. Chem. 46, 5155–5165.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTokoro, H. & Ohkoshi, S. (2011). Dalton Trans. 40, 6825–6833.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds