organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,7-Dieth­­oxy-8-[(naphthalen-2-yl)carbon­yl]naphthalen-1-yl}(naphthalen-2-yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 1 February 2013; accepted 5 February 2013; online 9 February 2013)

In the title compound, C36H28O4, the two 2-naphthoyl groups at the 1- and 8-positions of the central 2,7-dieth­oxy­naphthalene ring system are aligned almost anti­parallel and make a dihedral angle of 48.35 (5)°. The dihedral angles between the central 2,7-dieth­oxy­naphthalene ring system and the terminal naphthalene ring systems are 77.64 (4) and 73.73 (4)°. In the crystal, mol­ecules are linked into chains along the a-axis direction by dual C—H⋯O inter­actions between naphthoyl groups.

Related literature

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Tsumuki et al. (2011[Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.]); Sasagawa et al. (2012[Sasagawa, K., Hijikata, D., Sakamoto, R., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o3348.]); Isogai et al. (2013[Isogai, A., Tsumuki, T., Murohashi, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o71.]); Yoshiwaka et al. (2013[Yoshiwaka, S., Hijikata, D., Sasagawa, K., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o242.]).

[Scheme 1]

Experimental

Crystal data
  • C36H28O4

  • Mr = 524.58

  • Monoclinic, P 21 /c

  • a = 7.86946 (14) Å

  • b = 27.1458 (5) Å

  • c = 12.8490 (2) Å

  • β = 102.267 (1)°

  • V = 2682.16 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 193 K

  • 0.50 × 0.25 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.732, Tmax = 0.878

  • 41696 measured reflections

  • 4914 independent reflections

  • 3996 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.09

  • 4914 reflections

  • 364 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O3i 0.95 2.45 3.3958 (18) 173
C25—H25⋯O4ii 0.95 2.45 3.3996 (18) 176
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), [2,7-dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone (Tsumuki et al., 2011), {2,7-dimethoxy-8-[4-(2-methylpropyl)benzoyl]naphthalen-1-yl}[4-(2-methylpropyl) phenyl]methanone (Sasagawa et al., 2012), (8-benzoyl-2,7-diethoxynaphthalen-1-yl)(phenyl)methanone (Isogai et al., 2013), and [8-(4-phenoxybenzoyl)-2,7-bis(propan-2-yloxy)naphthalen-1-yl](4-phenoxyphenyl) methanone (Yoshiwaka et al., 2013). The most simple analogues in these compounds, 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008) and [2,7-dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone (Tsumuki et al., 2011), lie across a crystallographic 2-fold axis and the molecular packing are stabilized by C—H···O interactions and π···π interactions between the aroyl groups. As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound is reported on herein.

The molecular structure of the title molecule is illustrated in Fig. 1. The two terminal naphthoyl groups are situated in an opposite direction and twisted away from the central 2,7-diethoxynaphthalene unit. The dihedral angles between the two naphthalene rings of the terminal naphthoyl groups (C13—C22 and C23—C32) is 48.35 (5)°. The dihedral angles between the terminal napthalene rings and the central naphthalene ring (C1—C10) are 77.64 (4) and 73.73 (4)°. The torsion angles between the carbonyl moieties and the central naphthalene ring are -52.63 (18)° [C9—C1—C11—O3] and -58.16 (17)° [C9—C8—C12—O4]. On the other hand, the carbonyl groups are slightly twisted away from the attached terminal naphthalene rings [torsion angles O3—C11—C13—C14 = -21.17 (19)° and O4—C12—C23—C32 = -14.10 (19)°]. In the crystal, the molecular packing of the title compound is mainly stabilized by two C—H···O interactions between the naphthoyl moieties leading to the formation of chains along the a axis (Table 1 and Fig. 2).

Related literature top

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Nakaema et al. (2008); Tsumuki et al. (2011); Sasagawa et al. (2012); Isogai et al. (2013); Yoshiwaka et al. (2013).

Experimental top

To a solution of 2-naphthoyl chloride (14.3 g, 75.0 mmol) and TiCl4 (42.7 g, 225 mmol) in CH2Cl2 (62.5 ml), 2,7-diethoxynaphthalene (5.4 g, 25.3 mmol) was added. The reaction mixture was stirred at r. t. for 24 h, then poured into ice-cold water (200 ml). The aqueous layer was extracted with CHCl3 (60 ml × 3). The combined organic extracts were washed with 2M aqueous NaOH (80 ml × 3) followed by washing with brine (80 ml × 3). The organic layer was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 97%). The crude product was purified by recrystallization from chloroform/methanol (1:2 v/v) solution (isolated yield 70%). Furthermore, the isolated product was crystallized from chloroform to give single crystals suitable for X-ray analysis.

1H NMR δ (500 MHz, CDCl3): 0.86 (6H, t, J = 6.9 Hz), 3.96 (4H, q, J = 6.9), 7.21 (2H, d, J = 9.0 Hz), 7.39 (2H, t, J = 7.5 Hz), 7.47 (2H, t, J = 7.5 Hz), 7.69–7.93 (8H, m), 7.98 (2H, d, J = 9.0 Hz), 8.15 (2H, s) p.p.m.; 13C NMR δ (125 MHz, CDCl3): 14.36, 64.93, 112.35, 122.03, 124.89, 125.56, 125.89, 127.47, 127.54, 127.70, 129.59, 130.44, 130.74, 132.08, 132.41, 135.43, 136.47, 155.97, 197.17 p.p.m.; IR (KBr): 1658, 1623, 1608, 1510, 1470, 1275 cm-1; HRMS (m/z): [M+H]+ calcd. for C36H29O4, 525.2066; found, 525.2031.

Refinement top

All the H atoms were located in a difference Fourier map and were subsequently refined as riding atoms: C—H = 0.95 (aromatic), 0.98 (methyl) and 0.99 (methylene) Å, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing the intermolecular C—H···O hydrogen bonds (see Table 1 for details; symmetry codes: (i) -1 + x, y, z; (ii) 1 + x, y, z).
{2,7-Diethoxy-8-[(naphthalen-2-yl)carbonyl]naphthalen-1-yl}(naphthalen-2-yl)methanone top
Crystal data top
C36H28O4F(000) = 1104
Mr = 524.58Dx = 1.299 Mg m3
Monoclinic, P21/cMelting point = 493.0–494.5 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 7.86946 (14) ÅCell parameters from 33371 reflections
b = 27.1458 (5) Åθ = 3.3–68.2°
c = 12.8490 (2) ŵ = 0.67 mm1
β = 102.267 (1)°T = 193 K
V = 2682.16 (8) Å3Block, colourless
Z = 40.50 × 0.25 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4914 independent reflections
Radiation source: rotating anode3996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.3°
ω scansh = 99
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 3132
Tmin = 0.732, Tmax = 0.878l = 1515
41696 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.4544P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4914 reflectionsΔρmax = 0.20 e Å3
364 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00121 (13)
Crystal data top
C36H28O4V = 2682.16 (8) Å3
Mr = 524.58Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.86946 (14) ŵ = 0.67 mm1
b = 27.1458 (5) ÅT = 193 K
c = 12.8490 (2) Å0.50 × 0.25 × 0.20 mm
β = 102.267 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4914 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3996 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.878Rint = 0.029
41696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.09Δρmax = 0.20 e Å3
4914 reflectionsΔρmin = 0.15 e Å3
364 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07897 (13)0.25900 (3)0.51894 (8)0.0457 (3)
O20.55755 (13)0.32784 (3)1.03877 (7)0.0436 (2)
O30.39273 (11)0.34984 (3)0.63817 (7)0.0400 (2)
O40.21986 (11)0.37405 (3)0.83968 (8)0.0431 (2)
C10.24047 (16)0.28182 (5)0.68544 (10)0.0338 (3)
C20.16047 (17)0.24468 (5)0.61849 (10)0.0365 (3)
C30.17099 (18)0.19490 (5)0.65104 (11)0.0403 (3)
H30.11370.17000.60470.048*
C40.26404 (18)0.18312 (5)0.74950 (11)0.0400 (3)
H40.27360.14950.77050.048*
C50.44227 (18)0.20619 (5)0.92342 (11)0.0402 (3)
H50.45410.17230.94220.048*
C60.51793 (18)0.24052 (5)0.99566 (11)0.0401 (3)
H60.58330.23081.06340.048*
C70.49772 (17)0.29080 (5)0.96834 (10)0.0360 (3)
C80.40829 (16)0.30593 (5)0.86876 (10)0.0334 (3)
C90.33228 (16)0.26999 (5)0.79099 (10)0.0334 (3)
C100.34690 (16)0.21927 (5)0.82158 (10)0.0358 (3)
C110.24972 (17)0.33218 (5)0.63750 (10)0.0339 (3)
C120.37086 (16)0.36012 (5)0.85329 (10)0.0336 (3)
C130.08776 (17)0.35910 (5)0.58868 (10)0.0357 (3)
C140.09312 (19)0.39523 (5)0.51522 (11)0.0410 (3)
H140.19970.40190.49440.049*
C150.0564 (2)0.42290 (5)0.46955 (11)0.0443 (3)
C160.0535 (2)0.46069 (6)0.39398 (13)0.0585 (4)
H160.05070.46720.37030.070*
C170.1985 (3)0.48786 (7)0.35494 (14)0.0710 (5)
H170.19450.51330.30470.085*
C180.3539 (3)0.47841 (7)0.38869 (14)0.0735 (6)
H180.45440.49750.36080.088*
C190.3623 (2)0.44224 (7)0.46071 (13)0.0624 (5)
H190.46840.43630.48260.075*
C200.21336 (19)0.41325 (6)0.50351 (12)0.0473 (4)
C210.21620 (19)0.37583 (6)0.57927 (12)0.0485 (4)
H210.32090.36920.60230.058*
C220.07049 (18)0.34901 (5)0.62000 (11)0.0421 (3)
H220.07540.32340.66970.051*
C230.51548 (16)0.39574 (5)0.85724 (10)0.0331 (3)
C240.68331 (17)0.37994 (5)0.84828 (11)0.0406 (3)
H240.70530.34580.84090.049*
C250.81350 (19)0.41323 (6)0.85009 (12)0.0483 (4)
H250.92500.40210.84310.058*
C260.78459 (18)0.46415 (5)0.86224 (11)0.0442 (3)
C270.9164 (2)0.50030 (7)0.86551 (15)0.0625 (5)
H271.02860.49070.85690.075*
C280.8826 (3)0.54880 (7)0.88092 (15)0.0691 (5)
H280.97220.57250.88310.083*
C290.7192 (3)0.56425 (6)0.89353 (14)0.0619 (5)
H290.69880.59810.90550.074*
C300.5895 (2)0.53092 (5)0.88874 (12)0.0506 (4)
H300.47780.54180.89610.061*
C310.61786 (18)0.48013 (5)0.87293 (10)0.0396 (3)
C320.48516 (17)0.44475 (5)0.86871 (10)0.0367 (3)
H320.37220.45530.87400.044*
C330.01793 (18)0.22392 (5)0.44723 (11)0.0400 (3)
H33A0.10170.20630.48140.048*
H33B0.06090.19950.42520.048*
C340.11200 (19)0.25281 (5)0.35288 (11)0.0445 (3)
H34A0.02720.26940.31900.053*
H34B0.18680.27750.37640.053*
H34C0.18350.23050.30160.053*
C350.65820 (18)0.31522 (5)1.14207 (10)0.0419 (3)
H35A0.76120.29561.13520.050*
H35B0.58740.29561.18210.050*
C360.7138 (2)0.36274 (6)1.19899 (13)0.0588 (4)
H36A0.79340.35581.26710.071*
H36B0.61130.38021.21210.071*
H36C0.77290.38331.15500.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0550 (6)0.0357 (5)0.0401 (5)0.0040 (4)0.0040 (4)0.0021 (4)
O20.0533 (6)0.0400 (5)0.0338 (5)0.0012 (4)0.0010 (4)0.0004 (4)
O30.0368 (5)0.0424 (5)0.0414 (5)0.0046 (4)0.0097 (4)0.0002 (4)
O40.0330 (5)0.0413 (5)0.0545 (6)0.0036 (4)0.0084 (4)0.0037 (4)
C10.0329 (7)0.0317 (7)0.0369 (7)0.0008 (5)0.0080 (5)0.0001 (5)
C20.0353 (7)0.0371 (7)0.0366 (7)0.0010 (6)0.0064 (6)0.0002 (6)
C30.0423 (8)0.0327 (7)0.0450 (8)0.0016 (6)0.0073 (6)0.0052 (6)
C40.0444 (8)0.0303 (7)0.0464 (8)0.0019 (6)0.0121 (6)0.0018 (6)
C50.0442 (8)0.0353 (7)0.0421 (7)0.0036 (6)0.0116 (6)0.0070 (6)
C60.0423 (8)0.0409 (8)0.0364 (7)0.0020 (6)0.0070 (6)0.0057 (6)
C70.0353 (7)0.0365 (7)0.0369 (7)0.0010 (5)0.0093 (6)0.0004 (6)
C80.0314 (7)0.0341 (7)0.0359 (7)0.0003 (5)0.0096 (5)0.0006 (5)
C90.0306 (7)0.0333 (7)0.0379 (7)0.0016 (5)0.0106 (5)0.0007 (5)
C100.0363 (7)0.0329 (7)0.0403 (7)0.0018 (5)0.0129 (6)0.0008 (6)
C110.0377 (7)0.0332 (7)0.0313 (6)0.0023 (6)0.0080 (5)0.0038 (5)
C120.0345 (7)0.0359 (7)0.0299 (6)0.0026 (5)0.0059 (5)0.0019 (5)
C130.0388 (7)0.0319 (7)0.0354 (7)0.0014 (5)0.0052 (6)0.0023 (5)
C140.0442 (8)0.0379 (7)0.0405 (7)0.0013 (6)0.0081 (6)0.0002 (6)
C150.0536 (9)0.0372 (8)0.0383 (7)0.0054 (6)0.0014 (6)0.0027 (6)
C160.0757 (11)0.0484 (9)0.0467 (9)0.0077 (8)0.0025 (8)0.0062 (7)
C170.1020 (16)0.0568 (11)0.0466 (10)0.0234 (10)0.0011 (10)0.0063 (8)
C180.0869 (14)0.0723 (12)0.0513 (10)0.0402 (11)0.0081 (10)0.0061 (9)
C190.0580 (10)0.0704 (11)0.0524 (10)0.0232 (9)0.0027 (8)0.0097 (9)
C200.0497 (9)0.0462 (8)0.0415 (8)0.0089 (7)0.0003 (7)0.0087 (6)
C210.0388 (8)0.0562 (9)0.0499 (9)0.0008 (7)0.0079 (7)0.0064 (7)
C220.0397 (8)0.0423 (8)0.0442 (8)0.0018 (6)0.0085 (6)0.0011 (6)
C230.0343 (7)0.0331 (7)0.0309 (6)0.0025 (5)0.0050 (5)0.0017 (5)
C240.0379 (7)0.0387 (8)0.0451 (8)0.0051 (6)0.0090 (6)0.0004 (6)
C250.0355 (8)0.0557 (9)0.0550 (9)0.0011 (7)0.0126 (7)0.0009 (7)
C260.0448 (8)0.0470 (8)0.0409 (8)0.0075 (6)0.0096 (6)0.0013 (6)
C270.0538 (10)0.0681 (12)0.0683 (11)0.0161 (9)0.0188 (8)0.0019 (9)
C280.0800 (13)0.0545 (11)0.0735 (12)0.0304 (10)0.0180 (10)0.0014 (9)
C290.0816 (13)0.0412 (9)0.0642 (11)0.0145 (8)0.0184 (9)0.0015 (8)
C300.0653 (10)0.0363 (8)0.0507 (9)0.0037 (7)0.0133 (7)0.0025 (7)
C310.0463 (8)0.0384 (7)0.0334 (7)0.0030 (6)0.0067 (6)0.0027 (6)
C320.0369 (7)0.0365 (7)0.0358 (7)0.0027 (6)0.0058 (6)0.0023 (6)
C330.0406 (7)0.0390 (7)0.0402 (7)0.0054 (6)0.0084 (6)0.0063 (6)
C340.0436 (8)0.0497 (9)0.0393 (8)0.0073 (6)0.0067 (6)0.0009 (6)
C350.0422 (8)0.0483 (8)0.0336 (7)0.0020 (6)0.0046 (6)0.0024 (6)
C360.0677 (11)0.0549 (10)0.0465 (9)0.0021 (8)0.0043 (8)0.0030 (7)
Geometric parameters (Å, º) top
O1—C21.3602 (16)C19—C201.422 (2)
O1—C331.4278 (16)C19—H190.9500
O2—C71.3676 (16)C20—C211.410 (2)
O2—C351.4351 (16)C21—C221.365 (2)
O3—C111.2217 (15)C21—H210.9500
O4—C121.2237 (15)C22—H220.9500
C1—C21.3867 (18)C23—C321.3653 (18)
C1—C91.4310 (18)C23—C241.4164 (18)
C1—C111.5075 (17)C24—C251.363 (2)
C2—C31.4117 (19)C24—H240.9500
C3—C41.3583 (19)C25—C261.415 (2)
C3—H30.9500C25—H250.9500
C4—C101.4103 (19)C26—C311.416 (2)
C4—H40.9500C26—C271.422 (2)
C5—C61.3600 (19)C27—C281.366 (3)
C5—C101.4086 (19)C27—H270.9500
C5—H50.9500C28—C291.394 (3)
C6—C71.4099 (19)C28—H280.9500
C6—H60.9500C29—C301.356 (2)
C7—C81.3852 (18)C29—H290.9500
C8—C91.4332 (18)C30—C311.418 (2)
C8—C121.5049 (18)C30—H300.9500
C9—C101.4300 (18)C31—C321.4112 (19)
C11—C131.4874 (18)C32—H320.9500
C12—C231.4860 (18)C33—C341.5004 (19)
C13—C141.3680 (19)C33—H33A0.9900
C13—C221.4145 (19)C33—H33B0.9900
C14—C151.414 (2)C34—H34A0.9800
C14—H140.9500C34—H34B0.9800
C15—C161.416 (2)C34—H34C0.9800
C15—C201.419 (2)C35—C361.501 (2)
C16—C171.361 (2)C35—H35A0.9900
C16—H160.9500C35—H35B0.9900
C17—C181.406 (3)C36—H36A0.9800
C17—H170.9500C36—H36B0.9800
C18—C191.360 (3)C36—H36C0.9800
C18—H180.9500
C2—O1—C33119.78 (10)C15—C20—C19118.60 (15)
C7—O2—C35118.77 (10)C22—C21—C20120.90 (14)
C2—C1—C9119.74 (12)C22—C21—H21119.6
C2—C1—C11117.44 (11)C20—C21—H21119.6
C9—C1—C11122.15 (11)C21—C22—C13120.41 (13)
O1—C2—C1115.90 (11)C21—C22—H22119.8
O1—C2—C3122.58 (12)C13—C22—H22119.8
C1—C2—C3121.45 (12)C32—C23—C24119.41 (12)
C4—C3—C2119.16 (13)C32—C23—C12119.19 (11)
C4—C3—H3120.4C24—C23—C12121.39 (12)
C2—C3—H3120.4C25—C24—C23120.57 (13)
C3—C4—C10122.03 (13)C25—C24—H24119.7
C3—C4—H4119.0C23—C24—H24119.7
C10—C4—H4119.0C24—C25—C26120.79 (13)
C6—C5—C10122.08 (13)C24—C25—H25119.6
C6—C5—H5119.0C26—C25—H25119.6
C10—C5—H5119.0C25—C26—C31118.94 (13)
C5—C6—C7118.92 (13)C25—C26—C27122.96 (14)
C5—C6—H6120.5C31—C26—C27118.09 (14)
C7—C6—H6120.5C28—C27—C26120.42 (17)
O2—C7—C8115.41 (11)C28—C27—H27119.8
O2—C7—C6122.84 (12)C26—C27—H27119.8
C8—C7—C6121.69 (12)C27—C28—C29121.30 (16)
C7—C8—C9119.81 (12)C27—C28—H28119.4
C7—C8—C12117.29 (11)C29—C28—H28119.4
C9—C8—C12122.16 (11)C30—C29—C28119.88 (16)
C10—C9—C1118.13 (12)C30—C29—H29120.1
C10—C9—C8117.81 (12)C28—C29—H29120.1
C1—C9—C8124.05 (12)C29—C30—C31121.01 (16)
C5—C10—C4121.03 (12)C29—C30—H30119.5
C5—C10—C9119.59 (12)C31—C30—H30119.5
C4—C10—C9119.37 (12)C32—C31—C26118.77 (13)
O3—C11—C13121.04 (11)C32—C31—C30121.95 (13)
O3—C11—C1118.52 (11)C26—C31—C30119.28 (13)
C13—C11—C1120.43 (11)C23—C32—C31121.50 (12)
O4—C12—C23121.13 (12)C23—C32—H32119.3
O4—C12—C8118.55 (11)C31—C32—H32119.3
C23—C12—C8120.30 (11)O1—C33—C34106.08 (11)
C14—C13—C22119.55 (13)O1—C33—H33A110.5
C14—C13—C11119.60 (12)C34—C33—H33A110.5
C22—C13—C11120.81 (12)O1—C33—H33B110.5
C13—C14—C15121.49 (13)C34—C33—H33B110.5
C13—C14—H14119.3H33A—C33—H33B108.7
C15—C14—H14119.3C33—C34—H34A109.5
C14—C15—C16122.46 (15)C33—C34—H34B109.5
C14—C15—C20118.43 (13)H34A—C34—H34B109.5
C16—C15—C20119.08 (14)C33—C34—H34C109.5
C17—C16—C15120.76 (18)H34A—C34—H34C109.5
C17—C16—H16119.6H34B—C34—H34C109.5
C15—C16—H16119.6O2—C35—C36106.97 (12)
C16—C17—C18120.22 (18)O2—C35—H35A110.3
C16—C17—H17119.9C36—C35—H35A110.3
C18—C17—H17119.9O2—C35—H35B110.3
C19—C18—C17120.83 (17)C36—C35—H35B110.3
C19—C18—H18119.6H35A—C35—H35B108.6
C17—C18—H18119.6C35—C36—H36A109.5
C18—C19—C20120.51 (18)C35—C36—H36B109.5
C18—C19—H19119.7H36A—C36—H36B109.5
C20—C19—H19119.7C35—C36—H36C109.5
C21—C20—C15119.19 (13)H36A—C36—H36C109.5
C21—C20—C19122.21 (15)H36B—C36—H36C109.5
C33—O1—C2—C1175.31 (11)C22—C13—C14—C150.0 (2)
C33—O1—C2—C37.58 (19)C11—C13—C14—C15177.80 (12)
C9—C1—C2—O1178.78 (11)C13—C14—C15—C16179.53 (14)
C11—C1—C2—O17.94 (17)C13—C14—C15—C201.5 (2)
C9—C1—C2—C31.64 (19)C14—C15—C16—C17177.36 (15)
C11—C1—C2—C3169.20 (12)C20—C15—C16—C170.7 (2)
O1—C2—C3—C4175.83 (12)C15—C16—C17—C180.5 (3)
C1—C2—C3—C41.1 (2)C16—C17—C18—C190.1 (3)
C2—C3—C4—C101.7 (2)C17—C18—C19—C200.1 (3)
C10—C5—C6—C71.1 (2)C14—C15—C20—C211.5 (2)
C35—O2—C7—C8177.25 (11)C16—C15—C20—C21179.60 (14)
C35—O2—C7—C65.50 (18)C14—C15—C20—C19177.69 (13)
C5—C6—C7—O2174.74 (12)C16—C15—C20—C190.4 (2)
C5—C6—C7—C82.3 (2)C18—C19—C20—C21179.21 (16)
O2—C7—C8—C9176.70 (11)C18—C19—C20—C150.0 (2)
C6—C7—C8—C90.58 (19)C15—C20—C21—C220.0 (2)
O2—C7—C8—C126.34 (16)C19—C20—C21—C22179.14 (14)
C6—C7—C8—C12170.94 (12)C20—C21—C22—C131.5 (2)
C2—C1—C9—C103.69 (17)C14—C13—C22—C211.5 (2)
C11—C1—C9—C10166.70 (11)C11—C13—C22—C21176.23 (12)
C2—C1—C9—C8175.25 (12)O4—C12—C23—C3214.09 (18)
C11—C1—C9—C814.35 (18)C8—C12—C23—C32164.40 (12)
C7—C8—C9—C102.31 (17)O4—C12—C23—C24165.25 (12)
C12—C8—C9—C10167.56 (11)C8—C12—C23—C2416.25 (18)
C7—C8—C9—C1178.74 (11)C32—C23—C24—C250.6 (2)
C12—C8—C9—C111.38 (19)C12—C23—C24—C25178.77 (13)
C6—C5—C10—C4177.56 (13)C23—C24—C25—C260.8 (2)
C6—C5—C10—C91.8 (2)C24—C25—C26—C310.2 (2)
C3—C4—C10—C5179.80 (12)C24—C25—C26—C27179.46 (15)
C3—C4—C10—C90.4 (2)C25—C26—C27—C28177.82 (16)
C1—C9—C10—C5177.50 (11)C31—C26—C27—C281.4 (2)
C8—C9—C10—C53.49 (18)C26—C27—C28—C290.2 (3)
C1—C9—C10—C43.10 (18)C27—C28—C29—C301.1 (3)
C8—C9—C10—C4175.91 (11)C28—C29—C30—C311.1 (3)
C2—C1—C11—O3117.99 (13)C25—C26—C31—C321.4 (2)
C9—C1—C11—O352.62 (17)C27—C26—C31—C32179.34 (14)
C2—C1—C11—C1360.82 (16)C25—C26—C31—C30177.88 (14)
C9—C1—C11—C13128.58 (13)C27—C26—C31—C301.4 (2)
C7—C8—C12—O4111.96 (14)C29—C30—C31—C32179.38 (14)
C9—C8—C12—O458.15 (17)C29—C30—C31—C260.1 (2)
C7—C8—C12—C2366.57 (15)C24—C23—C32—C310.64 (19)
C9—C8—C12—C23123.31 (13)C12—C23—C32—C31180.00 (12)
O3—C11—C13—C1421.18 (19)C26—C31—C32—C231.62 (19)
C1—C11—C13—C14157.60 (12)C30—C31—C32—C23177.63 (13)
O3—C11—C13—C22156.59 (13)C2—O1—C33—C34171.47 (11)
C1—C11—C13—C2224.64 (18)C7—O2—C35—C36176.89 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O3i0.952.453.3958 (18)173
C25—H25···O4ii0.952.453.3996 (18)176
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC36H28O4
Mr524.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)7.86946 (14), 27.1458 (5), 12.8490 (2)
β (°) 102.267 (1)
V3)2682.16 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.50 × 0.25 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.732, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
41696, 4914, 3996
Rint0.029
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.09
No. of reflections4914
No. of parameters364
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O3i0.952.453.3958 (18)173
C25—H25···O4ii0.952.453.3996 (18)176
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by an Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIsogai, A., Tsumuki, T., Murohashi, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o71.  CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasagawa, K., Hijikata, D., Sakamoto, R., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o3348.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYoshiwaka, S., Hijikata, D., Sasagawa, K., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o242.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds