organic compounds
(1′S,4′S)-5-(2,5-Dimethylphenyl)-4′-methoxy-6-oxa-3-azaspiro[bicyclo[3.1.0]hexane-2,1′-cyclohexan]-4-one
aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China, and bInstitute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, People's Republic of China
*Correspondence e-mail: jinhaozhao@zju.edu.cn
In the title compound, C18H23NO3, the cyclohexane ring has a chair conformation. The oxirane plane (OCC) makes a dihedral angle of 76.15 (13)° with that of the pyrrolidine ring to which it is fused. The mean plane of the cyclohexane ring and the benzene ring are almost normal to the pyrrolidine ring, with dihedral angles of 88.47 (8) and 77.85 (8)°, respectively. In the crystal, molecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers. These dimers are linked via pairs of C—H⋯O hydrogen bonds, forming chains along the a-axis direction.
Related literature
For the pesticide spirotetramat, the central unit of the title compound, see: Fischer & Weiss (2008); Maus (2008). For structures of spirotetramat derivatives, see: Fischer et al. (2010). For the metabolic transformation of spirotetramat, see: Bruck et al. (2009)
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 2006); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku,2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536813005138/su2559sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: 10.1107/S1600536813005138/su2559Isup2.cdx
Structure factors: contains datablock I. DOI: 10.1107/S1600536813005138/su2559Isup4.hkl
Supporting information file. DOI: 10.1107/S1600536813005138/su2559Isup4.cml
The synthesis of the title compound is described in Fig. 2. A solution of sulfuryl chloride (0.80 g, 6mmoL) in anhydrous chloroform (10 ml) was added drop wise to a solution of compound 2 (0.90 g, 3mmoL) in anhydrous chloroform (20 ml) at 0 degree and stirred for 10 min. The reaction mixture was allowed to warm to room temperature and stirred at room temperature for 1 h. The reaction mixture was then washed with water (15 ml), saturated sodium bicarbonate (15 ml) and saturated sodium chloride solution and dried over anhydrous Na2SO4. The solvent was evaporated, and the residual solid was crystallized from ethanol to afford 0.95 g compound 3 as a white solid: yield 94.8%. To a solution of compound 3 (100 mg, 0.30 mmoL) in 2-propanol (10 ml) was added NaBH4 (13.6 mg, 0.36 mmoL) at 0 degree. Then the reaction mixture was allowed to room temperature and stirred for 2 h. After removal of the solvent in vacuo, 1 N HCl (10 ml) was added to the residue and the whole mixture was extracted with CH2Cl2 (8 ml τimes 3). The organic layer was washed successively with 3% Na2CO3 (8 ml) and water (8 ml) and dried over Na2SO4. Evaporation of the solvent gave a residue, which was purified by flash on silica gel using a mixture of petroleum ether (boiling point range 60–90 degree) and ethyl acetate (1:1 by volume) as the to afford 32 mg compound 4 as a white solid [yield 35.6%; ESI-MS: 336 (M+H)+ (100%)]. Spectroscopic data for the title compound is available in the archived CIF.
The H atoms were included in calculated positions (C–H = 0.93–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku,2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level. | |
Fig. 2. Reaction scheme. |
C18H23NO3 | F(000) = 648 |
Mr = 301.37 | Dx = 1.254 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9900 reflections |
a = 9.1932 (4) Å | θ = 3.0–27.4° |
b = 9.8139 (4) Å | µ = 0.09 mm−1 |
c = 17.6979 (7) Å | T = 296 K |
β = 91.198 (1)° | Block, colourless |
V = 1596.38 (11) Å3 | 0.53 × 0.38 × 0.36 mm |
Z = 4 |
Rigaku R-AXIS RAPID/ZJUG diffractometer | 3629 independent reflections |
Radiation source: rotating anode | 2407 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −12→12 |
Tmin = 0.946, Tmax = 0.970 | l = −22→22 |
15333 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.122 | w = 1/[σ2(Fo2) + (0.0501P)2 + 0.4587P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
3629 reflections | Δρmax = 0.26 e Å−3 |
203 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.049 (3) |
C18H23NO3 | V = 1596.38 (11) Å3 |
Mr = 301.37 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.1932 (4) Å | µ = 0.09 mm−1 |
b = 9.8139 (4) Å | T = 296 K |
c = 17.6979 (7) Å | 0.53 × 0.38 × 0.36 mm |
β = 91.198 (1)° |
Rigaku R-AXIS RAPID/ZJUG diffractometer | 3629 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2407 reflections with I > 2σ(I) |
Tmin = 0.946, Tmax = 0.970 | Rint = 0.040 |
15333 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.26 e Å−3 |
3629 reflections | Δρmin = −0.23 e Å−3 |
203 parameters |
Experimental. Spectroscopic data for the title compound: 1H NMR (500 MHz, CDCl3): 7.28 (s, 1H, Ph—H), 7.21 (s, 1H, Ph—H), 7.11 (s, 1H, Ph—H), 5.57 (s, 1H, –NH–), 3.80 (d, J = 2.65 Hz, 1H, –CH—O—C–), 3.40–3.39 (m, 1H, –CH—O–), 3.37 (s, 3H, –OCH3), 2.35 (s, 3H, Ph—Me), 2.33 (s, 3H, Ph—Me), 2.04–2.00 (m, 1H, Cyclohexane-H1), 1.94–1.82 (m, 4H, Cyclohexane-H4), 1.75–1.62 (m, 3H, Cyclohexane-H3); 13C NMR (125 MHz, CDCl3): 171.4, 135.4, 133.7, 130.1, 129.8, 128.8, 128.5, 75.3, 64.9, 62.8, 57.0, 55.7, 31.7, 28.2, 27.1, 26.4, 20.8, 19.3. |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.60742 (14) | 0.85489 (13) | 0.31242 (7) | 0.0625 (4) | |
O2 | 0.42952 (12) | 0.79911 (13) | 0.47491 (7) | 0.0565 (4) | |
O3 | 1.09024 (13) | 0.91600 (12) | 0.60804 (7) | 0.0563 (4) | |
N1 | 0.71200 (14) | 0.84251 (13) | 0.43139 (7) | 0.0448 (4) | |
C1 | 0.60987 (17) | 0.81496 (16) | 0.37776 (9) | 0.0436 (5) | |
C2 | 0.49630 (16) | 0.72456 (16) | 0.41369 (9) | 0.0423 (5) | |
C3 | 0.54729 (17) | 0.70679 (17) | 0.49249 (9) | 0.0468 (5) | |
C4 | 0.69248 (17) | 0.77653 (16) | 0.50507 (8) | 0.0418 (5) | |
C5 | 0.81229 (19) | 0.67175 (16) | 0.52153 (10) | 0.0494 (5) | |
C6 | 0.96044 (18) | 0.73875 (18) | 0.53488 (10) | 0.0520 (6) | |
C7 | 0.95550 (18) | 0.84352 (17) | 0.59826 (9) | 0.0482 (5) | |
C8 | 0.83812 (18) | 0.94787 (17) | 0.58211 (9) | 0.0491 (5) | |
C9 | 0.68976 (18) | 0.88081 (18) | 0.56940 (9) | 0.0499 (5) | |
C10 | 1.2063 (2) | 0.8335 (2) | 0.63718 (12) | 0.0688 (7) | |
C11 | 0.39938 (16) | 0.63409 (15) | 0.36728 (9) | 0.0406 (5) | |
C12 | 0.45709 (17) | 0.52733 (16) | 0.32516 (9) | 0.0444 (5) | |
C13 | 0.3604 (2) | 0.44859 (18) | 0.28230 (9) | 0.0524 (6) | |
C14 | 0.21297 (19) | 0.47469 (18) | 0.27957 (9) | 0.0515 (5) | |
C15 | 0.15504 (17) | 0.58089 (18) | 0.32083 (9) | 0.0479 (5) | |
C16 | 0.25058 (17) | 0.65911 (16) | 0.36478 (9) | 0.0455 (5) | |
C17 | 0.61810 (19) | 0.4977 (2) | 0.32605 (11) | 0.0622 (7) | |
C18 | −0.00622 (19) | 0.6083 (2) | 0.31909 (12) | 0.0702 (8) | |
H1 | 0.78430 | 0.89560 | 0.42300 | 0.0540* | |
H3 | 0.52710 | 0.62120 | 0.51880 | 0.0560* | |
H5A | 0.78730 | 0.61940 | 0.56590 | 0.0590* | |
H5B | 0.81810 | 0.60930 | 0.47920 | 0.0590* | |
H6A | 1.03190 | 0.66930 | 0.54780 | 0.0620* | |
H6B | 0.99050 | 0.78300 | 0.48870 | 0.0620* | |
H7 | 0.93360 | 0.79660 | 0.64560 | 0.0580* | |
H8A | 0.86290 | 0.99970 | 0.53750 | 0.0590* | |
H8B | 0.83310 | 1.01070 | 0.62430 | 0.0590* | |
H9A | 0.61800 | 0.95040 | 0.55750 | 0.0600* | |
H9B | 0.66110 | 0.83580 | 0.61550 | 0.0600* | |
H10A | 1.17290 | 0.78150 | 0.67940 | 0.1030* | |
H10B | 1.28570 | 0.89070 | 0.65330 | 0.1030* | |
H10C | 1.23840 | 0.77260 | 0.59840 | 0.1030* | |
H13 | 0.39640 | 0.37600 | 0.25460 | 0.0630* | |
H14 | 0.15190 | 0.42050 | 0.24970 | 0.0620* | |
H16 | 0.21370 | 0.73030 | 0.39330 | 0.0550* | |
H17A | 0.63690 | 0.42140 | 0.29380 | 0.0930* | |
H17B | 0.65020 | 0.47680 | 0.37670 | 0.0930* | |
H17C | 0.66960 | 0.57610 | 0.30820 | 0.0930* | |
H18A | −0.04210 | 0.60580 | 0.26780 | 0.1050* | |
H18B | −0.02450 | 0.69660 | 0.34030 | 0.1050* | |
H18C | −0.05480 | 0.54010 | 0.34810 | 0.1050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0669 (8) | 0.0706 (8) | 0.0493 (7) | −0.0175 (6) | −0.0146 (6) | 0.0190 (6) |
O2 | 0.0454 (7) | 0.0587 (7) | 0.0656 (8) | 0.0023 (5) | 0.0056 (6) | −0.0174 (6) |
O3 | 0.0560 (7) | 0.0530 (7) | 0.0590 (7) | −0.0094 (6) | −0.0168 (6) | 0.0124 (6) |
N1 | 0.0435 (7) | 0.0462 (7) | 0.0445 (7) | −0.0098 (6) | −0.0046 (6) | 0.0091 (6) |
C1 | 0.0428 (8) | 0.0416 (8) | 0.0460 (8) | −0.0011 (7) | −0.0061 (7) | 0.0053 (7) |
C2 | 0.0392 (8) | 0.0400 (8) | 0.0477 (8) | 0.0023 (6) | 0.0018 (7) | −0.0008 (7) |
C3 | 0.0500 (9) | 0.0447 (8) | 0.0457 (9) | −0.0055 (7) | 0.0038 (7) | 0.0000 (7) |
C4 | 0.0460 (9) | 0.0418 (8) | 0.0376 (8) | −0.0044 (7) | −0.0015 (6) | 0.0031 (6) |
C5 | 0.0621 (11) | 0.0392 (8) | 0.0467 (9) | 0.0000 (7) | −0.0062 (8) | 0.0012 (7) |
C6 | 0.0525 (10) | 0.0466 (9) | 0.0565 (10) | 0.0056 (8) | −0.0084 (8) | −0.0006 (8) |
C7 | 0.0546 (10) | 0.0473 (9) | 0.0422 (8) | −0.0091 (8) | −0.0077 (7) | 0.0068 (7) |
C8 | 0.0597 (10) | 0.0428 (8) | 0.0447 (8) | −0.0027 (8) | −0.0033 (7) | −0.0049 (7) |
C9 | 0.0516 (10) | 0.0507 (9) | 0.0473 (9) | −0.0008 (8) | 0.0013 (7) | −0.0048 (7) |
C10 | 0.0639 (12) | 0.0686 (12) | 0.0728 (13) | −0.0008 (10) | −0.0226 (10) | 0.0132 (10) |
C11 | 0.0376 (8) | 0.0394 (8) | 0.0447 (8) | −0.0024 (6) | 0.0008 (6) | 0.0038 (7) |
C12 | 0.0436 (9) | 0.0453 (9) | 0.0443 (8) | 0.0033 (7) | 0.0020 (7) | 0.0015 (7) |
C13 | 0.0612 (11) | 0.0516 (9) | 0.0444 (9) | 0.0018 (8) | 0.0022 (8) | −0.0059 (8) |
C14 | 0.0548 (10) | 0.0572 (10) | 0.0421 (8) | −0.0102 (8) | −0.0050 (7) | 0.0001 (8) |
C15 | 0.0407 (8) | 0.0556 (10) | 0.0474 (9) | −0.0055 (7) | −0.0013 (7) | 0.0081 (8) |
C16 | 0.0419 (9) | 0.0428 (8) | 0.0519 (9) | 0.0001 (7) | 0.0028 (7) | 0.0002 (7) |
C17 | 0.0528 (11) | 0.0624 (11) | 0.0715 (12) | 0.0123 (9) | 0.0046 (9) | −0.0057 (10) |
C18 | 0.0423 (10) | 0.0888 (15) | 0.0793 (14) | −0.0067 (10) | −0.0036 (9) | −0.0021 (12) |
O1—C1 | 1.221 (2) | C15—C16 | 1.392 (2) |
O2—C2 | 1.454 (2) | C15—C18 | 1.506 (2) |
O2—C3 | 1.441 (2) | C3—H3 | 0.9800 |
O3—C7 | 1.436 (2) | C5—H5A | 0.9700 |
O3—C10 | 1.427 (2) | C5—H5B | 0.9700 |
N1—C1 | 1.348 (2) | C6—H6A | 0.9700 |
N1—C4 | 1.4703 (19) | C6—H6B | 0.9700 |
N1—H1 | 0.8600 | C7—H7 | 0.9800 |
C1—C2 | 1.520 (2) | C8—H8A | 0.9700 |
C2—C3 | 1.472 (2) | C8—H8B | 0.9700 |
C2—C11 | 1.492 (2) | C9—H9A | 0.9700 |
C3—C4 | 1.512 (2) | C9—H9B | 0.9700 |
C4—C9 | 1.532 (2) | C10—H10A | 0.9600 |
C4—C5 | 1.530 (2) | C10—H10B | 0.9600 |
C5—C6 | 1.526 (2) | C10—H10C | 0.9600 |
C6—C7 | 1.523 (2) | C13—H13 | 0.9300 |
C7—C8 | 1.511 (2) | C14—H14 | 0.9300 |
C8—C9 | 1.527 (2) | C16—H16 | 0.9300 |
C11—C12 | 1.397 (2) | C17—H17A | 0.9600 |
C11—C16 | 1.390 (2) | C17—H17B | 0.9600 |
C12—C17 | 1.508 (2) | C17—H17C | 0.9600 |
C12—C13 | 1.391 (2) | C18—H18A | 0.9600 |
C13—C14 | 1.379 (3) | C18—H18B | 0.9600 |
C14—C15 | 1.385 (2) | C18—H18C | 0.9600 |
C2—O2—C3 | 61.14 (10) | C4—C5—H5B | 109.00 |
C7—O3—C10 | 113.52 (13) | C6—C5—H5A | 109.00 |
C1—N1—C4 | 116.10 (13) | C6—C5—H5B | 109.00 |
C4—N1—H1 | 122.00 | H5A—C5—H5B | 108.00 |
C1—N1—H1 | 122.00 | C5—C6—H6A | 109.00 |
O1—C1—C2 | 125.77 (15) | C5—C6—H6B | 109.00 |
N1—C1—C2 | 107.27 (13) | C7—C6—H6A | 109.00 |
O1—C1—N1 | 126.96 (15) | C7—C6—H6B | 109.00 |
O2—C2—C11 | 116.94 (12) | H6A—C6—H6B | 108.00 |
O2—C2—C1 | 108.82 (12) | O3—C7—H7 | 109.00 |
O2—C2—C3 | 58.99 (10) | C6—C7—H7 | 109.00 |
C3—C2—C11 | 128.73 (14) | C8—C7—H7 | 109.00 |
C1—C2—C11 | 121.65 (14) | C7—C8—H8A | 109.00 |
C1—C2—C3 | 104.93 (13) | C7—C8—H8B | 109.00 |
O2—C3—C4 | 113.84 (13) | C9—C8—H8A | 109.00 |
C2—C3—C4 | 110.39 (13) | C9—C8—H8B | 109.00 |
O2—C3—C2 | 59.87 (10) | H8A—C8—H8B | 108.00 |
N1—C4—C9 | 111.67 (13) | C4—C9—H9A | 109.00 |
N1—C4—C3 | 101.10 (12) | C4—C9—H9B | 109.00 |
N1—C4—C5 | 111.35 (13) | C8—C9—H9A | 109.00 |
C5—C4—C9 | 109.29 (13) | C8—C9—H9B | 109.00 |
C3—C4—C5 | 110.70 (13) | H9A—C9—H9B | 108.00 |
C3—C4—C9 | 112.57 (13) | O3—C10—H10A | 109.00 |
C4—C5—C6 | 112.11 (13) | O3—C10—H10B | 110.00 |
C5—C6—C7 | 111.38 (14) | O3—C10—H10C | 109.00 |
O3—C7—C8 | 107.34 (13) | H10A—C10—H10B | 109.00 |
O3—C7—C6 | 112.60 (13) | H10A—C10—H10C | 109.00 |
C6—C7—C8 | 110.52 (13) | H10B—C10—H10C | 109.00 |
C7—C8—C9 | 111.60 (14) | C12—C13—H13 | 119.00 |
C4—C9—C8 | 111.66 (13) | C14—C13—H13 | 119.00 |
C2—C11—C16 | 119.24 (14) | C13—C14—H14 | 120.00 |
C2—C11—C12 | 120.73 (13) | C15—C14—H14 | 120.00 |
C12—C11—C16 | 120.01 (14) | C11—C16—H16 | 119.00 |
C11—C12—C17 | 121.51 (14) | C15—C16—H16 | 119.00 |
C11—C12—C13 | 117.53 (15) | C12—C17—H17A | 109.00 |
C13—C12—C17 | 120.96 (15) | C12—C17—H17B | 109.00 |
C12—C13—C14 | 122.16 (16) | C12—C17—H17C | 109.00 |
C13—C14—C15 | 120.64 (16) | H17A—C17—H17B | 109.00 |
C14—C15—C16 | 117.67 (15) | H17A—C17—H17C | 109.00 |
C14—C15—C18 | 120.83 (15) | H17B—C17—H17C | 110.00 |
C16—C15—C18 | 121.48 (15) | C15—C18—H18A | 109.00 |
C11—C16—C15 | 121.98 (15) | C15—C18—H18B | 109.00 |
O2—C3—H3 | 120.00 | C15—C18—H18C | 109.00 |
C2—C3—H3 | 119.00 | H18A—C18—H18B | 109.00 |
C4—C3—H3 | 120.00 | H18A—C18—H18C | 109.00 |
C4—C5—H5A | 109.00 | H18B—C18—H18C | 109.00 |
C2—O2—C3—C4 | 100.60 (14) | O2—C3—C4—N1 | −60.56 (15) |
C3—O2—C2—C1 | −96.47 (14) | O2—C3—C4—C5 | −178.64 (13) |
C3—O2—C2—C11 | 120.88 (16) | C2—C3—C4—C5 | −113.55 (15) |
C10—O3—C7—C8 | 169.18 (14) | C2—C3—C4—N1 | 4.53 (16) |
C10—O3—C7—C6 | −68.97 (18) | C3—C4—C5—C6 | −179.75 (13) |
C4—N1—C1—C2 | 2.84 (18) | N1—C4—C5—C6 | 68.63 (17) |
C4—N1—C1—O1 | −177.41 (15) | C3—C4—C9—C8 | 178.88 (13) |
C1—N1—C4—C5 | 113.01 (15) | C5—C4—C9—C8 | 55.45 (17) |
C1—N1—C4—C9 | −124.52 (15) | C9—C4—C5—C6 | −55.21 (18) |
C1—N1—C4—C3 | −4.60 (17) | N1—C4—C9—C8 | −68.20 (17) |
N1—C1—C2—O2 | 62.13 (16) | C4—C5—C6—C7 | 55.95 (18) |
O1—C1—C2—C11 | 22.9 (2) | C5—C6—C7—C8 | −55.29 (18) |
O1—C1—C2—O2 | −117.63 (17) | C5—C6—C7—O3 | −175.32 (13) |
O1—C1—C2—C3 | −179.43 (16) | O3—C7—C8—C9 | 179.04 (12) |
N1—C1—C2—C11 | −157.31 (14) | C6—C7—C8—C9 | 55.90 (17) |
N1—C1—C2—C3 | 0.32 (17) | C7—C8—C9—C4 | −56.98 (17) |
O2—C2—C11—C16 | 22.8 (2) | C2—C11—C12—C13 | −178.99 (15) |
C1—C2—C11—C12 | 63.6 (2) | C2—C11—C12—C17 | 1.2 (2) |
C1—C2—C3—C4 | −3.17 (17) | C16—C11—C12—C13 | −0.6 (2) |
C3—C2—C11—C12 | −88.3 (2) | C16—C11—C12—C17 | 179.58 (15) |
C3—C2—C11—C16 | 93.3 (2) | C2—C11—C16—C15 | 178.10 (15) |
C1—C2—C3—O2 | 103.25 (13) | C12—C11—C16—C15 | −0.3 (2) |
C11—C2—C3—C4 | 152.30 (15) | C11—C12—C13—C14 | 1.2 (2) |
O2—C2—C11—C12 | −158.82 (14) | C17—C12—C13—C14 | −179.01 (16) |
C1—C2—C11—C16 | −114.81 (17) | C12—C13—C14—C15 | −0.8 (3) |
O2—C2—C3—C4 | −106.43 (14) | C13—C14—C15—C16 | −0.1 (2) |
C11—C2—C3—O2 | −101.28 (17) | C13—C14—C15—C18 | −178.94 (16) |
O2—C3—C4—C9 | 58.71 (17) | C14—C15—C16—C11 | 0.7 (2) |
C2—C3—C4—C9 | 123.80 (14) | C18—C15—C16—C11 | 179.49 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 2.25 | 3.0760 (17) | 160 |
C9—H9A···O2ii | 0.97 | 2.56 | 3.413 (2) | 147 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C18H23NO3 |
Mr | 301.37 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 9.1932 (4), 9.8139 (4), 17.6979 (7) |
β (°) | 91.198 (1) |
V (Å3) | 1596.38 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.53 × 0.38 × 0.36 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID/ZJUG diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.946, 0.970 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15333, 3629, 2407 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.122, 1.00 |
No. of reflections | 3629 |
No. of parameters | 203 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.23 |
Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku,2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 2.25 | 3.0760 (17) | 160 |
C9—H9A···O2ii | 0.97 | 2.56 | 3.413 (2) | 147 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+2, −z+1. |
Acknowledgements
This project was supported by grants from the National Natural Science Foundation of China (No. 31101470) and the Educational Commission of Zhejiang Province (Y201224393). The authors are grateful to Professor Jianming Gu for the crystal analysis.
References
Bruck, E., Elbert, A., Fischer, R. & Krueger, S. (2009). Crop Prot. 28, 838–844. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fischer, R., Bretschneider, T., Lehr, S., Arnold, C., Dittgen, J., Feucht, D., Kehne, H., Malsam, O., Rosinger, C. H., Franken, E. M. & Goergens, U. (2010). US Patent No. 20100279873A1. Google Scholar
Fischer, R. & Weiss, H. C. (2008). Bayer CropSci. J. 61, 127–140. CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Maus, C. (2008). Bayer CropSci. J. 61, 159–180. CAS Google Scholar
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Spirotetramat is a new systemic insecticide which belongs chemically to the class of spirocyclic tetramic acid derivatives and be developed by Bayer CropScience AG (Fischer et al., 2008; Maus, 2008). Recently, it has been found that when spirotetramat was introduced into plants or animals, it was hydrolysed to its enol form and as a weak acid this metabolite can move acropetally and basipetally with small log P (Bruck et al., 2009). That is, the excellent bioactivities of spirotetramat maybe caused by this metabolite, which stimulated our interest in the synthesis of some novel analogues of this metabolite. We have designed a new simple route to synthesized the title compound and report herein on its crystal structure.
The molecular structure of the title molecule is shown in Fig. 1. The cyclohexane ring adopts a chair conformation; atoms C5, C6, C8 and C9 lie in a plane with atoms C4 and C7 deviating by 0.676 (4) and -0.664 (0) Å, respectively. The oxirane plane (O2/C2/C3) makes a dihedral angle of 76.15 (13)° with the pyrrolidine ring (N1/C1-C4) to which it is fused. The mean plane of the cyclohexane ring (C4-C9) and the benzene ring (C11-C16) are almost normal to the pyrrolidine ring with dihedral angles of 88.47 (8) and 77.85 (8)°, respectively.
In the crystal, molecules are linked via a pair of N-H···O hydrogen bonds forming inversion dimers (Table 1). These dimers are linked via a pair of C-H···O hydrogen bonds forming chains along the a axis direction (Table 1).