organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-Hy­dr­oxy-4-(4-meth­­oxy­phen­yl)but-3-en-2-one

aAnalysis and Testing Center, Dushu Lake Campus, Suzhou University, Suzhou 215123, People's Republic of China, and bDepartment of Chemistry, Handan College, Hebei Handan 056002, People's Republic of China
*Correspondence e-mail: chenmuzi@suda.edu.cn

(Received 3 January 2013; accepted 23 January 2013; online 9 February 2013)

The title compound, C11H12O3, is potentially a butane-2,3-dione derivative but exists in the enol form in the solid state. In the mol­ecule, the 3-hy­droxy­but-3-en-2-one, benzene and methoxyl fragments are almost co-planar. The 3-hy­droxy­but-3-en-2-one fragment is almost planar with an r.m.s. deviation of 0.040 Å. The dihedral angle between this plane and that of the benzene ring is 5.88 (4)°. The 4-meth­oxy group also lies close to the benzene ring plane, with deviations of 0.0206 (11) Å for the O and 0.087 (2) Å for methyl C atoms. Hence, the whole mol­ecule is almost planar with an r.m.s. deviation of 0.0617 Å from a plane through all 14 non-H atoms. In the crystal, the molecules are linked by O—H⋯O hydrogen bonds, generating [010] chains.

Related literature

The synthesis of the compound is described by Wang & Huang (2010[Wang, S. P. & Huang, Z.-Q. (2010). Chinese Patent 200910111432, Bestally Biotechnology Co. Ltd.]). For applications of aromatic ketones as fragrances, see: Tong et al. (2009[Tong, X. L., Xu, J., Miao, H., Gao, J., Sun, Z. Q. & Zhang, W. (2009). J. Chem. Technol. Biotechnol. 84, 1762-1766.]). For the relationship between structure and fragrance, see: Griesbeck et al. (2012[Griesbeck, A. G., Hinze, O., Görner, H., Huchel, U., Kropf, C., Sundermeier, U. & Gerke, T. (2012). Photochem. Photobiol. Sci. 11, 587-592.]). For related structures and details of their synthesis, see: Yamane et al. (2005[Yamane, M., Uera, K. & Narasaka, K. (2005). Bull. Chem. Soc. Jpn, 78, 477-486.]); Si et al. (1990[Si, Z. X., Jiao, X. Y. & Hu, B. F. (1990). Synthesis, 6, 509-510.]); Salimbeni et al. (1987[Salimbeni, A., Manghisi, E., Fregnan, G. B. & Prada, M. (1987). J. Med. Chem. 30, 773-780.]); Mosrin et al. (2009[Mosrin, M., Bresser, T. & Knochel, P. (2009). Org. Lett. 11, 3406-3409.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12O3

  • Mr = 192.21

  • Monoclinic, P 21 /c

  • a = 18.8076 (13) Å

  • b = 5.3007 (4) Å

  • c = 10.1439 (8) Å

  • β = 103.425 (7)°

  • V = 983.65 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 223 K

  • 0.50 × 0.40 × 0.35 mm

Data collection
  • Agilent Xcalibur (Atlas CCD, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.915, Tmax = 1.000

  • 6213 measured reflections

  • 1829 independent reflections

  • 1505 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.01

  • 1829 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.27 3.0315 (17) 154
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Aromatic ketone compounds have attracted much attention due to their applications in fragrances and perfume technology (Tong et al., 2009). Studying the relationship between molecular structures and their fragrant properties remains a challenge (Griesbeck et al., 2012). Understanding the molecular structure in detail will help to design more compounds with potential as fragrances. As a part of our work in this area (Wang & Huang, 2010), a new aromatic diketone compound, (Z)-3-Hydroxy-4- (4-methoxyphenyl)but-3-en-2-one (Figure 1), was synthesized and its molecular structure is reported here. The title compound crystallizes with one unique molecule in the asymmetric unit. In the molecule, the 3-hydroxybut-3-en-2-one, phenyl and methoxyl fragments are close to co-planar. The O1, O2 and C1—C4 atoms of the 3-hydroxybut-3-en-2-one fragment form a plane with an rms deviation of 0.0359 Å. The dihedral angle between this plane and the benzene ring plane is 5.88 (4)°. The 4-methoxyl group lies close to the benzene ring plane, with deviations of 0.0206 (11) Å for O3 and 0.087 (2) Å for C11. The dihedral angle between benzene ring and plane of 4-methoxyl group (O3—C11—C8) is 5.88 (4)°. Hence the whole molecule is close to planar, with an rms deviation of 0.0496 Å from the plane through all non-hydrogen atoms in the molecule. A characteristic of title compound is that it adopts the enol form with a C3=C4 distance 1.341 (2) Å. The conformation about the C3=C4 bond is Z. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those found in related structures (Yamane, et al., 2005; Si et al., 1990; Salimbeni et al., 1987; Mosrin et al., 2009). Intermolecular O—H···O hydrogen bonds arrange the molecules into a helical chain along the b axis (Figure 2).

Related literature top

The synthesis of the compound is described by Wang & Huang (2010). For applications of aromatic ketones as fragrances, see: Tong et al. (2009). For the relationship between structure and fragrance, see: Griesbeck et al. (2012). For related structures and details of their synthesis, see: Yamane et al. (2005); Si et al. (1990); Salimbeni et al. (1987); Mosrin et al. (2009). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of hydroxy-acetone and anisaldehyde was added dropwise into warm hydrochloric acid at 50° C. The resulting solution was heated to 82° C for two hours, then cooled to room temperature as described by Wang & Huang (2010). A white amorphous product was obtained after filtration. Yellow crystals of title compound, suitable for X-ray analysis, were recrystallized from absolute ethanol over two weeks.

Refinement top

All H atoms were located in calculated positions with the aromatic C–H = 0.93 Å, methyl C–H = 0.96 Å hydroxy O–H = 0.82 Å and displacement parameters set at 1.2Ueq (aromatic) and 1.5Ueq (methyl and OH) of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with ellipsoids drawn at the 30% probability level. Hydrogen atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The title compound forms a helical chain along the b axis through intermolecular O—H···O hydrogen bonds.
(Z)-3-Hydroxy-4-(4-methoxyphenyl)but-3-en-2-one top
Crystal data top
C11H12O3F(000) = 408
Mr = 192.21Dx = 1.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1975 reflections
a = 18.8076 (13) Åθ = 3.3–29.4°
b = 5.3007 (4) ŵ = 0.09 mm1
c = 10.1439 (8) ÅT = 223 K
β = 103.425 (7)°Block, yellow
V = 983.65 (13) Å30.50 × 0.40 × 0.35 mm
Z = 4
Data collection top
Agilent Xcalibur (Atlas CCD, Gemini)
diffractometer
1829 independent reflections
Radiation source: fine-focus sealed tube1505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 25.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 2222
Tmin = 0.915, Tmax = 1.000k = 66
6213 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2906P]
where P = (Fo2 + 2Fc2)/3
1829 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C11H12O3V = 983.65 (13) Å3
Mr = 192.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.8076 (13) ŵ = 0.09 mm1
b = 5.3007 (4) ÅT = 223 K
c = 10.1439 (8) Å0.50 × 0.40 × 0.35 mm
β = 103.425 (7)°
Data collection top
Agilent Xcalibur (Atlas CCD, Gemini)
diffractometer
1829 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1505 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 1.000Rint = 0.024
6213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
1829 reflectionsΔρmin = 0.13 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48064 (6)0.4343 (3)0.31418 (12)0.0567 (4)
O20.38385 (6)0.2608 (2)0.10575 (12)0.0548 (4)
H20.42520.21450.14310.082*
O30.06871 (6)0.4633 (2)0.32947 (11)0.0527 (4)
C10.40895 (10)0.7551 (4)0.38093 (17)0.0556 (5)
H1A0.39960.90780.32890.083*
H1B0.45130.77740.45380.083*
H1C0.36750.71550.41730.083*
C20.42216 (9)0.5450 (3)0.29207 (16)0.0421 (4)
C30.36530 (8)0.4639 (3)0.17241 (15)0.0396 (4)
C40.30191 (8)0.5866 (3)0.12778 (15)0.0396 (4)
H40.29380.72020.18180.048*
C50.24383 (8)0.5416 (3)0.00700 (15)0.0372 (4)
C60.18417 (9)0.7074 (3)0.02124 (16)0.0425 (4)
H60.18300.84110.03750.051*
C70.12736 (9)0.6784 (3)0.13315 (16)0.0446 (4)
H70.08860.79180.14940.053*
C80.12795 (8)0.4798 (3)0.22176 (15)0.0394 (4)
C90.18628 (9)0.3141 (3)0.19755 (16)0.0443 (4)
H90.18720.18150.25720.053*
C100.24337 (9)0.3452 (3)0.08458 (16)0.0439 (4)
H100.28230.23230.06950.053*
C110.06626 (10)0.2552 (4)0.41902 (18)0.0573 (5)
H11A0.02210.26300.48910.086*
H11B0.06720.10050.36940.086*
H11C0.10770.26160.45900.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0445 (7)0.0652 (8)0.0530 (7)0.0081 (6)0.0037 (5)0.0056 (6)
O20.0446 (7)0.0531 (8)0.0577 (7)0.0111 (6)0.0064 (5)0.0111 (6)
O30.0452 (7)0.0585 (8)0.0466 (7)0.0075 (6)0.0052 (5)0.0051 (6)
C10.0533 (10)0.0689 (13)0.0415 (9)0.0015 (9)0.0045 (8)0.0094 (9)
C20.0400 (9)0.0485 (10)0.0366 (8)0.0028 (8)0.0067 (6)0.0051 (7)
C30.0402 (8)0.0408 (9)0.0372 (8)0.0031 (7)0.0076 (7)0.0013 (7)
C40.0398 (8)0.0415 (9)0.0373 (8)0.0018 (7)0.0084 (6)0.0014 (7)
C50.0352 (8)0.0368 (8)0.0395 (8)0.0010 (7)0.0085 (6)0.0029 (6)
C60.0460 (9)0.0385 (9)0.0425 (9)0.0051 (7)0.0092 (7)0.0028 (7)
C70.0420 (9)0.0435 (9)0.0461 (9)0.0110 (7)0.0060 (7)0.0033 (7)
C80.0365 (8)0.0436 (9)0.0361 (8)0.0006 (7)0.0044 (6)0.0044 (7)
C90.0427 (9)0.0432 (9)0.0447 (9)0.0035 (7)0.0056 (7)0.0063 (7)
C100.0372 (8)0.0428 (9)0.0485 (9)0.0075 (7)0.0032 (7)0.0037 (7)
C110.0547 (11)0.0566 (12)0.0512 (10)0.0028 (9)0.0067 (8)0.0082 (9)
Geometric parameters (Å, º) top
O1—C21.2206 (19)C5—C101.394 (2)
O2—C31.3592 (19)C5—C61.401 (2)
O2—H20.8200C6—C71.375 (2)
O3—C81.3703 (18)C6—H60.9300
O3—C111.423 (2)C7—C81.386 (2)
C1—C21.490 (2)C7—H70.9300
C1—H1A0.9600C8—C91.382 (2)
C1—H1B0.9600C9—C101.386 (2)
C1—H1C0.9600C9—H90.9300
C2—C31.483 (2)C10—H100.9300
C3—C41.341 (2)C11—H11A0.9600
C4—C51.459 (2)C11—H11B0.9600
C4—H40.9300C11—H11C0.9600
C3—O2—H2109.5C7—C6—H6119.0
C8—O3—C11117.29 (13)C5—C6—H6119.0
C2—C1—H1A109.5C6—C7—C8119.92 (15)
C2—C1—H1B109.5C6—C7—H7120.0
H1A—C1—H1B109.5C8—C7—H7120.0
C2—C1—H1C109.5O3—C8—C9124.47 (15)
H1A—C1—H1C109.5O3—C8—C7116.00 (14)
H1B—C1—H1C109.5C9—C8—C7119.54 (14)
O1—C2—C3117.32 (15)C8—C9—C10120.12 (15)
O1—C2—C1121.21 (15)C8—C9—H9119.9
C3—C2—C1121.47 (15)C10—C9—H9119.9
C4—C3—O2121.79 (14)C9—C10—C5121.55 (15)
C4—C3—C2123.48 (15)C9—C10—H10119.2
O2—C3—C2114.64 (14)C5—C10—H10119.2
C3—C4—C5129.63 (15)O3—C11—H11A109.5
C3—C4—H4115.2O3—C11—H11B109.5
C5—C4—H4115.2H11A—C11—H11B109.5
C10—C5—C6116.83 (14)O3—C11—H11C109.5
C10—C5—C4124.68 (14)H11A—C11—H11C109.5
C6—C5—C4118.49 (14)H11B—C11—H11C109.5
C7—C6—C5122.04 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.273.0315 (17)154
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H12O3
Mr192.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)18.8076 (13), 5.3007 (4), 10.1439 (8)
β (°) 103.425 (7)
V3)983.65 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.40 × 0.35
Data collection
DiffractometerAgilent Xcalibur (Atlas CCD, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.915, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6213, 1829, 1505
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.01
No. of reflections1829
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.273.0315 (17)153.8
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (NSFC) (grant 21203130).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGriesbeck, A. G., Hinze, O., Görner, H., Huchel, U., Kropf, C., Sundermeier, U. & Gerke, T. (2012). Photochem. Photobiol. Sci. 11, 587–592.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMosrin, M., Bresser, T. & Knochel, P. (2009). Org. Lett. 11, 3406–3409.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSalimbeni, A., Manghisi, E., Fregnan, G. B. & Prada, M. (1987). J. Med. Chem. 30, 773–780.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSi, Z. X., Jiao, X. Y. & Hu, B. F. (1990). Synthesis, 6, 509–510.  CrossRef Google Scholar
First citationTong, X. L., Xu, J., Miao, H., Gao, J., Sun, Z. Q. & Zhang, W. (2009). J. Chem. Technol. Biotechnol. 84, 1762–1766.  Web of Science CrossRef CAS Google Scholar
First citationWang, S. P. & Huang, Z.-Q. (2010). Chinese Patent 200910111432, Bestally Biotechnology Co. Ltd.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamane, M., Uera, K. & Narasaka, K. (2005). Bull. Chem. Soc. Jpn, 78, 477–486.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds