metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m160-m161

(2,2′-Bi­pyridine-κ2N,N′)[bis­­(di­phenyl­thio­phosphino­yl)meth­yl]lithium(I) benzene monosolvate

aCollege of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and dDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 13 February 2013; accepted 15 February 2013; online 20 February 2013)

In the title benzene-solvated heteroleptic lithium complex, [Li(C25H21P2S2)(C10H8N2)]·C6H6, the LiI ion is four-coordinated in a distorted tetra­hedral geometry by two S atoms and two N atoms of the two chelating ligands, viz. bis­(diphenyl­thio­phosphino­yl)methyl and 2,2′-bipyridine. The 2,2′-bipyridine mol­ecule is slightly twisted with a dihedral angle between the pyridine rings of 7.35 (12)°. Intra­molecular C—H⋯S hydrogen bonds are present. In the crystal, mol­ecules are stacked along the c axis by ππ inter­actions, with centroid–centroid distances of 3.6021 (15) and 3.6401 (16) Å. The crystal structure also features weak C—H⋯π inter­actions.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to and applications of thio­phosphinoyl ligands and their complexes, see: Amir et al. (2013[Amir, A., Sayer, A. H., Zagalsky, R., Shimon, L. W. & Fischer, B. (2013). J. Org. Chem. 78, 270-277.]); Leung, Wan & Mak (2010[Leung, W.-P., Wan, C.-L. & Mak, T. C. W. (2010). Organometallics, 29, 1622-1628.]); Leung, Wan, Kan & Mak (2010[Leung, W.-P., Wan, C.-L., Kan, K.-W. & Mak, T. C. W. (2010). Organometallics, 29, 814-820.]); Ren et al. (2011[Ren, W., Deng, X., Zi, G. & Fang, D.-C. (2011). Dalton Trans. 40, 9662-9664.]). For related structures, see: Thirumoorthi & Chivers (2012[Thirumoorthi, R. & Chivers, T. (2012). Eur. J. Inorg. Chem. pp. 3061-3069.]).

[Scheme 1]

Experimental

Crystal data
  • [Li(C25H21P2S2)(C10H8N2)]·C6H6

  • Mr = 688.73

  • Triclinic, [P \overline 1]

  • a = 10.7654 (11) Å

  • b = 13.1295 (12) Å

  • c = 13.5498 (11) Å

  • α = 90.746 (2)°

  • β = 101.902 (1)°

  • γ = 109.257 (2)°

  • V = 1762.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 297 K

  • 0.44 × 0.28 × 0.20 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.947

  • 10290 measured reflections

  • 7517 independent reflections

  • 5856 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.115

  • S = 1.04

  • 7517 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3, Cg6 and Cg7 are the centroids of the C11–C16, C30–C35 and C36–C41 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯S1 0.95 2.86 3.367 (2) 114
C25—H25⋯S2 0.95 2.82 3.332 (2) 115
C1—H1⋯Cg6 0.95 2.77 3.710 (3) 172
C21—H21⋯Cg6i 0.95 2.70 3.632 (3) 166
C28—H28⋯Cg7ii 0.95 2.93 3.654 (3) 134
C37—H37⋯Cg3iii 0.95 2.80 3.634 (3) 147
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metal chelators containing sulfur are important compounds with many applications such as for metal extraction and development of antioxidant capacity (Amir et al., 2013). Thiophosphinyl ligands and their complexes, including their reactivity and applications, have been extensively studied (Amir et al., 2013; Leung, Wan & Mak, 2010; Leung, Wan, Kan & Mak, 2010; Ren et al., 2011). Our ongoing research on carbene complexes is to synthesize the dilithium salts with the pincer carbene ligand. However the title complex (I) was isolated as a monolithium salt. Herein, the synthesis and crystal strcuture of (I) was reported.

Complex (I) is a heteroleptic lithium(I) complex (Fig. 1) in which the environment around the LiI ion is distorted tetrahedral and the LiI ion is four-coordinated by the two S atoms of bis(diphenylthiophosphinoyl)methyl and two N atoms of 2,2'-bipyridine chelating ligands. The bond angles around the central metal LiI show large deviations from ideal tetrahedral geometry [N1-Li1-S1 = 101.41 (18)°, N1-Li1-S2 = 121.2 (2)°, N2-Li1-S1 = 114.67 (19)°, N2-Li1-S2 = 119.1 (2)°; and the bite angles N1–Li1-N2 = 81.54 (17)° and S1-Li1-S2 = 114.03 (17)°]. The Li-S bond lengths [2.420 (4) and 2.441 (4) Å] and Li-N bond lengths [2.030 (5) and 2.035 (5) Å] are similar to those of the previously reported heteroleptic analogue (Thirumoorthi & Chivers, 2012). Similarly, the P-S [1.9939 (9) and 2.0155 (8) Å] and P-Cmethy [1.712 (2) and 1.716 (2) Å] bond lengths are comparable to those of another similar Li(I) complex (Thirumoorthi & Chivers, 2012). The six-membered ring Li1–S1–P1–C23–P2–S2 adopts a twisted boat conformation. The 2,2'-bipyridine ring system (C1–C10/N1–N2) is slightly twisted with the dihedral angle between the two pyridine rings being 7.35 (12)°. The dihedral angle between the two C11–C16 and C17–C22 benzene rings is 86.24 (2)° whereas that between the C24–C29 and C30–C35 benzene rings is 85.99 (12)°. The bond lengths of ligand are within normal ranges (Allen et al., 1987). Intramolecular C—H···S hydrogen bonds are observed (Table 1).

The arrangement of molecules in crystal structure of (I) is illustrated in Fig. 2. Fig. 3 shows the stacking of molecules along the c axis. The molecules are stacked by π···π interactions with the centroid···centroid distances: Cg1···Cg2iv = 3.6012 (15) Å and Cg2···Cg3v = 3.6401 (16) Å; Cg1, Cg2 and Cg3 are the centroids of C1–C5/N1, C6–C10/N2 and C11–C16 rings, respectively. C—H···π weak interactions are also present (Table 1).

Related literature top

For standard bond lengths, see: Allen et al. (1987). For background to and applications of thiophosphinoyl ligands and their complexes, see: Amir et al. (2013); Leung, Wan & Mak (2010); Leung, Wan, Kan & Mak (2010); Ren et al. (2011). For related structures, see: Thirumoorthi & Chivers (2012).

Experimental top

An n-hexane (2 mL) solution of n-C4H9Li (0.5 M; 1 mmol) was slowly added into a benzene (10 mL) solution of bis(diphenylthiophosphinoyl)methane (448 mg, 1 mmol) and 2,2'-bipyridine (156 mg, 1 mmol) at 195 K with stirring. After this solution was warmed up to room temperature and stirred for one hour, the solution was filtered. The filtrate was concentrated to about 2 mL under vacuum. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were obtained when this solution was kept at room temperature for two days. Yield: 585 mg (85%).

Refinement top

Al H atoms were placed in calculated positions with d(C—H) = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 45% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing the arrangement of the molecules. H atoms are omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of the title compound showing the molecular stacking along the c axis.
(2,2'-Bipyridine-κ2N,N')[bis(diphenylthiophosphinoyl)methyl]lithium(I) benzene monosolvate top
Crystal data top
[Li(C25H21P2S2)(C10H8N2)]·C6H6Z = 2
Mr = 688.73F(000) = 720
Triclinic, P1Dx = 1.298 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7654 (11) ÅCell parameters from 7517 reflections
b = 13.1295 (12) Åθ = 2.2–27.0°
c = 13.5498 (11) ŵ = 0.28 mm1
α = 90.746 (2)°T = 297 K
β = 101.902 (1)°Block, yellow
γ = 109.257 (2)°0.44 × 0.28 × 0.20 mm
V = 1762.3 (3) Å3
Data collection top
Bruker APEXII CCD area detector
diffractometer
7517 independent reflections
Radiation source: sealed tube5856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1113
Tmin = 0.889, Tmax = 0.947k = 1616
10290 measured reflectionsl = 179
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.035P)2 + 0.9744P]
where P = (Fo2 + 2Fc2)/3
7517 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Li(C25H21P2S2)(C10H8N2)]·C6H6γ = 109.257 (2)°
Mr = 688.73V = 1762.3 (3) Å3
Triclinic, P1Z = 2
a = 10.7654 (11) ÅMo Kα radiation
b = 13.1295 (12) ŵ = 0.28 mm1
c = 13.5498 (11) ÅT = 297 K
α = 90.746 (2)°0.44 × 0.28 × 0.20 mm
β = 101.902 (1)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
7517 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5856 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.947Rint = 0.031
10290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.53 e Å3
7517 reflectionsΔρmin = 0.39 e Å3
433 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1068 (3)0.6986 (2)0.4548 (2)0.0263 (6)
H10.10620.64500.40730.032*
C20.2238 (3)0.6835 (2)0.4891 (2)0.0313 (7)
H20.30020.61960.46810.038*
C30.2262 (3)0.7641 (2)0.5547 (2)0.0275 (6)
H30.30570.75710.57810.033*
C40.1129 (2)0.8542 (2)0.58578 (18)0.0203 (5)
H40.11330.91050.63030.024*
C50.0030 (2)0.86183 (19)0.55080 (18)0.0169 (5)
C60.1316 (2)0.95504 (19)0.58236 (17)0.0157 (5)
C70.1516 (3)1.0354 (2)0.65794 (18)0.0200 (5)
H70.08141.03350.69120.024*
C80.2748 (3)1.1181 (2)0.6840 (2)0.0253 (6)
H80.29061.17310.73590.030*
C90.3747 (3)1.1200 (2)0.63387 (19)0.0222 (6)
H90.46001.17630.64990.027*
C100.3469 (2)1.0375 (2)0.55958 (19)0.0199 (5)
H100.41571.03880.52510.024*
C110.3737 (2)0.95373 (18)0.19821 (17)0.0147 (5)
C120.4031 (2)1.03724 (19)0.27311 (18)0.0178 (5)
H120.33881.03620.31210.021*
C130.5256 (3)1.1220 (2)0.2912 (2)0.0230 (6)
H130.54531.17810.34290.028*
C140.6193 (3)1.1248 (2)0.2338 (2)0.0236 (6)
H140.70341.18240.24670.028*
C150.5903 (2)1.0436 (2)0.1577 (2)0.0220 (5)
H150.65381.04610.11760.026*
C160.4683 (2)0.95842 (19)0.14008 (18)0.0184 (5)
H160.44890.90270.08790.022*
C170.1507 (2)0.82567 (18)0.04508 (17)0.0139 (5)
C180.1161 (2)0.91241 (19)0.00406 (18)0.0172 (5)
H180.13330.97610.04630.021*
C190.0566 (2)0.9061 (2)0.09820 (19)0.0220 (6)
H190.03370.96530.12590.026*
C200.0309 (3)0.8129 (2)0.15950 (19)0.0230 (6)
H200.01150.80790.22910.028*
C210.0664 (3)0.7273 (2)0.12038 (19)0.0227 (6)
H210.05060.66430.16320.027*
C220.1252 (2)0.73354 (19)0.01822 (18)0.0181 (5)
H220.14840.67410.00880.022*
C230.2662 (2)0.72073 (18)0.20470 (17)0.0148 (5)
H230.30890.69890.15770.018*
C240.3158 (2)0.53993 (18)0.28467 (17)0.0140 (5)
C250.4196 (2)0.52524 (19)0.35627 (18)0.0181 (5)
H250.45580.57100.41760.022*
C260.4708 (2)0.4439 (2)0.33868 (19)0.0215 (5)
H260.54200.43430.38790.026*
C270.4178 (2)0.37688 (19)0.2493 (2)0.0210 (5)
H270.45230.32100.23750.025*
C280.3151 (3)0.3913 (2)0.1775 (2)0.0233 (6)
H280.27900.34550.11620.028*
C290.2647 (2)0.4725 (2)0.19484 (19)0.0207 (5)
H290.19440.48230.14500.025*
C300.0649 (2)0.56099 (18)0.29200 (18)0.0141 (5)
C310.0284 (2)0.49183 (19)0.36662 (19)0.0192 (5)
H310.09520.49050.42410.023*
C320.1039 (3)0.4254 (2)0.3578 (2)0.0244 (6)
H320.12740.37840.40880.029*
C330.2026 (3)0.4275 (2)0.2745 (2)0.0269 (6)
H330.29370.38270.26880.032*
C340.1679 (3)0.4950 (2)0.1997 (2)0.0280 (6)
H340.23550.49630.14270.034*
C350.0341 (2)0.5614 (2)0.2075 (2)0.0211 (5)
H350.01060.60670.15530.025*
C360.4914 (3)0.7279 (2)0.0237 (2)0.0252 (6)
H360.41410.73420.06810.030*
C370.6179 (3)0.8037 (2)0.0203 (2)0.0257 (6)
H370.62730.86250.06160.031*
C380.7308 (3)0.7930 (2)0.0440 (2)0.0261 (6)
H380.81800.84400.04610.031*
C390.7159 (3)0.7079 (2)0.1048 (2)0.0257 (6)
H390.79320.70080.14860.031*
C400.5902 (3)0.6332 (2)0.1025 (2)0.0273 (6)
H400.58050.57540.14490.033*
C410.4776 (3)0.6435 (2)0.0373 (2)0.0271 (6)
H410.39070.59200.03480.032*
Li10.1760 (4)0.8253 (3)0.4313 (3)0.0221 (9)
N10.0051 (2)0.78456 (16)0.48517 (16)0.0190 (4)
N20.22935 (19)0.95594 (16)0.53321 (15)0.0156 (4)
P10.22202 (6)0.83361 (5)0.18020 (4)0.01272 (14)
P20.24198 (6)0.64311 (5)0.30422 (4)0.01215 (14)
S10.09223 (6)0.85611 (5)0.25669 (5)0.01720 (14)
S20.31422 (6)0.71102 (5)0.44789 (4)0.01617 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0240 (14)0.0195 (13)0.0336 (16)0.0075 (11)0.0027 (12)0.0003 (11)
C20.0170 (13)0.0250 (15)0.0457 (18)0.0021 (12)0.0012 (12)0.0063 (13)
C30.0168 (13)0.0353 (16)0.0339 (16)0.0103 (12)0.0102 (12)0.0147 (13)
C40.0200 (13)0.0285 (14)0.0175 (13)0.0137 (11)0.0064 (10)0.0080 (10)
C50.0190 (12)0.0187 (12)0.0165 (12)0.0111 (10)0.0034 (10)0.0072 (10)
C60.0173 (12)0.0209 (12)0.0128 (12)0.0106 (10)0.0048 (9)0.0060 (9)
C70.0239 (13)0.0239 (13)0.0166 (13)0.0123 (11)0.0072 (10)0.0021 (10)
C80.0338 (15)0.0230 (14)0.0183 (13)0.0112 (12)0.0015 (11)0.0040 (10)
C90.0193 (13)0.0205 (13)0.0235 (14)0.0046 (11)0.0012 (10)0.0030 (10)
C100.0187 (12)0.0236 (13)0.0210 (13)0.0107 (11)0.0066 (10)0.0064 (10)
C110.0162 (12)0.0152 (12)0.0125 (11)0.0070 (10)0.0002 (9)0.0018 (9)
C120.0220 (13)0.0153 (12)0.0158 (12)0.0076 (10)0.0016 (10)0.0018 (9)
C130.0268 (14)0.0152 (12)0.0224 (14)0.0067 (11)0.0039 (11)0.0011 (10)
C140.0163 (12)0.0172 (13)0.0295 (15)0.0007 (10)0.0038 (11)0.0062 (11)
C150.0182 (12)0.0229 (13)0.0256 (14)0.0072 (11)0.0056 (11)0.0089 (11)
C160.0202 (12)0.0163 (12)0.0199 (13)0.0077 (10)0.0047 (10)0.0027 (10)
C170.0108 (11)0.0168 (12)0.0129 (11)0.0025 (9)0.0037 (9)0.0025 (9)
C180.0195 (12)0.0168 (12)0.0166 (12)0.0074 (10)0.0051 (10)0.0015 (9)
C190.0211 (13)0.0279 (14)0.0214 (13)0.0124 (11)0.0066 (11)0.0098 (11)
C200.0224 (13)0.0300 (14)0.0137 (12)0.0071 (12)0.0007 (10)0.0018 (10)
C210.0245 (13)0.0238 (13)0.0177 (13)0.0055 (11)0.0045 (11)0.0032 (10)
C220.0215 (13)0.0175 (12)0.0168 (12)0.0078 (10)0.0053 (10)0.0040 (10)
C230.0183 (12)0.0137 (11)0.0151 (12)0.0074 (10)0.0064 (9)0.0009 (9)
C240.0135 (11)0.0137 (11)0.0155 (12)0.0040 (9)0.0060 (9)0.0033 (9)
C250.0163 (12)0.0197 (12)0.0165 (12)0.0048 (10)0.0016 (10)0.0005 (10)
C260.0196 (13)0.0251 (14)0.0239 (14)0.0131 (11)0.0042 (10)0.0051 (11)
C270.0220 (13)0.0150 (12)0.0316 (15)0.0103 (11)0.0110 (11)0.0052 (10)
C280.0247 (14)0.0194 (13)0.0250 (14)0.0084 (11)0.0026 (11)0.0047 (10)
C290.0192 (12)0.0226 (13)0.0217 (13)0.0105 (11)0.0021 (10)0.0000 (10)
C300.0129 (11)0.0124 (11)0.0194 (12)0.0060 (9)0.0061 (9)0.0008 (9)
C310.0186 (12)0.0183 (12)0.0208 (13)0.0048 (10)0.0073 (10)0.0003 (10)
C320.0258 (14)0.0177 (13)0.0292 (15)0.0023 (11)0.0139 (12)0.0011 (11)
C330.0154 (13)0.0143 (12)0.0498 (18)0.0020 (11)0.0100 (12)0.0054 (12)
C340.0159 (13)0.0186 (13)0.0440 (17)0.0058 (11)0.0050 (12)0.0020 (12)
C350.0170 (12)0.0170 (12)0.0283 (14)0.0068 (10)0.0009 (11)0.0033 (10)
C360.0294 (14)0.0246 (14)0.0238 (14)0.0121 (12)0.0061 (11)0.0017 (11)
C370.0368 (16)0.0221 (14)0.0245 (14)0.0161 (12)0.0101 (12)0.0045 (11)
C380.0269 (14)0.0196 (13)0.0313 (15)0.0064 (11)0.0082 (12)0.0033 (11)
C390.0290 (14)0.0234 (14)0.0259 (14)0.0135 (12)0.0012 (11)0.0013 (11)
C400.0378 (16)0.0251 (14)0.0231 (14)0.0145 (13)0.0091 (12)0.0051 (11)
C410.0280 (15)0.0282 (15)0.0259 (15)0.0083 (12)0.0102 (12)0.0002 (11)
Li10.023 (2)0.022 (2)0.025 (2)0.0119 (19)0.0070 (18)0.0009 (18)
N10.0184 (10)0.0162 (10)0.0232 (11)0.0076 (9)0.0032 (9)0.0029 (8)
N20.0159 (10)0.0184 (10)0.0151 (10)0.0085 (9)0.0044 (8)0.0024 (8)
P10.0142 (3)0.0118 (3)0.0133 (3)0.0053 (2)0.0040 (2)0.0011 (2)
P20.0119 (3)0.0115 (3)0.0130 (3)0.0039 (2)0.0028 (2)0.0008 (2)
S10.0183 (3)0.0199 (3)0.0171 (3)0.0095 (3)0.0069 (2)0.0020 (2)
S20.0169 (3)0.0176 (3)0.0135 (3)0.0059 (2)0.0025 (2)0.0013 (2)
Geometric parameters (Å, º) top
C1—N11.334 (3)C23—P21.712 (2)
C1—C21.386 (4)C23—P11.716 (2)
C1—H10.9500C23—H230.9500
C2—C31.383 (4)C24—C251.388 (3)
C2—H20.9500C24—C291.394 (3)
C3—C41.375 (4)C24—P21.824 (2)
C3—H30.9500C25—C261.392 (3)
C4—C51.398 (3)C25—H250.9500
C4—H40.9500C26—C271.386 (3)
C5—N11.349 (3)C26—H260.9500
C5—C61.490 (3)C27—C281.380 (3)
C6—N21.354 (3)C27—H270.9500
C6—C71.393 (3)C28—C291.383 (3)
C7—C81.382 (4)C28—H280.9500
C7—H70.9500C29—H290.9500
C8—C91.379 (4)C30—C351.396 (3)
C8—H80.9500C30—C311.398 (3)
C9—C101.382 (3)C30—P21.825 (2)
C9—H90.9500C31—C321.382 (3)
C10—N21.336 (3)C31—H310.9500
C10—H100.9500C32—C331.389 (4)
C11—C121.394 (3)C32—H320.9500
C11—C161.397 (3)C33—C341.383 (4)
C11—P11.828 (2)C33—H330.9500
C12—C131.389 (3)C34—C351.397 (3)
C12—H120.9500C34—H340.9500
C13—C141.386 (4)C35—H350.9500
C13—H130.9500C36—C411.377 (4)
C14—C151.385 (4)C36—C371.389 (4)
C14—H140.9500C36—H360.9500
C15—C161.388 (3)C37—C381.391 (4)
C15—H150.9500C37—H370.9500
C16—H160.9500C38—C391.383 (4)
C17—C221.390 (3)C38—H380.9500
C17—C181.398 (3)C39—C401.378 (4)
C17—P11.821 (2)C39—H390.9500
C18—C191.390 (3)C40—C411.392 (4)
C18—H180.9500C40—H400.9500
C19—C201.385 (4)C41—H410.9500
C19—H190.9500Li1—N12.030 (5)
C20—C211.381 (4)Li1—N22.035 (5)
C20—H200.9500Li1—S22.420 (4)
C21—C221.387 (3)Li1—S12.441 (4)
C21—H210.9500P1—S11.9939 (9)
C22—H220.9500P2—S22.0155 (8)
N1—C1—C2123.4 (3)C27—C26—C25119.9 (2)
N1—C1—H1118.3C27—C26—H26120.0
C2—C1—H1118.3C25—C26—H26120.0
C3—C2—C1118.1 (3)C28—C27—C26120.1 (2)
C3—C2—H2121.0C28—C27—H27120.0
C1—C2—H2121.0C26—C27—H27120.0
C4—C3—C2119.6 (2)C27—C28—C29120.0 (2)
C4—C3—H3120.2C27—C28—H28120.0
C2—C3—H3120.2C29—C28—H28120.0
C3—C4—C5119.0 (2)C28—C29—C24120.8 (2)
C3—C4—H4120.5C28—C29—H29119.6
C5—C4—H4120.5C24—C29—H29119.6
N1—C5—C4121.7 (2)C35—C30—C31119.0 (2)
N1—C5—C6115.5 (2)C35—C30—P2121.66 (18)
C4—C5—C6122.8 (2)C31—C30—P2119.27 (18)
N2—C6—C7121.8 (2)C32—C31—C30120.8 (2)
N2—C6—C5115.4 (2)C32—C31—H31119.6
C7—C6—C5122.8 (2)C30—C31—H31119.6
C8—C7—C6119.2 (2)C31—C32—C33120.0 (2)
C8—C7—H7120.4C31—C32—H32120.0
C6—C7—H7120.4C33—C32—H32120.0
C9—C8—C7119.4 (2)C34—C33—C32119.9 (2)
C9—C8—H8120.3C34—C33—H33120.1
C7—C8—H8120.3C32—C33—H33120.1
C8—C9—C10118.0 (2)C33—C34—C35120.4 (2)
C8—C9—H9121.0C33—C34—H34119.8
C10—C9—H9121.0C35—C34—H34119.8
N2—C10—C9124.2 (2)C30—C35—C34119.9 (2)
N2—C10—H10117.9C30—C35—H35120.1
C9—C10—H10117.9C34—C35—H35120.1
C12—C11—C16118.7 (2)C41—C36—C37120.2 (3)
C12—C11—P1122.17 (18)C41—C36—H36119.9
C16—C11—P1118.92 (17)C37—C36—H36119.9
C13—C12—C11120.5 (2)C36—C37—C38119.5 (2)
C13—C12—H12119.8C36—C37—H37120.2
C11—C12—H12119.8C38—C37—H37120.2
C14—C13—C12120.1 (2)C39—C38—C37119.8 (3)
C14—C13—H13119.9C39—C38—H38120.1
C12—C13—H13119.9C37—C38—H38120.1
C15—C14—C13120.0 (2)C40—C39—C38120.8 (3)
C15—C14—H14120.0C40—C39—H39119.6
C13—C14—H14120.0C38—C39—H39119.6
C14—C15—C16119.9 (2)C39—C40—C41119.2 (3)
C14—C15—H15120.1C39—C40—H40120.4
C16—C15—H15120.1C41—C40—H40120.4
C15—C16—C11120.7 (2)C36—C41—C40120.4 (3)
C15—C16—H16119.6C36—C41—H41119.8
C11—C16—H16119.6C40—C41—H41119.8
C22—C17—C18118.9 (2)N1—Li1—N281.54 (17)
C22—C17—P1121.50 (18)N1—Li1—S2121.2 (2)
C18—C17—P1119.61 (18)N2—Li1—S2119.1 (2)
C19—C18—C17120.4 (2)N1—Li1—S1101.41 (18)
C19—C18—H18119.8N2—Li1—S1114.67 (19)
C17—C18—H18119.8S2—Li1—S1114.03 (17)
C20—C19—C18119.6 (2)C1—N1—C5118.2 (2)
C20—C19—H19120.2C1—N1—Li1127.7 (2)
C18—C19—H19120.2C5—N1—Li1113.6 (2)
C21—C20—C19120.6 (2)C10—N2—C6117.5 (2)
C21—C20—H20119.7C10—N2—Li1128.9 (2)
C19—C20—H20119.7C6—N2—Li1113.5 (2)
C20—C21—C22119.7 (2)C23—P1—C17108.28 (11)
C20—C21—H21120.2C23—P1—C11109.88 (11)
C22—C21—H21120.2C17—P1—C11102.43 (10)
C21—C22—C17120.8 (2)C23—P1—S1115.53 (9)
C21—C22—H22119.6C17—P1—S1109.04 (8)
C17—C22—H22119.6C11—P1—S1110.84 (8)
P2—C23—P1127.35 (14)C23—P2—C24103.93 (11)
P2—C23—H23116.3C23—P2—C30112.13 (11)
P1—C23—H23116.3C24—P2—C30101.49 (10)
C25—C24—C29118.9 (2)C23—P2—S2120.48 (8)
C25—C24—P2122.51 (18)C24—P2—S2109.57 (8)
C29—C24—P2118.57 (17)C30—P2—S2107.53 (8)
C24—C25—C26120.4 (2)P1—S1—Li1105.29 (10)
C24—C25—H25119.8P2—S2—Li194.62 (11)
C26—C25—H25119.8
N1—C1—C2—C32.9 (4)S2—Li1—N1—C163.8 (3)
C1—C2—C3—C41.8 (4)S1—Li1—N1—C163.6 (3)
C2—C3—C4—C50.5 (4)N2—Li1—N1—C55.4 (2)
C3—C4—C5—N12.0 (3)S2—Li1—N1—C5124.3 (2)
C3—C4—C5—C6178.4 (2)S1—Li1—N1—C5108.24 (19)
N1—C5—C6—N26.6 (3)C9—C10—N2—C60.4 (3)
C4—C5—C6—N2173.0 (2)C9—C10—N2—Li1176.6 (2)
N1—C5—C6—C7172.6 (2)C7—C6—N2—C100.2 (3)
C4—C5—C6—C77.8 (3)C5—C6—N2—C10179.4 (2)
N2—C6—C7—C80.4 (4)C7—C6—N2—Li1177.3 (2)
C5—C6—C7—C8178.8 (2)C5—C6—N2—Li12.0 (3)
C6—C7—C8—C90.8 (4)N1—Li1—N2—C10175.4 (2)
C7—C8—C9—C100.6 (4)S2—Li1—N2—C1054.4 (3)
C8—C9—C10—N20.0 (4)S1—Li1—N2—C1085.8 (3)
C16—C11—C12—C131.6 (3)N1—Li1—N2—C61.7 (2)
P1—C11—C12—C13173.52 (18)S2—Li1—N2—C6122.8 (2)
C11—C12—C13—C140.8 (4)S1—Li1—N2—C697.0 (2)
C12—C13—C14—C150.6 (4)P2—C23—P1—C17137.84 (16)
C13—C14—C15—C161.1 (4)P2—C23—P1—C11111.03 (17)
C14—C15—C16—C110.2 (4)P2—C23—P1—S115.3 (2)
C12—C11—C16—C151.2 (3)C22—C17—P1—C237.2 (2)
P1—C11—C16—C15174.16 (18)C18—C17—P1—C23175.07 (18)
C22—C17—C18—C190.3 (3)C22—C17—P1—C11123.3 (2)
P1—C17—C18—C19177.44 (18)C18—C17—P1—C1159.0 (2)
C17—C18—C19—C200.4 (4)C22—C17—P1—S1119.22 (18)
C18—C19—C20—C211.4 (4)C18—C17—P1—S158.5 (2)
C19—C20—C21—C221.6 (4)C12—C11—P1—C23115.8 (2)
C20—C21—C22—C170.9 (4)C16—C11—P1—C2359.4 (2)
C18—C17—C22—C210.0 (3)C12—C11—P1—C17129.29 (19)
P1—C17—C22—C21177.68 (19)C16—C11—P1—C1755.5 (2)
C29—C24—C25—C260.4 (4)C12—C11—P1—S113.1 (2)
P2—C24—C25—C26178.70 (19)C16—C11—P1—S1171.73 (16)
C24—C25—C26—C270.2 (4)P1—C23—P2—C24178.69 (15)
C25—C26—C27—C280.5 (4)P1—C23—P2—C3072.50 (19)
C26—C27—C28—C290.2 (4)P1—C23—P2—S255.57 (19)
C27—C28—C29—C240.4 (4)C25—C24—P2—C23121.7 (2)
C25—C24—C29—C280.7 (4)C29—C24—P2—C2359.1 (2)
P2—C24—C29—C28178.4 (2)C25—C24—P2—C30121.7 (2)
C35—C30—C31—C320.6 (3)C29—C24—P2—C3057.4 (2)
P2—C30—C31—C32177.49 (18)C25—C24—P2—S28.3 (2)
C30—C31—C32—C330.5 (4)C29—C24—P2—S2170.88 (17)
C31—C32—C33—C340.9 (4)C35—C30—P2—C232.4 (2)
C32—C33—C34—C350.1 (4)C31—C30—P2—C23179.20 (18)
C31—C30—C35—C341.4 (3)C35—C30—P2—C24107.9 (2)
P2—C30—C35—C34178.17 (19)C31—C30—P2—C2468.8 (2)
C33—C34—C35—C301.0 (4)C35—C30—P2—S2137.06 (18)
C41—C36—C37—C380.9 (4)C31—C30—P2—S246.16 (19)
C36—C37—C38—C390.8 (4)C23—P1—S1—Li145.66 (14)
C37—C38—C39—C400.0 (4)C17—P1—S1—Li1167.84 (13)
C38—C39—C40—C410.6 (4)C11—P1—S1—Li180.14 (13)
C37—C36—C41—C400.2 (4)N1—Li1—S1—P1156.15 (13)
C39—C40—C41—C360.6 (4)N2—Li1—S1—P1118.00 (18)
C2—C1—N1—C51.6 (4)S2—Li1—S1—P124.21 (19)
C2—C1—N1—Li1173.1 (2)C23—P2—S2—Li163.07 (14)
C4—C5—N1—C10.9 (3)C24—P2—S2—Li1176.55 (13)
C6—C5—N1—C1179.4 (2)C30—P2—S2—Li167.04 (13)
C4—C5—N1—Li1171.8 (2)N1—Li1—S2—P2100.7 (2)
C6—C5—N1—Li17.9 (3)N2—Li1—S2—P2161.3 (2)
N2—Li1—N1—C1177.2 (2)S1—Li1—S2—P220.83 (17)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg6 and Cg7 are the centroids of the C11–C16, C30–C35 and C36–C41 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···S10.952.863.367 (2)114
C25—H25···S20.952.823.332 (2)115
C1—H1···Cg60.952.773.710 (3)172
C21—H21···Cg6i0.952.703.632 (3)166
C28—H28···Cg7ii0.952.933.654 (3)134
C37—H37···Cg3iii0.952.803.634 (3)147
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Li(C25H21P2S2)(C10H8N2)]·C6H6
Mr688.73
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)10.7654 (11), 13.1295 (12), 13.5498 (11)
α, β, γ (°)90.746 (2), 101.902 (1), 109.257 (2)
V3)1762.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.44 × 0.28 × 0.20
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.889, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
10290, 7517, 5856
Rint0.031
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.115, 1.04
No. of reflections7517
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL, PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg3, Cg6 and Cg7 are the centroids of the C11–C16, C30–C35 and C36–C41 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···S10.952.863.367 (2)114
C25—H25···S20.952.823.332 (2)115
C1—H1···Cg60.952.773.710 (3)172
C21—H21···Cg6i0.952.703.632 (3)166
C28—H28···Cg7ii0.952.933.654 (3)134
C37—H37···Cg3iii0.952.803.634 (3)147
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@usm.my. Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

We thank the Fundamental Research Funds for the Central Universities (XDJK2013C032) and the Doctoral Foundation of Southwest University for support and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. The authors also thank Universiti Sains Malaysia (USM) for the RUC grant (Structure Determination of 50 kDa Outer Membrane Proteins From S.typhi By X-ray Protein Crystallography, No. 1001/PSKBP/8630013).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmir, A., Sayer, A. H., Zagalsky, R., Shimon, L. W. & Fischer, B. (2013). J. Org. Chem. 78, 270–277.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLeung, W.-P., Wan, C.-L., Kan, K.-W. & Mak, T. C. W. (2010). Organometallics, 29, 814–820.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeung, W.-P., Wan, C.-L. & Mak, T. C. W. (2010). Organometallics, 29, 1622–1628.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRen, W., Deng, X., Zi, G. & Fang, D.-C. (2011). Dalton Trans. 40, 9662–9664.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirumoorthi, R. & Chivers, T. (2012). Eur. J. Inorg. Chem. pp. 3061–3069.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m160-m161
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds