organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1′S,4′S)-5-(2,5-Di­methyl­phen­yl)-4′-meth­­oxy-6-oxa-3-aza­spiro­[bi­cyclo­[3.1.0]hexane-2,1′-cyclo­hexa­n]-4-one

aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China, and bInstitute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, People's Republic of China
*Correspondence e-mail: jinhaozhao@zju.edu.cn

(Received 30 January 2013; accepted 22 February 2013; online 28 February 2013)

In the title compound, C18H23NO3, the cyclo­hexane ring has a chair conformation. The oxirane plane (OCC) makes a dihedral angle of 76.15 (13)° with that of the pyrrolidine ring to which it is fused. The mean plane of the cyclo­hexane ring and the benzene ring are almost normal to the pyrrolidine ring, with dihedral angles of 88.47 (8) and 77.85 (8)°, respectively. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers. These dimers are linked via pairs of C—H⋯O hydrogen bonds, forming chains along the a-axis direction.

Related literature

For the pesticide spiro­tetra­mat, the central unit of the title compound, see: Fischer & Weiss (2008[Fischer, R. & Weiss, H. C. (2008). Bayer CropSci. J. 61, 127-140.]); Maus (2008[Maus, C. (2008). Bayer CropSci. J. 61, 159-180.]). For structures of spiro­tetra­mat derivatives, see: Fischer et al. (2010[Fischer, R., Bretschneider, T., Lehr, S., Arnold, C., Dittgen, J., Feucht, D., Kehne, H., Malsam, O., Rosinger, C. H., Franken, E. M. & Goergens, U. (2010). US Patent No. 20100279873A1.]). For the metabolic transformation of spiro­tetra­mat, see: Bruck et al. (2009[Bruck, E., Elbert, A., Fischer, R. & Krueger, S. (2009). Crop Prot. 28, 838-844.])

[Scheme 1]

Experimental

Crystal data
  • C18H23NO3

  • Mr = 301.37

  • Monoclinic, P 21 /n

  • a = 9.1932 (4) Å

  • b = 9.8139 (4) Å

  • c = 17.6979 (7) Å

  • β = 91.198 (1)°

  • V = 1596.38 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.53 × 0.38 × 0.36 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.946, Tmax = 0.970

  • 15333 measured reflections

  • 3629 independent reflections

  • 2407 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.122

  • S = 1.00

  • 3629 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.25 3.0760 (17) 160
C9—H9A⋯O2ii 0.97 2.56 3.413 (2) 147
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku,2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Spirotetramat is a new systemic insecticide which belongs chemically to the class of spirocyclic tetramic acid derivatives and be developed by Bayer CropScience AG (Fischer et al., 2008; Maus, 2008). Recently, it has been found that when spirotetramat was introduced into plants or animals, it was hydrolysed to its enol form and as a weak acid this metabolite can move acropetally and basipetally with small log P (Bruck et al., 2009). That is, the excellent bioactivities of spirotetramat maybe caused by this metabolite, which stimulated our interest in the synthesis of some novel analogues of this metabolite. We have designed a new simple route to synthesized the title compound and report herein on its crystal structure.

The molecular structure of the title molecule is shown in Fig. 1. The cyclohexane ring adopts a chair conformation; atoms C5, C6, C8 and C9 lie in a plane with atoms C4 and C7 deviating by 0.676 (4) and -0.664 (0) Å, respectively. The oxirane plane (O2/C2/C3) makes a dihedral angle of 76.15 (13)° with the pyrrolidine ring (N1/C1-C4) to which it is fused. The mean plane of the cyclohexane ring (C4-C9) and the benzene ring (C11-C16) are almost normal to the pyrrolidine ring with dihedral angles of 88.47 (8) and 77.85 (8)°, respectively.

In the crystal, molecules are linked via a pair of N-H···O hydrogen bonds forming inversion dimers (Table 1). These dimers are linked via a pair of C-H···O hydrogen bonds forming chains along the a axis direction (Table 1).

Related literature top

For the pesticide spirotetramat, the central unit of the title compound, see: Fischer & Weiss (2008); Maus (2008). For structures of spirotetramat derivatives, see: Fischer et al. (2010). For the metabolic transformation of spirotetramat, see: Bruck et al. (2009)

Experimental top

The synthesis of the title compound is described in Fig. 2. A solution of sulfuryl chloride (0.80 g, 6mmoL) in anhydrous chloroform (10 ml) was added drop wise to a solution of compound 2 (0.90 g, 3mmoL) in anhydrous chloroform (20 ml) at 0 degree and stirred for 10 min. The reaction mixture was allowed to warm to room temperature and stirred at room temperature for 1 h. The reaction mixture was then washed with water (15 ml), saturated sodium bicarbonate (15 ml) and saturated sodium chloride solution and dried over anhydrous Na2SO4. The solvent was evaporated, and the residual solid was crystallized from ethanol to afford 0.95 g compound 3 as a white solid: yield 94.8%. To a solution of compound 3 (100 mg, 0.30 mmoL) in 2-propanol (10 ml) was added NaBH4 (13.6 mg, 0.36 mmoL) at 0 degree. Then the reaction mixture was allowed to room temperature and stirred for 2 h. After removal of the solvent in vacuo, 1 N HCl (10 ml) was added to the residue and the whole mixture was extracted with CH2Cl2 (8 ml τimes 3). The organic layer was washed successively with 3% Na2CO3 (8 ml) and water (8 ml) and dried over Na2SO4. Evaporation of the solvent gave a residue, which was purified by flash chromatography on silica gel using a mixture of petroleum ether (boiling point range 60–90 degree) and ethyl acetate (1:1 by volume) as the eluent to afford 32 mg compound 4 as a white solid [yield 35.6%; ESI-MS: 336 (M+H)+ (100%)]. Spectroscopic data for the title compound is available in the archived CIF.

Refinement top

The H atoms were included in calculated positions (C–H = 0.93–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku,2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Reaction scheme.
(1'S,4'S)-5-(2,5-Dimethylphenyl)-4'-methoxy-6-oxa-3-azaspiro[bicyclo[3.1.0]hexane-2,1'-cyclohexan]-4-one top
Crystal data top
C18H23NO3F(000) = 648
Mr = 301.37Dx = 1.254 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9900 reflections
a = 9.1932 (4) Åθ = 3.0–27.4°
b = 9.8139 (4) ŵ = 0.09 mm1
c = 17.6979 (7) ÅT = 296 K
β = 91.198 (1)°Block, colourless
V = 1596.38 (11) Å30.53 × 0.38 × 0.36 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3629 independent reflections
Radiation source: rotating anode2407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.946, Tmax = 0.970l = 2222
15333 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.4587P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3629 reflectionsΔρmax = 0.26 e Å3
203 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (3)
Crystal data top
C18H23NO3V = 1596.38 (11) Å3
Mr = 301.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1932 (4) ŵ = 0.09 mm1
b = 9.8139 (4) ÅT = 296 K
c = 17.6979 (7) Å0.53 × 0.38 × 0.36 mm
β = 91.198 (1)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3629 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2407 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.970Rint = 0.040
15333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
3629 reflectionsΔρmin = 0.23 e Å3
203 parameters
Special details top

Experimental. Spectroscopic data for the title compound: 1H NMR (500 MHz, CDCl3): 7.28 (s, 1H, Ph—H), 7.21 (s, 1H, Ph—H), 7.11 (s, 1H, Ph—H), 5.57 (s, 1H, –NH–), 3.80 (d, J = 2.65 Hz, 1H, –CH—O—C–), 3.40–3.39 (m, 1H, –CH—O–), 3.37 (s, 3H, –OCH3), 2.35 (s, 3H, Ph—Me), 2.33 (s, 3H, Ph—Me), 2.04–2.00 (m, 1H, Cyclohexane-H1), 1.94–1.82 (m, 4H, Cyclohexane-H4), 1.75–1.62 (m, 3H, Cyclohexane-H3); 13C NMR (125 MHz, CDCl3): 171.4, 135.4, 133.7, 130.1, 129.8, 128.8, 128.5, 75.3, 64.9, 62.8, 57.0, 55.7, 31.7, 28.2, 27.1, 26.4, 20.8, 19.3.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60742 (14)0.85489 (13)0.31242 (7)0.0625 (4)
O20.42952 (12)0.79911 (13)0.47491 (7)0.0565 (4)
O31.09024 (13)0.91600 (12)0.60804 (7)0.0563 (4)
N10.71200 (14)0.84251 (13)0.43139 (7)0.0448 (4)
C10.60987 (17)0.81496 (16)0.37776 (9)0.0436 (5)
C20.49630 (16)0.72456 (16)0.41369 (9)0.0423 (5)
C30.54729 (17)0.70679 (17)0.49249 (9)0.0468 (5)
C40.69248 (17)0.77653 (16)0.50507 (8)0.0418 (5)
C50.81229 (19)0.67175 (16)0.52153 (10)0.0494 (5)
C60.96044 (18)0.73875 (18)0.53488 (10)0.0520 (6)
C70.95550 (18)0.84352 (17)0.59826 (9)0.0482 (5)
C80.83812 (18)0.94787 (17)0.58211 (9)0.0491 (5)
C90.68976 (18)0.88081 (18)0.56940 (9)0.0499 (5)
C101.2063 (2)0.8335 (2)0.63718 (12)0.0688 (7)
C110.39938 (16)0.63409 (15)0.36728 (9)0.0406 (5)
C120.45709 (17)0.52733 (16)0.32516 (9)0.0444 (5)
C130.3604 (2)0.44859 (18)0.28230 (9)0.0524 (6)
C140.21297 (19)0.47469 (18)0.27957 (9)0.0515 (5)
C150.15504 (17)0.58089 (18)0.32083 (9)0.0479 (5)
C160.25058 (17)0.65911 (16)0.36478 (9)0.0455 (5)
C170.61810 (19)0.4977 (2)0.32605 (11)0.0622 (7)
C180.00622 (19)0.6083 (2)0.31909 (12)0.0702 (8)
H10.784300.895600.423000.0540*
H30.527100.621200.518800.0560*
H5A0.787300.619400.565900.0590*
H5B0.818100.609300.479200.0590*
H6A1.031900.669300.547800.0620*
H6B0.990500.783000.488700.0620*
H70.933600.796600.645600.0580*
H8A0.862900.999700.537500.0590*
H8B0.833101.010700.624300.0590*
H9A0.618000.950400.557500.0600*
H9B0.661100.835800.615500.0600*
H10A1.172900.781500.679400.1030*
H10B1.285700.890700.653300.1030*
H10C1.238400.772600.598400.1030*
H130.396400.376000.254600.0630*
H140.151900.420500.249700.0620*
H160.213700.730300.393300.0550*
H17A0.636900.421400.293800.0930*
H17B0.650200.476800.376700.0930*
H17C0.669600.576100.308200.0930*
H18A0.042100.605800.267800.1050*
H18B0.024500.696600.340300.1050*
H18C0.054800.540100.348100.1050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0669 (8)0.0706 (8)0.0493 (7)0.0175 (6)0.0146 (6)0.0190 (6)
O20.0454 (7)0.0587 (7)0.0656 (8)0.0023 (5)0.0056 (6)0.0174 (6)
O30.0560 (7)0.0530 (7)0.0590 (7)0.0094 (6)0.0168 (6)0.0124 (6)
N10.0435 (7)0.0462 (7)0.0445 (7)0.0098 (6)0.0046 (6)0.0091 (6)
C10.0428 (8)0.0416 (8)0.0460 (8)0.0011 (7)0.0061 (7)0.0053 (7)
C20.0392 (8)0.0400 (8)0.0477 (8)0.0023 (6)0.0018 (7)0.0008 (7)
C30.0500 (9)0.0447 (8)0.0457 (9)0.0055 (7)0.0038 (7)0.0000 (7)
C40.0460 (9)0.0418 (8)0.0376 (8)0.0044 (7)0.0015 (6)0.0031 (6)
C50.0621 (11)0.0392 (8)0.0467 (9)0.0000 (7)0.0062 (8)0.0012 (7)
C60.0525 (10)0.0466 (9)0.0565 (10)0.0056 (8)0.0084 (8)0.0006 (8)
C70.0546 (10)0.0473 (9)0.0422 (8)0.0091 (8)0.0077 (7)0.0068 (7)
C80.0597 (10)0.0428 (8)0.0447 (8)0.0027 (8)0.0033 (7)0.0049 (7)
C90.0516 (10)0.0507 (9)0.0473 (9)0.0008 (8)0.0013 (7)0.0048 (7)
C100.0639 (12)0.0686 (12)0.0728 (13)0.0008 (10)0.0226 (10)0.0132 (10)
C110.0376 (8)0.0394 (8)0.0447 (8)0.0024 (6)0.0008 (6)0.0038 (7)
C120.0436 (9)0.0453 (9)0.0443 (8)0.0033 (7)0.0020 (7)0.0015 (7)
C130.0612 (11)0.0516 (9)0.0444 (9)0.0018 (8)0.0022 (8)0.0059 (8)
C140.0548 (10)0.0572 (10)0.0421 (8)0.0102 (8)0.0050 (7)0.0001 (8)
C150.0407 (8)0.0556 (10)0.0474 (9)0.0055 (7)0.0013 (7)0.0081 (8)
C160.0419 (9)0.0428 (8)0.0519 (9)0.0001 (7)0.0028 (7)0.0002 (7)
C170.0528 (11)0.0624 (11)0.0715 (12)0.0123 (9)0.0046 (9)0.0057 (10)
C180.0423 (10)0.0888 (15)0.0793 (14)0.0067 (10)0.0036 (9)0.0021 (12)
Geometric parameters (Å, º) top
O1—C11.221 (2)C15—C161.392 (2)
O2—C21.454 (2)C15—C181.506 (2)
O2—C31.441 (2)C3—H30.9800
O3—C71.436 (2)C5—H5A0.9700
O3—C101.427 (2)C5—H5B0.9700
N1—C11.348 (2)C6—H6A0.9700
N1—C41.4703 (19)C6—H6B0.9700
N1—H10.8600C7—H70.9800
C1—C21.520 (2)C8—H8A0.9700
C2—C31.472 (2)C8—H8B0.9700
C2—C111.492 (2)C9—H9A0.9700
C3—C41.512 (2)C9—H9B0.9700
C4—C91.532 (2)C10—H10A0.9600
C4—C51.530 (2)C10—H10B0.9600
C5—C61.526 (2)C10—H10C0.9600
C6—C71.523 (2)C13—H130.9300
C7—C81.511 (2)C14—H140.9300
C8—C91.527 (2)C16—H160.9300
C11—C121.397 (2)C17—H17A0.9600
C11—C161.390 (2)C17—H17B0.9600
C12—C171.508 (2)C17—H17C0.9600
C12—C131.391 (2)C18—H18A0.9600
C13—C141.379 (3)C18—H18B0.9600
C14—C151.385 (2)C18—H18C0.9600
C2—O2—C361.14 (10)C4—C5—H5B109.00
C7—O3—C10113.52 (13)C6—C5—H5A109.00
C1—N1—C4116.10 (13)C6—C5—H5B109.00
C4—N1—H1122.00H5A—C5—H5B108.00
C1—N1—H1122.00C5—C6—H6A109.00
O1—C1—C2125.77 (15)C5—C6—H6B109.00
N1—C1—C2107.27 (13)C7—C6—H6A109.00
O1—C1—N1126.96 (15)C7—C6—H6B109.00
O2—C2—C11116.94 (12)H6A—C6—H6B108.00
O2—C2—C1108.82 (12)O3—C7—H7109.00
O2—C2—C358.99 (10)C6—C7—H7109.00
C3—C2—C11128.73 (14)C8—C7—H7109.00
C1—C2—C11121.65 (14)C7—C8—H8A109.00
C1—C2—C3104.93 (13)C7—C8—H8B109.00
O2—C3—C4113.84 (13)C9—C8—H8A109.00
C2—C3—C4110.39 (13)C9—C8—H8B109.00
O2—C3—C259.87 (10)H8A—C8—H8B108.00
N1—C4—C9111.67 (13)C4—C9—H9A109.00
N1—C4—C3101.10 (12)C4—C9—H9B109.00
N1—C4—C5111.35 (13)C8—C9—H9A109.00
C5—C4—C9109.29 (13)C8—C9—H9B109.00
C3—C4—C5110.70 (13)H9A—C9—H9B108.00
C3—C4—C9112.57 (13)O3—C10—H10A109.00
C4—C5—C6112.11 (13)O3—C10—H10B110.00
C5—C6—C7111.38 (14)O3—C10—H10C109.00
O3—C7—C8107.34 (13)H10A—C10—H10B109.00
O3—C7—C6112.60 (13)H10A—C10—H10C109.00
C6—C7—C8110.52 (13)H10B—C10—H10C109.00
C7—C8—C9111.60 (14)C12—C13—H13119.00
C4—C9—C8111.66 (13)C14—C13—H13119.00
C2—C11—C16119.24 (14)C13—C14—H14120.00
C2—C11—C12120.73 (13)C15—C14—H14120.00
C12—C11—C16120.01 (14)C11—C16—H16119.00
C11—C12—C17121.51 (14)C15—C16—H16119.00
C11—C12—C13117.53 (15)C12—C17—H17A109.00
C13—C12—C17120.96 (15)C12—C17—H17B109.00
C12—C13—C14122.16 (16)C12—C17—H17C109.00
C13—C14—C15120.64 (16)H17A—C17—H17B109.00
C14—C15—C16117.67 (15)H17A—C17—H17C109.00
C14—C15—C18120.83 (15)H17B—C17—H17C110.00
C16—C15—C18121.48 (15)C15—C18—H18A109.00
C11—C16—C15121.98 (15)C15—C18—H18B109.00
O2—C3—H3120.00C15—C18—H18C109.00
C2—C3—H3119.00H18A—C18—H18B109.00
C4—C3—H3120.00H18A—C18—H18C109.00
C4—C5—H5A109.00H18B—C18—H18C109.00
C2—O2—C3—C4100.60 (14)O2—C3—C4—N160.56 (15)
C3—O2—C2—C196.47 (14)O2—C3—C4—C5178.64 (13)
C3—O2—C2—C11120.88 (16)C2—C3—C4—C5113.55 (15)
C10—O3—C7—C8169.18 (14)C2—C3—C4—N14.53 (16)
C10—O3—C7—C668.97 (18)C3—C4—C5—C6179.75 (13)
C4—N1—C1—C22.84 (18)N1—C4—C5—C668.63 (17)
C4—N1—C1—O1177.41 (15)C3—C4—C9—C8178.88 (13)
C1—N1—C4—C5113.01 (15)C5—C4—C9—C855.45 (17)
C1—N1—C4—C9124.52 (15)C9—C4—C5—C655.21 (18)
C1—N1—C4—C34.60 (17)N1—C4—C9—C868.20 (17)
N1—C1—C2—O262.13 (16)C4—C5—C6—C755.95 (18)
O1—C1—C2—C1122.9 (2)C5—C6—C7—C855.29 (18)
O1—C1—C2—O2117.63 (17)C5—C6—C7—O3175.32 (13)
O1—C1—C2—C3179.43 (16)O3—C7—C8—C9179.04 (12)
N1—C1—C2—C11157.31 (14)C6—C7—C8—C955.90 (17)
N1—C1—C2—C30.32 (17)C7—C8—C9—C456.98 (17)
O2—C2—C11—C1622.8 (2)C2—C11—C12—C13178.99 (15)
C1—C2—C11—C1263.6 (2)C2—C11—C12—C171.2 (2)
C1—C2—C3—C43.17 (17)C16—C11—C12—C130.6 (2)
C3—C2—C11—C1288.3 (2)C16—C11—C12—C17179.58 (15)
C3—C2—C11—C1693.3 (2)C2—C11—C16—C15178.10 (15)
C1—C2—C3—O2103.25 (13)C12—C11—C16—C150.3 (2)
C11—C2—C3—C4152.30 (15)C11—C12—C13—C141.2 (2)
O2—C2—C11—C12158.82 (14)C17—C12—C13—C14179.01 (16)
C1—C2—C11—C16114.81 (17)C12—C13—C14—C150.8 (3)
O2—C2—C3—C4106.43 (14)C13—C14—C15—C160.1 (2)
C11—C2—C3—O2101.28 (17)C13—C14—C15—C18178.94 (16)
O2—C3—C4—C958.71 (17)C14—C15—C16—C110.7 (2)
C2—C3—C4—C9123.80 (14)C18—C15—C16—C11179.49 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.253.0760 (17)160
C9—H9A···O2ii0.972.563.413 (2)147
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H23NO3
Mr301.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.1932 (4), 9.8139 (4), 17.6979 (7)
β (°) 91.198 (1)
V3)1596.38 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.53 × 0.38 × 0.36
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.946, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
15333, 3629, 2407
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 1.00
No. of reflections3629
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku,2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.253.0760 (17)160
C9—H9A···O2ii0.972.563.413 (2)147
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

This project was supported by grants from the National Natural Science Foundation of China (No. 31101470) and the Educational Commission of Zhejiang Province (Y201224393). The authors are grateful to Professor Jianming Gu for the crystal analysis.

References

First citationBruck, E., Elbert, A., Fischer, R. & Krueger, S. (2009). Crop Prot. 28, 838–844.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, R., Bretschneider, T., Lehr, S., Arnold, C., Dittgen, J., Feucht, D., Kehne, H., Malsam, O., Rosinger, C. H., Franken, E. M. & Goergens, U. (2010). US Patent No. 20100279873A1.  Google Scholar
First citationFischer, R. & Weiss, H. C. (2008). Bayer CropSci. J. 61, 127–140.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMaus, C. (2008). Bayer CropSci. J. 61, 159–180.  CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds