metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m150-m151

catena-Poly[[[aqua­copper(II)]-bis­­[μ-N,N′-bis­­(pyridin-4-yl)isophthalamide]-[aqua­copper(II)]-di-μ-sulfato] di­methyl­formamide disolvate]

aHenan Center for Disease Control and Prevention, Zhengzhou 450016, People's Republic of China, and bCollege of Chemical and Food Engineering, ZhongZhou University, Zhengzhou 450044, People's Republic of China
*Correspondence e-mail: erpengzhang@163.com

(Received 28 January 2013; accepted 4 February 2013; online 16 February 2013)

In the title coordination polymer, {[Cu(SO4)(C18H14N4O2)(H2O)]·C3H7NO}n, the CuII ion is coordinated by two N atoms of two briding N,N′-bis­(pyridin-4-yl)isophthalamide ligands, two O atoms of two bridging SO42− anions and a water mol­ecule, giving a distorted CuN2O3 square-pyramidal geometry. The whole repeating mol­ecular unit is generated by inversion symmetry. This leads to the formation of a looped-chain one-dimensional coordination polymer propagating along [110]. The dimethyl­formamide (DMF) mol­ecules are linked to the chains via O—H⋯O hydrogen bonds. The chains are linked via N—H⋯O hydrogen bonds, forming two-dimensional networks parallel to (001). There are also a number of C—H⋯O inter­actions present and a parallel slipped ππ inter­action. The latter involves inversion-related pyridine rings with a centroid–centroid distance of 3.594 (2) Å [normal distance = 3.3338 (13) and slippage = 1.341 Å]. These inter­actions lead to the formation of a three-dimensional structure.

Related literature

For background to metal complexes with a N,N′-bis-(4-pyrid­yl)isophthalamide ligand, see: Adarsh et al. (2009[Adarsh, N. N., Kumar, D. K. & Dastidar, P. (2009). CrystEngComm, 11, 792-802.]); Gong et al. (2010[Gong, Y., Zhou, Y. C., Li, J. H., Cao, R. & Qin, J. B. (2010). Dalton Trans. 39, 9923-9928.], 2011[Gong, Y., Zhou, Y. C., Liu, T. F., Lu, J., Proserpioc, D. M. & Cao, R. (2011). Chem. Commun. 47, 5982-5984.]); Kim et al. (2011[Kim, K., Park, S., Park, K. M. & Lee, S. S. (2011). Cryst. Growth Des. 11, 4059-4067.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SO4)(C18H14N4O2)(H2O)]·C3H7NO

  • Mr = 569.06

  • Triclinic, [P \overline 1]

  • a = 10.389 (2) Å

  • b = 11.092 (1) Å

  • c = 12.105 (2) Å

  • α = 63.47 (3)°

  • β = 79.75 (2)°

  • γ = 71.08 (3)°

  • V = 1179.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Rigaku Saturn 724 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.753, Tmax = 0.814

  • 14785 measured reflections

  • 5581 independent reflections

  • 4622 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.124

  • S = 1.07

  • 5581 reflections

  • 339 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.86 (3) 2.03 (3) 2.867 (3) 164 (3)
N4—H4A⋯O3i 0.87 (3) 2.25 (3) 3.103 (4) 168 (3)
O5—H5A⋯O8ii 0.82 (3) 1.81 (3) 2.626 (4) 179 (4)
O5—H5B⋯O2 0.81 (3) 1.90 (3) 2.684 (3) 164 (4)
C4—H4⋯O8 0.93 2.45 3.325 (4) 157
C18—H18⋯O6iii 0.93 2.55 3.277 (4) 136
C19—H19⋯O4iv 0.93 2.47 3.286 (4) 146
C20—H20C⋯O3v 0.96 2.58 3.226 (6) 125
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+1, -z+1; (iv) x, y-1, z+1; (v) -x, -y+3, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The bis-pyridyl-bis-amide ligands have been used to construct various metal-organic frameworks (MOFs), not only due to their conformational flexibility but also due to the multiple hydrogen bonding sites in the ligand backbone (Adarsh et al., 2009; Gong et al., 2010, 2011; Kim et al., 2011). In this work, the bis-pyridyl-bis-amide ligand, N,N'-bis-(4-pyridyl)isophthalamide (bppa), has been used to generate the title coordination polymer whose crystal structure is reported on herein.

The coordination enviroment of the CuII center in the title complex is shown in Fig. 1. In the distorted square pyramidal geometry of the CuII ion the basal positions are occupied by two pyridyl N atoms of briding bppa ligands (N1 and N2i), an O atom (O1) of a briding SO42- anion and the O atom (O5) of a coordinated water molecule, while the axial position is occupied by the O atom (O4ii) of a second briding SO42- anion. The CuII ions are connected by a pair of bridging SO42- anions, yielding a centrosymmetric Cu2(SO4)2 binuclear unit with a Cu···Cu distance of 4.772( ) Å. The binuclear units are further linked by two bppa ligands to give a looped-chain coordination polymer extending along [1 1 0], as shown in Fig. 2. The distance between two CuII ions bridged by the bppa ligands is ca. 13.87 Å.

In the crystal, the chains are linked via N-H···O to form two-dimensional networks extending in the a and b directions. The dimethyl formamide (DMF) molecules are linked to the chains via O-H···O hydrogen bonds (Table 1). There are also a number of C-H···O interactions present and a parallel slipped π-π interaction. The latter involves inversion related N2/C14-C18 pyridine rings with a centroid-to-centroid distance 3.594 (2) Å [normal distance 3.3338 (13) Å, slippage 1.341 Å]. These interactions lead to the formatin of a three-diemnsional structure.

Related literature top

For background to metal complexes with a N,N'-bis-(4-pyridyl)isophthalamide ligand, see: Adarsh et al. (2009); Gong et al. (2010, 2011); Kim et al. (2011).

Experimental top

The ligand N,N'-bis-(4-pyridyl)isophthalamide (0.03 mmol, 10 mg) in DMF (5 ml) was added dropwise to a methanol solution (5 ml) of CuSO4.5H2O; (0.03 mmol, 7.5 mg) in methanol. The resulting solution was allowed to stand at room temperature. After one week good quality blue crystals were obtained.

Refinement top

The NH and water OH H-atoms were located from difference Fourier maps and refined with Uiso(H) = 1.2Ueq(N) and = 1.5Ueq(O). The C-bound H-atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), with Uiso(H) = 1.2Ueq(C-aromatic) and = 1.5Ueq(C methyl).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A fragment of the title complex showing the atom labelling. The displacement ellipsoids are drawn at the 30% probability level. H atoms and solvent molecules have been omitted for clarity [symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+3, -z].
[Figure 2] Fig. 2. View of the extended one-dimensional looped-chain structure of the title complex.
catena-Poly[[[aquacopper(II)]-bis[µ-N,N'-bis(pyridin-4-yl)isophthalamide]-[aquacopper(II)]-di-µ-sulfato] dimethylformamide disolvate] top
Crystal data top
[Cu(SO4)(C18H14N4O2)(H2O)]·C3H7NOZ = 2
Mr = 569.06F(000) = 586
Triclinic, P1Dx = 1.602 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.389 (2) ÅCell parameters from 2540 reflections
b = 11.092 (1) Åθ = 1.3–25.5°
c = 12.105 (2) ŵ = 1.07 mm1
α = 63.47 (3)°T = 293 K
β = 79.75 (2)°Prism, blue
γ = 71.08 (3)°0.28 × 0.24 × 0.20 mm
V = 1179.8 (4) Å3
Data collection top
Rigaku Saturn 724
diffractometer
5581 independent reflections
Radiation source: fine-focus sealed tube4622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 28.5714 pixels mm-1θmax = 27.9°, θmin = 2.5°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.753, Tmax = 0.814l = 1515
14785 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.3078P]
where P = (Fo2 + 2Fc2)/3
5581 reflections(Δ/σ)max = 0.001
339 parametersΔρmax = 0.44 e Å3
4 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu(SO4)(C18H14N4O2)(H2O)]·C3H7NOγ = 71.08 (3)°
Mr = 569.06V = 1179.8 (4) Å3
Triclinic, P1Z = 2
a = 10.389 (2) ÅMo Kα radiation
b = 11.092 (1) ŵ = 1.07 mm1
c = 12.105 (2) ÅT = 293 K
α = 63.47 (3)°0.28 × 0.24 × 0.20 mm
β = 79.75 (2)°
Data collection top
Rigaku Saturn 724
diffractometer
5581 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4622 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.814Rint = 0.039
14785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0524 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.44 e Å3
5581 reflectionsΔρmin = 0.48 e Å3
339 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.38105 (3)1.33009 (3)0.12726 (3)0.02904 (12)
N10.3870 (2)1.1263 (2)0.2105 (2)0.0306 (5)
N20.2404 (2)0.6278 (2)0.0103 (2)0.0318 (5)
N30.3422 (3)0.7212 (3)0.3637 (2)0.0346 (6)
H3A0.353 (3)0.686 (3)0.311 (2)0.041*
N40.0555 (3)0.5102 (3)0.2416 (2)0.0390 (6)
H4A0.111 (3)0.562 (3)0.214 (3)0.047*
N50.0872 (3)0.9732 (3)0.7526 (3)0.0567 (8)
O10.3441 (3)1.5323 (2)0.0619 (2)0.0509 (6)
O20.4349 (2)1.5789 (2)0.20428 (18)0.0343 (5)
O30.2229 (2)1.7265 (2)0.1090 (2)0.0485 (6)
O40.4322 (2)1.7294 (2)0.01280 (18)0.0394 (5)
O50.4686 (2)1.3056 (2)0.2695 (2)0.0360 (5)
H5A0.5446 (18)1.251 (3)0.284 (3)0.054*
H5B0.474 (4)1.3836 (18)0.251 (3)0.054*
O60.3448 (3)0.6518 (2)0.57191 (19)0.0510 (6)
O70.0307 (3)0.2996 (3)0.3841 (3)0.0766 (10)
O80.2884 (3)0.8735 (3)0.6849 (3)0.0816 (10)
C10.4035 (3)1.0521 (3)0.1435 (3)0.0350 (7)
H10.42391.09420.05930.042*
C20.3919 (3)0.9193 (3)0.1921 (3)0.0350 (7)
H20.40330.87310.14160.042*
C30.3626 (3)0.8524 (3)0.3190 (3)0.0301 (6)
C40.3509 (3)0.9258 (3)0.3902 (3)0.0343 (6)
H40.33470.88490.47530.041*
C50.3638 (3)1.0592 (3)0.3320 (3)0.0342 (6)
H50.35591.10690.38050.041*
C60.3258 (3)0.6324 (3)0.4860 (3)0.0332 (6)
C70.2840 (3)0.5079 (3)0.5039 (3)0.0308 (6)
C80.3220 (3)0.3856 (3)0.6112 (3)0.0357 (7)
H80.37190.38240.66960.043*
C90.2842 (4)0.2693 (3)0.6295 (3)0.0475 (8)
H90.30990.18690.70030.057*
C100.2090 (3)0.2740 (3)0.5440 (3)0.0440 (8)
H100.18540.19440.55720.053*
C110.1680 (3)0.3970 (3)0.4378 (3)0.0341 (6)
C120.2061 (3)0.5133 (3)0.4189 (3)0.0313 (6)
H120.17930.59600.34850.038*
C130.0795 (3)0.3964 (3)0.3530 (3)0.0409 (7)
C140.0426 (3)0.5437 (3)0.1590 (3)0.0340 (6)
C150.0365 (3)0.6471 (3)0.0409 (3)0.0376 (7)
H150.03300.69070.01660.045*
C160.1348 (3)0.6846 (3)0.0406 (3)0.0382 (7)
H160.12820.75240.12040.046*
C170.2423 (3)0.5272 (3)0.1045 (3)0.0369 (7)
H170.31290.48530.12750.044*
C180.1476 (3)0.4817 (3)0.1902 (3)0.0370 (7)
H180.15380.41040.26820.044*
C190.2186 (4)0.9110 (4)0.7613 (3)0.0545 (9)
H190.26050.89470.83040.065*
C200.0111 (6)1.0277 (7)0.8395 (5)0.117 (2)
H20A0.07171.01570.89720.175*
H20B0.05590.97830.88320.175*
H20C0.03361.12570.79620.175*
C210.0159 (4)0.9925 (5)0.6498 (4)0.0822 (14)
H21A0.07780.94840.60090.123*
H21B0.01881.09090.59940.123*
H21C0.05830.95090.68140.123*
S10.35897 (7)1.64365 (7)0.09048 (6)0.02617 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0327 (2)0.0243 (2)0.0321 (2)0.01067 (15)0.00462 (14)0.01040 (15)
N10.0385 (13)0.0254 (12)0.0305 (12)0.0126 (10)0.0007 (10)0.0117 (10)
N20.0321 (12)0.0323 (13)0.0355 (13)0.0133 (10)0.0032 (10)0.0142 (11)
N30.0520 (16)0.0320 (13)0.0266 (12)0.0217 (12)0.0028 (11)0.0129 (11)
N40.0379 (14)0.0442 (16)0.0385 (14)0.0215 (12)0.0046 (11)0.0124 (12)
N50.0508 (18)0.0533 (19)0.0501 (18)0.0023 (15)0.0016 (14)0.0175 (15)
O10.0801 (18)0.0271 (11)0.0528 (14)0.0155 (11)0.0306 (13)0.0125 (10)
O20.0414 (12)0.0321 (11)0.0329 (11)0.0089 (9)0.0065 (9)0.0155 (9)
O30.0326 (12)0.0469 (14)0.0551 (14)0.0003 (10)0.0030 (10)0.0214 (12)
O40.0353 (11)0.0422 (12)0.0366 (11)0.0174 (10)0.0062 (9)0.0111 (10)
O50.0409 (12)0.0268 (11)0.0405 (12)0.0070 (9)0.0109 (10)0.0126 (10)
O60.0858 (19)0.0503 (14)0.0287 (11)0.0387 (13)0.0043 (11)0.0123 (10)
O70.101 (2)0.0432 (15)0.088 (2)0.0383 (15)0.0528 (18)0.0010 (14)
O80.0632 (18)0.101 (2)0.0707 (19)0.0272 (17)0.0212 (15)0.0551 (19)
C10.0449 (17)0.0358 (16)0.0266 (14)0.0145 (14)0.0023 (12)0.0142 (13)
C20.0505 (18)0.0317 (15)0.0296 (14)0.0172 (14)0.0029 (13)0.0163 (13)
C30.0349 (15)0.0281 (14)0.0304 (14)0.0122 (12)0.0009 (12)0.0126 (12)
C40.0474 (18)0.0330 (16)0.0280 (14)0.0186 (14)0.0027 (12)0.0137 (12)
C50.0434 (17)0.0301 (15)0.0346 (15)0.0144 (13)0.0007 (13)0.0164 (13)
C60.0380 (16)0.0323 (15)0.0303 (14)0.0159 (13)0.0002 (12)0.0103 (12)
C70.0335 (15)0.0302 (15)0.0295 (14)0.0116 (12)0.0003 (11)0.0118 (12)
C80.0388 (16)0.0371 (16)0.0306 (15)0.0140 (13)0.0059 (12)0.0098 (13)
C90.056 (2)0.0301 (17)0.0439 (18)0.0130 (15)0.0169 (16)0.0015 (14)
C100.0509 (19)0.0300 (16)0.0484 (19)0.0170 (14)0.0113 (15)0.0068 (14)
C110.0344 (15)0.0295 (15)0.0387 (16)0.0122 (12)0.0035 (12)0.0114 (13)
C120.0357 (15)0.0287 (15)0.0284 (14)0.0120 (12)0.0021 (12)0.0085 (12)
C130.0429 (18)0.0350 (17)0.0471 (18)0.0144 (14)0.0104 (14)0.0135 (15)
C140.0342 (15)0.0360 (16)0.0387 (16)0.0099 (13)0.0029 (12)0.0209 (14)
C150.0337 (15)0.0378 (17)0.0423 (17)0.0183 (13)0.0019 (13)0.0118 (14)
C160.0402 (17)0.0351 (17)0.0388 (16)0.0169 (14)0.0043 (13)0.0095 (13)
C170.0352 (16)0.0431 (18)0.0370 (16)0.0168 (14)0.0009 (13)0.0168 (14)
C180.0359 (16)0.0463 (18)0.0323 (15)0.0185 (14)0.0009 (12)0.0153 (14)
C190.055 (2)0.053 (2)0.044 (2)0.0042 (18)0.0135 (17)0.0192 (18)
C200.101 (4)0.128 (5)0.106 (4)0.004 (4)0.036 (4)0.069 (4)
C210.054 (3)0.087 (3)0.094 (4)0.019 (2)0.022 (2)0.021 (3)
S10.0283 (3)0.0230 (3)0.0297 (3)0.0089 (3)0.0005 (3)0.0122 (3)
Geometric parameters (Å, º) top
Cu1—O11.942 (2)C2—H20.9300
Cu1—O51.961 (2)C3—C41.395 (4)
Cu1—N12.007 (2)C4—C51.367 (4)
Cu1—N2i2.015 (2)C4—H40.9300
Cu1—O4ii2.269 (2)C5—H50.9300
N1—C51.337 (3)C6—C71.494 (4)
N1—C11.349 (3)C7—C121.389 (4)
N2—C171.340 (4)C7—C81.394 (4)
N2—C161.354 (4)C8—C91.382 (4)
N2—Cu1i2.015 (2)C8—H80.9300
N3—C61.381 (3)C9—C101.377 (4)
N3—C31.382 (3)C9—H90.9300
N3—H3A0.86 (3)C10—C111.396 (4)
N4—C131.367 (4)C10—H100.9300
N4—C141.401 (4)C11—C121.382 (4)
N4—H4A0.87 (3)C11—C131.497 (4)
N5—C191.314 (5)C12—H120.9300
N5—C201.435 (5)C14—C151.383 (4)
N5—C211.460 (5)C14—C181.384 (4)
O1—S11.481 (2)C15—C161.380 (4)
O2—S11.473 (2)C15—H150.9300
O3—S11.457 (2)C16—H160.9300
O4—S11.454 (2)C17—C181.369 (4)
O4—Cu1ii2.269 (2)C17—H170.9300
O5—H5A0.82 (3)C18—H180.9300
O5—H5B0.81 (3)C19—H190.9300
O6—C61.211 (3)C20—H20A0.9600
O7—C131.215 (4)C20—H20B0.9600
O8—C191.209 (4)C20—H20C0.9600
C1—C21.359 (4)C21—H21A0.9600
C1—H10.9300C21—H21B0.9600
C2—C31.401 (4)C21—H21C0.9600
O1—Cu1—O590.75 (9)C7—C8—H8120.5
O1—Cu1—N1169.85 (10)C10—C9—C8120.8 (3)
O5—Cu1—N189.23 (10)C10—C9—H9119.6
O1—Cu1—N2i85.21 (10)C8—C9—H9119.6
O5—Cu1—N2i162.72 (10)C9—C10—C11120.6 (3)
N1—Cu1—N2i91.82 (10)C9—C10—H10119.7
O1—Cu1—O4ii102.68 (10)C11—C10—H10119.7
O5—Cu1—O4ii100.05 (9)C12—C11—C10118.8 (3)
N1—Cu1—O4ii87.31 (9)C12—C11—C13123.7 (3)
N2i—Cu1—O4ii97.23 (9)C10—C11—C13117.5 (3)
C5—N1—C1116.0 (2)C11—C12—C7120.6 (3)
C5—N1—Cu1123.07 (19)C11—C12—H12119.7
C1—N1—Cu1120.74 (19)C7—C12—H12119.7
C17—N2—C16115.7 (3)O7—C13—N4122.5 (3)
C17—N2—Cu1i118.66 (19)O7—C13—C11120.7 (3)
C16—N2—Cu1i125.3 (2)N4—C13—C11116.7 (3)
C6—N3—C3126.9 (2)C15—C14—C18118.2 (3)
C6—N3—H3A116 (2)C15—C14—N4118.3 (3)
C3—N3—H3A116 (2)C18—C14—N4123.5 (3)
C13—N4—C14126.0 (3)C16—C15—C14119.1 (3)
C13—N4—H4A119 (2)C16—C15—H15120.4
C14—N4—H4A115 (2)C14—C15—H15120.4
C19—N5—C20121.9 (4)N2—C16—C15123.4 (3)
C19—N5—C21119.8 (3)N2—C16—H16118.3
C20—N5—C21118.3 (4)C15—C16—H16118.3
S1—O1—Cu1141.81 (14)N2—C17—C18124.6 (3)
S1—O4—Cu1ii131.29 (13)N2—C17—H17117.7
Cu1—O5—H5A116 (3)C18—C17—H17117.7
Cu1—O5—H5B103 (3)C17—C18—C14118.8 (3)
H5A—O5—H5B108 (4)C17—C18—H18120.6
N1—C1—C2123.8 (3)C14—C18—H18120.6
N1—C1—H1118.1O8—C19—N5123.9 (4)
C2—C1—H1118.1O8—C19—H19118.0
C1—C2—C3119.5 (3)N5—C19—H19118.0
C1—C2—H2120.3N5—C20—H20A109.5
C3—C2—H2120.3N5—C20—H20B109.5
N3—C3—C4124.7 (3)H20A—C20—H20B109.5
N3—C3—C2117.8 (2)N5—C20—H20C109.5
C4—C3—C2117.4 (3)H20A—C20—H20C109.5
C5—C4—C3118.4 (3)H20B—C20—H20C109.5
C5—C4—H4120.8N5—C21—H21A109.5
C3—C4—H4120.8N5—C21—H21B109.5
N1—C5—C4124.9 (3)H21A—C21—H21B109.5
N1—C5—H5117.5N5—C21—H21C109.5
C4—C5—H5117.5H21A—C21—H21C109.5
O6—C6—N3123.6 (3)H21B—C21—H21C109.5
O6—C6—C7122.4 (3)O4—S1—O3111.13 (14)
N3—C6—C7114.1 (2)O4—S1—O2110.28 (13)
C12—C7—C8120.2 (3)O3—S1—O2109.69 (13)
C12—C7—C6121.7 (3)O4—S1—O1108.42 (14)
C8—C7—C6118.1 (3)O3—S1—O1107.80 (15)
C9—C8—C7119.0 (3)O2—S1—O1109.46 (12)
C9—C8—H8120.5
O1—Cu1—N1—C551.2 (6)C8—C9—C10—C110.8 (5)
O5—Cu1—N1—C538.8 (2)C9—C10—C11—C121.1 (5)
N2i—Cu1—N1—C5123.9 (2)C9—C10—C11—C13176.4 (3)
O4ii—Cu1—N1—C5138.9 (2)C10—C11—C12—C70.1 (4)
O1—Cu1—N1—C1123.0 (5)C13—C11—C12—C7177.4 (3)
O5—Cu1—N1—C1147.0 (2)C8—C7—C12—C111.6 (4)
N2i—Cu1—N1—C150.3 (2)C6—C7—C12—C11179.6 (3)
O4ii—Cu1—N1—C146.9 (2)C14—N4—C13—O711.6 (5)
O5—Cu1—O1—S12.5 (3)C14—N4—C13—C11167.5 (3)
N1—Cu1—O1—S187.3 (6)C12—C11—C13—O7167.7 (3)
N2i—Cu1—O1—S1160.7 (3)C10—C11—C13—O79.7 (5)
O4ii—Cu1—O1—S1103.0 (3)C12—C11—C13—N411.4 (5)
C5—N1—C1—C22.9 (4)C10—C11—C13—N4171.3 (3)
Cu1—N1—C1—C2171.7 (2)C13—N4—C14—C15168.0 (3)
N1—C1—C2—C30.7 (5)C13—N4—C14—C1813.9 (5)
C6—N3—C3—C49.6 (5)C18—C14—C15—C160.2 (5)
C6—N3—C3—C2173.1 (3)N4—C14—C15—C16178.0 (3)
C1—C2—C3—N3175.6 (3)C17—N2—C16—C152.2 (4)
C1—C2—C3—C41.9 (4)Cu1i—N2—C16—C15176.3 (2)
N3—C3—C4—C5175.1 (3)C14—C15—C16—N21.7 (5)
C2—C3—C4—C52.2 (4)C16—N2—C17—C180.9 (5)
C1—N1—C5—C42.6 (4)Cu1i—N2—C17—C18175.4 (2)
Cu1—N1—C5—C4171.9 (2)N2—C17—C18—C140.9 (5)
C3—C4—C5—N10.1 (5)C15—C14—C18—C171.5 (5)
C3—N3—C6—O69.8 (5)N4—C14—C18—C17176.6 (3)
C3—N3—C6—C7170.9 (3)C20—N5—C19—O8173.9 (5)
O6—C6—C7—C12150.7 (3)C21—N5—C19—O84.0 (6)
N3—C6—C7—C1230.1 (4)Cu1ii—O4—S1—O3161.85 (15)
O6—C6—C7—C827.4 (4)Cu1ii—O4—S1—O276.27 (18)
N3—C6—C7—C8151.8 (3)Cu1ii—O4—S1—O143.6 (2)
C12—C7—C8—C91.9 (5)Cu1—O1—S1—O4125.2 (3)
C6—C7—C8—C9180.0 (3)Cu1—O1—S1—O3114.4 (3)
C7—C8—C9—C100.7 (5)Cu1—O1—S1—O24.8 (3)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+3, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2iii0.86 (3)2.03 (3)2.867 (3)164 (3)
N4—H4A···O3iii0.87 (3)2.25 (3)3.103 (4)168 (3)
O5—H5A···O8iv0.82 (3)1.81 (3)2.626 (4)179 (4)
O5—H5B···O20.81 (3)1.90 (3)2.684 (3)164 (4)
C4—H4···O80.932.453.325 (4)157
C18—H18···O6v0.932.553.277 (4)136
C19—H19···O4vi0.932.473.286 (4)146
C20—H20C···O3vii0.962.583.226 (6)125
Symmetry codes: (iii) x, y1, z; (iv) x+1, y+2, z+1; (v) x, y+1, z+1; (vi) x, y1, z+1; (vii) x, y+3, z+1.

Experimental details

Crystal data
Chemical formula[Cu(SO4)(C18H14N4O2)(H2O)]·C3H7NO
Mr569.06
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.389 (2), 11.092 (1), 12.105 (2)
α, β, γ (°)63.47 (3), 79.75 (2), 71.08 (3)
V3)1179.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerRigaku Saturn 724
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.753, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
14785, 5581, 4622
Rint0.039
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.124, 1.07
No. of reflections5581
No. of parameters339
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.48

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.86 (3)2.03 (3)2.867 (3)164 (3)
N4—H4A···O3i0.87 (3)2.25 (3)3.103 (4)168 (3)
O5—H5A···O8ii0.82 (3)1.81 (3)2.626 (4)179 (4)
O5—H5B···O20.81 (3)1.90 (3)2.684 (3)164 (4)
C4—H4···O80.932.453.325 (4)157
C18—H18···O6iii0.932.553.277 (4)136
C19—H19···O4iv0.932.473.286 (4)146
C20—H20C···O3v0.962.583.226 (6)125
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y1, z+1; (v) x, y+3, z+1.
 

Acknowledgements

The authors are grateful to the Henan Center for Disease Control and Prevention for financial support and thank Professor Hong-Wei Hou of Zhengzhou University for his help.

References

First citationAdarsh, N. N., Kumar, D. K. & Dastidar, P. (2009). CrystEngComm, 11, 792–802.  Web of Science CSD CrossRef Google Scholar
First citationGong, Y., Zhou, Y. C., Li, J. H., Cao, R. & Qin, J. B. (2010). Dalton Trans. 39, 9923–9928.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGong, Y., Zhou, Y. C., Liu, T. F., Lu, J., Proserpioc, D. M. & Cao, R. (2011). Chem. Commun. 47, 5982–5984.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, K., Park, S., Park, K. M. & Lee, S. S. (2011). Cryst. Growth Des. 11, 4059–4067.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m150-m151
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds