organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-meth­­oxy-2-tri­fluoro­methyl-1H-indole-3-carboxyl­ate

aFribourg Center for Nanomaterials, FriMat, University of Fribourg, Chemin du Musee 3, CH-1700 Fribourg, Switzerland, and bChemistry Department, University of Fribourg, Chemin du Musee 9, CH-1700 Fribourg, Switzerland
*Correspondence e-mail: aurelien.crochet@unifr.ch

(Received 16 January 2013; accepted 25 January 2013; online 2 February 2013)

The title compound, C13H12F3NO3, is almost planar if one excludes the F atoms of the –CF3 group [maximum deviation for the other hetero atoms = 0.069 (1) Å], and the dihedral angle between the pyrrole and benzene ring of the indole system is 2.54 (8)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains propagating along the a-axis direction. These chains are linked via C—H⋯O and C—H⋯F hydrogen bonds, forming a three-dimensional network.

Related literature

For indoles, see: Kochanowska-Karamyan & Hamann (2010[Kochanowska-Karamyan, A. J. & Hamann, M. T. (2010). Chem. Rev. 110, 4489-4497.]); Debieux & Bochet (2009[Debieux, J.-L. & Bochet, C. G. (2009). J. Org. Chem.74, 4519-4524.]); Helgen & Bochet (2003[Helgen, C. & Bochet, C. G. (2003). J. Org. Chem. 68, 2483-2486.]); Oppolzer et al. (1994[Oppolzer, W., Spivey, A. C. & Bochet, C. G. (1994). J. Am. Chem. Soc. 116, 3139-3140.]), and for their synthesis, see: Chen et al. (2008[Chen, Y., Wang, Y., Sun, Z. & Ma, D. (2008). Org. Lett. 4, 625-628.]); Barton et al. (1977[Barton, D. H. R., Hesse, R. H., Jackman, G. P. & Pechet, M. M. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 2604-2608.]). For photochemical methods for the synthesis of substituted indoles, see: Bochet & Blanc (2010[Bochet, C. G. & Blanc, A. (2010). In Handbook of Synthetic Photochemistry, edited by A. Albini & M. Fagnoni, pp. 417-447. Weinheim: Wiley-VCH.]); Bochet & Mercier (2009[Bochet, C. G. & Mercier, S. (2009). In Linker Strategies in Solid-Phase Organic Synthesis, edited by P. Scott, pp. 151-193. New York: John Wiley.]); Debieux & Bochet (2012[Debieux, J.-L. & Bochet, C. G. (2012). Chem. Sci. 3, 405-406.]); Streit & Bochet (2011[Streit, U. & Bochet, C. G. (2011). Beilstein J. Org. Chem. 7, 525-542.]); Alimi & Bochet (2013[Alimi, I. & Bochet, C. G. (2013). Unpublished data.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12F3NO3

  • Mr = 287.24

  • Orthorhombic, P b c a

  • a = 13.9211 (8) Å

  • b = 8.6383 (4) Å

  • c = 21.5316 (7) Å

  • V = 2589.3 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.16 mm−1

  • T = 200 K

  • 0.74 × 0.39 × 0.14 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: integration (X-SHAPE; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.610, Tmax = 0.850

  • 15525 measured reflections

  • 2130 independent reflections

  • 1894 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.09

  • 2130 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.835 (19) 2.109 (19) 2.8623 (16) 149.8 (16)
C6—H6⋯O3ii 0.95 2.53 3.460 (2) 168
C11—H11B⋯F2iii 0.99 2.50 3.336 (2) 142
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) -x+2, -y+2, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Indoles exhibit a plethora of biological applications (Kochanowska-Karamyan & Hamann, 2010), and a wide range of synthetic methods have been developed to synthesize them (Chen et al., 2008; Barton et al., 1977). Recently an efficient photochemical method for the synthesis of substituted indoles, based on a [3 + 2] cycloaddition of azide and alcynes, has been developed (Alimi & Bochet, 2013). During this work the title compound was synthesized and we report herein on its crystal structure.

The molecular structure of the title molecule is illustrated in Fig. 1. The molecule is almost planar [mean deviation for atoms (O1-O3,N1,C1-C8,C10-C13) is 0.069 (1) Å] with small deviations for the C9, CF3 group. The dihedral angle between the pyrrole (N1/C1-C3/C8) and the benzene (C3-C8) ring is only 2.54 (8)°.

In the crystal, N-H···O hydrogen bonds link the molecules to form chains propagating along the a axis direction (Table 1 and Fig. 2). These chains are linked via C-H···O and C-H···F hydrogen bonds forming a three-dimensional network (Table 1 and Fig. 3).

Related literature top

For indoles, see: Kochanowska-Karamyan & Hamann (2010); Debieux & Bochet (2009); Helgen & Bochet (2003); Oppolzer et al. (1994), and for their synthesis, see: Chen et al. (2008); Barton et al. (1977). For photochemical methods for the synthesis of substituted indoles, see: Bochet & Blanc (2010); Bochet & Mercier (2009); Debieux & Bochet (2012); Streit & Bochet (2011); Alimi & Bochet (2013).

Experimental top

Ethyl 1-(4-methoxyphenyl)-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylate (101.7 g, 323 mmol) was dissolved in MeCN (15 ml) and irradiated during 10 h at 254 nm. The solution was concentrated in vacuo and purified with flash chromatography (Pentane: EtOAc, 4:1) to afford the title compound as a white solid [60.5 g, 211 mmol, 65.3% yield; M.p. 416 - 419 K; HRMS 310.0662 (C13H12F3NO3 + Na+; calcd. 310.0661]. The compound was recrystallized from chloroform to afford colourless block-like crystals suitable for X-ray analysis. Spectroscopic and other analytical data for the title compound are available in the archived CIF.

Refinement top

The NH H-atom was located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(N). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and = 1.2 for other H-atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view normal to the ac plane showing the N-H···O hydrogen bonded (dashed lines) chains propagating along the a axis direction in the crystal structure of the title compound [symmetry code: (i) x+1/2, y, -z+1/2; see Table 1 for details].
[Figure 3] Fig. 3. A view along the a axis of the crystal packing of the title compound. H atoms not involved in the C-H···O and C-H···F hydrogen bonds (dashed lines; see Table 1 for details) have been omitted for clarity.
Ethyl 5-methoxy-2-trifluoromethyl-1H-indole-3-carboxylate top
Crystal data top
C13H12F3NO3Dx = 1.474 Mg m3
Mr = 287.24Melting point: 416 K
Orthorhombic, PbcaCu Kα radiation, λ = 1.54186 Å
Hall symbol: -P 2ac 2abCell parameters from 35241 reflections
a = 13.9211 (8) Åθ = 3.2–67.3°
b = 8.6383 (4) ŵ = 1.16 mm1
c = 21.5316 (7) ÅT = 200 K
V = 2589.3 (2) Å3Block, colourless
Z = 80.74 × 0.39 × 0.14 mm
F(000) = 1184
Data collection top
Stoe IPDS 2T
diffractometer
2130 independent reflections
Radiation source: fine-focus sealed tube1894 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 6.67 pixels mm-1θmax = 65.0°, θmin = 6.4°
rotation method scansh = 1616
Absorption correction: integration
(X-SHAPE; Stoe & Cie, 2001)
k = 99
Tmin = 0.610, Tmax = 0.850l = 2525
15525 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0488P)2 + 1.0298P]
where P = (Fo2 + 2Fc2)/3
2130 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H12F3NO3V = 2589.3 (2) Å3
Mr = 287.24Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 13.9211 (8) ŵ = 1.16 mm1
b = 8.6383 (4) ÅT = 200 K
c = 21.5316 (7) Å0.74 × 0.39 × 0.14 mm
Data collection top
Stoe IPDS 2T
diffractometer
2130 independent reflections
Absorption correction: integration
(X-SHAPE; Stoe & Cie, 2001)
1894 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.850Rint = 0.051
15525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.19 e Å3
2130 reflectionsΔρmin = 0.19 e Å3
186 parameters
Special details top

Experimental. Spectroscopic data for the title compound: 1H NMR (360 MHz, CDCl3) δ p.p.m. 8.88 (br. s., 1 H) 7.74 (s, 1 H) 7.36 (d, J = 8.63 Hz, 1 H) 7.05 (d, J = 9.08 Hz, 1 H) 4.44 (q, J = 6.96 Hz, 2 H) 3.90 (s, 3 H) 1.44 (t, J = 7.04 Hz, 3 H). 13C NMR (75 MHz, CDCl3) d p.p.m. 163.48, 156.43, 129.48, 128.97, 128.84, 128.45, 127.94, 127.62, 125.75, 122.17, 118.60, 116.85, 115.03, 112.92, 107.77 (d, J=2.20 Hz, 1 C) 102.90, 60.57, 55.58, 14.05. IR (neat, cm-1) 3280, 2995, 2833, 1681, 1550, 1467, 1439, 1309, 1209, 1166, 1154, 1112, 1032, 845, 824, 713, 637. Rf 0.42 (Pentane: EtOAc 4:1).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.83489 (7)0.47973 (13)0.17707 (5)0.0429 (3)
F20.69256 (7)0.43215 (11)0.21010 (5)0.0352 (3)
F30.72136 (8)0.64436 (11)0.16278 (4)0.0399 (3)
O10.57084 (7)0.64000 (15)0.27202 (5)0.0348 (4)
O20.59337 (7)0.76352 (14)0.36252 (5)0.0342 (4)
O30.86605 (9)0.98158 (18)0.49087 (5)0.0471 (5)
N10.87955 (9)0.64042 (15)0.27672 (6)0.0241 (4)
C10.78495 (10)0.61930 (17)0.26378 (7)0.0209 (4)
C20.72915 (10)0.68707 (17)0.30968 (6)0.0210 (4)
C30.79547 (10)0.75592 (18)0.35320 (6)0.0223 (4)
C40.78425 (11)0.8434 (2)0.40791 (7)0.0281 (5)
C50.86630 (12)0.8946 (2)0.43723 (7)0.0327 (5)
C60.95870 (12)0.8613 (2)0.41420 (8)0.0377 (6)
C70.97083 (11)0.7768 (2)0.36098 (7)0.0329 (5)
C80.88812 (10)0.72466 (18)0.33081 (7)0.0240 (4)
C90.75746 (11)0.54400 (17)0.20418 (7)0.0249 (4)
C100.62433 (10)0.69181 (18)0.31147 (7)0.0243 (4)
C110.49061 (12)0.7820 (3)0.36956 (9)0.0467 (7)
C120.47534 (15)0.8662 (3)0.42942 (11)0.0636 (9)
C130.77531 (14)1.0206 (3)0.51655 (8)0.0439 (6)
H10.9254 (14)0.616 (2)0.2537 (8)0.0290*
H40.722300.866200.424000.0340*
H61.013500.898100.435900.0450*
H71.033000.754500.345200.0390*
H11A0.458600.679700.370700.0560*
H11B0.463900.842200.334500.0560*
H12A0.501700.804800.463700.0950*
H12B0.406400.882200.436000.0950*
H12C0.507900.966600.427700.0950*
H13A0.737501.077700.485700.0660*
H13B0.784601.085200.553500.0660*
H13C0.741100.925700.528200.0660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0257 (5)0.0536 (7)0.0493 (6)0.0019 (5)0.0055 (4)0.0246 (5)
F20.0295 (5)0.0287 (5)0.0473 (6)0.0098 (4)0.0046 (4)0.0037 (4)
F30.0607 (7)0.0331 (6)0.0260 (5)0.0016 (5)0.0127 (4)0.0004 (4)
O10.0156 (5)0.0566 (8)0.0322 (6)0.0001 (5)0.0052 (4)0.0080 (5)
O20.0154 (6)0.0534 (7)0.0339 (6)0.0031 (5)0.0021 (4)0.0119 (5)
O30.0381 (7)0.0734 (10)0.0299 (6)0.0043 (7)0.0059 (5)0.0191 (6)
N10.0140 (6)0.0334 (7)0.0249 (6)0.0002 (5)0.0015 (5)0.0004 (5)
C10.0145 (7)0.0239 (8)0.0242 (7)0.0004 (5)0.0021 (5)0.0027 (6)
C20.0136 (7)0.0270 (8)0.0225 (7)0.0008 (6)0.0015 (5)0.0030 (6)
C30.0176 (7)0.0288 (8)0.0204 (7)0.0012 (6)0.0018 (5)0.0039 (6)
C40.0224 (8)0.0403 (9)0.0217 (7)0.0007 (7)0.0007 (6)0.0009 (7)
C50.0294 (9)0.0460 (10)0.0227 (8)0.0045 (7)0.0047 (6)0.0033 (7)
C60.0233 (8)0.0581 (12)0.0318 (9)0.0098 (8)0.0086 (7)0.0034 (8)
C70.0167 (8)0.0507 (11)0.0313 (8)0.0062 (7)0.0029 (6)0.0010 (7)
C80.0152 (7)0.0338 (9)0.0230 (7)0.0020 (6)0.0007 (6)0.0025 (6)
C90.0197 (7)0.0239 (8)0.0310 (8)0.0006 (6)0.0004 (6)0.0006 (6)
C100.0165 (7)0.0326 (9)0.0237 (7)0.0008 (6)0.0002 (6)0.0016 (6)
C110.0165 (8)0.0685 (14)0.0552 (12)0.0071 (8)0.0061 (7)0.0133 (10)
C120.0418 (12)0.0882 (18)0.0607 (14)0.0105 (11)0.0208 (10)0.0212 (12)
C130.0476 (11)0.0566 (12)0.0274 (9)0.0025 (9)0.0004 (7)0.0096 (8)
Geometric parameters (Å, º) top
F1—C91.3457 (18)C4—C51.378 (2)
F2—C91.3289 (18)C5—C61.408 (2)
F3—C91.3412 (18)C6—C71.369 (2)
O1—C101.2150 (18)C7—C81.397 (2)
O2—C101.3333 (19)C11—C121.495 (3)
O2—C111.447 (2)C4—H40.9500
O3—C51.378 (2)C6—H60.9500
O3—C131.420 (2)C7—H70.9500
N1—C11.3584 (19)C11—H11A0.9900
N1—C81.379 (2)C11—H11B0.9900
N1—H10.835 (19)C12—H12A0.9800
C1—C21.387 (2)C12—H12B0.9800
C1—C91.489 (2)C12—H12C0.9800
C2—C31.4437 (19)C13—H13A0.9800
C2—C101.460 (2)C13—H13B0.9800
C3—C81.403 (2)C13—H13C0.9800
C3—C41.408 (2)
C10—O2—C11117.20 (13)F2—C9—C1114.19 (13)
C5—O3—C13117.27 (14)O1—C10—O2123.32 (13)
C1—N1—C8109.15 (12)O1—C10—C2125.71 (14)
C8—N1—H1124.7 (13)O2—C10—C2110.97 (12)
C1—N1—H1125.8 (13)O2—C11—C12106.53 (15)
N1—C1—C9118.99 (13)C3—C4—H4121.00
C2—C1—C9130.91 (13)C5—C4—H4121.00
N1—C1—C2109.89 (13)C5—C6—H6119.00
C3—C2—C10127.62 (13)C7—C6—H6119.00
C1—C2—C3106.16 (12)C6—C7—H7121.00
C1—C2—C10126.19 (13)C8—C7—H7121.00
C4—C3—C8119.51 (13)O2—C11—H11A110.00
C2—C3—C4133.88 (13)O2—C11—H11B110.00
C2—C3—C8106.59 (12)C12—C11—H11A110.00
C3—C4—C5117.62 (14)C12—C11—H11B110.00
C4—C5—C6122.02 (15)H11A—C11—H11B109.00
O3—C5—C4123.85 (15)C11—C12—H12A109.00
O3—C5—C6114.13 (14)C11—C12—H12B109.00
C5—C6—C7121.08 (15)C11—C12—H12C109.00
C6—C7—C8117.36 (14)H12A—C12—H12B110.00
N1—C8—C7129.39 (13)H12A—C12—H12C110.00
C3—C8—C7122.41 (14)H12B—C12—H12C110.00
N1—C8—C3108.20 (12)O3—C13—H13A109.00
F1—C9—C1110.38 (12)O3—C13—H13B110.00
F1—C9—F2106.63 (12)O3—C13—H13C109.00
F1—C9—F3106.17 (12)H13A—C13—H13B110.00
F3—C9—C1112.76 (12)H13A—C13—H13C109.00
F2—C9—F3106.20 (12)H13B—C13—H13C109.00
C11—O2—C10—O11.4 (2)C1—C2—C3—C80.23 (16)
C11—O2—C10—C2177.83 (15)C10—C2—C3—C40.3 (3)
C10—O2—C11—C12179.41 (16)C10—C2—C3—C8178.02 (14)
C13—O3—C5—C40.5 (3)C1—C2—C10—O11.9 (3)
C13—O3—C5—C6179.56 (16)C1—C2—C10—O2178.96 (14)
C8—N1—C1—C20.98 (17)C3—C2—C10—O1175.48 (15)
C8—N1—C1—C9174.28 (13)C3—C2—C10—O23.7 (2)
C1—N1—C8—C30.82 (17)C2—C3—C4—C5178.23 (16)
C1—N1—C8—C7178.31 (16)C8—C3—C4—C50.1 (2)
N1—C1—C2—C30.74 (17)C2—C3—C8—N10.35 (17)
N1—C1—C2—C10178.57 (14)C2—C3—C8—C7178.85 (14)
C9—C1—C2—C3173.78 (15)C4—C3—C8—N1178.96 (14)
C9—C1—C2—C104.1 (3)C4—C3—C8—C70.2 (2)
N1—C1—C9—F112.34 (19)C3—C4—C5—O3179.75 (15)
N1—C1—C9—F2132.45 (14)C3—C4—C5—C60.3 (2)
N1—C1—C9—F3106.22 (16)O3—C5—C6—C7179.55 (16)
C2—C1—C9—F1173.56 (15)C4—C5—C6—C70.5 (3)
C2—C1—C9—F253.5 (2)C5—C6—C7—C80.3 (2)
C2—C1—C9—F367.9 (2)C6—C7—C8—N1178.97 (16)
C1—C2—C3—C4178.10 (17)C6—C7—C8—C30.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.835 (19)2.109 (19)2.8623 (16)149.8 (16)
C6—H6···O3ii0.952.533.460 (2)168
C11—H11B···F2iii0.992.503.336 (2)142
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+2, y+2, z+1; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H12F3NO3
Mr287.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)13.9211 (8), 8.6383 (4), 21.5316 (7)
V3)2589.3 (2)
Z8
Radiation typeCu Kα
µ (mm1)1.16
Crystal size (mm)0.74 × 0.39 × 0.14
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionIntegration
(X-SHAPE; Stoe & Cie, 2001)
Tmin, Tmax0.610, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
15525, 2130, 1894
Rint0.051
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.09
No. of reflections2130
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: X-AREA (Stoe & Cie, 2001), X-RED32 (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.835 (19)2.109 (19)2.8623 (16)149.8 (16)
C6—H6···O3ii0.952.533.460 (2)168
C11—H11B···F2iii0.992.503.336 (2)142
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+2, y+2, z+1; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Swiss National Science Foundation and the Fribourg Center for Nanomaterials (FriMat) for generous support.

References

First citationAlimi, I. & Bochet, C. G. (2013). Unpublished data.  Google Scholar
First citationBarton, D. H. R., Hesse, R. H., Jackman, G. P. & Pechet, M. M. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 2604–2608.  CrossRef Web of Science Google Scholar
First citationBochet, C. G. & Blanc, A. (2010). In Handbook of Synthetic Photochemistry, edited by A. Albini & M. Fagnoni, pp. 417–447. Weinheim: Wiley-VCH.  Google Scholar
First citationBochet, C. G. & Mercier, S. (2009). In Linker Strategies in Solid-Phase Organic Synthesis, edited by P. Scott, pp. 151–193. New York: John Wiley.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, Y., Wang, Y., Sun, Z. & Ma, D. (2008). Org. Lett. 4, 625-628.  Web of Science CrossRef Google Scholar
First citationDebieux, J.-L. & Bochet, C. G. (2009). J. Org. Chem.74, 4519–4524.  Google Scholar
First citationDebieux, J.-L. & Bochet, C. G. (2012). Chem. Sci. 3, 405–406.  CAS Google Scholar
First citationHelgen, C. & Bochet, C. G. (2003). J. Org. Chem. 68, 2483–2486.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKochanowska-Karamyan, A. J. & Hamann, M. T. (2010). Chem. Rev. 110, 4489–4497.  Web of Science CAS PubMed Google Scholar
First citationOppolzer, W., Spivey, A. C. & Bochet, C. G. (1994). J. Am. Chem. Soc. 116, 3139–3140.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStreit, U. & Bochet, C. G. (2011). Beilstein J. Org. Chem. 7, 525–542.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds