metal-organic compounds
(1RS,2RS)-4,4′-(1-Azaniumyl-2-hydroxyethane-1,2-diyl)dipyridinium tetrachloridoplatinate(II) chloride
aFacultad de Ingenieria Mochis, Universidad Autónoma de Sinaloa, Fuente Poseidón y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, México, bCentro de Investigaciones Quimicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62210, Cuernavaca, Morelos, México, and cCentro de Graduados e Investigación en Química del Instituto Tecnologico de Tijuana, Blvd. Industrial S/N, Col. Otay, CP 22500, Tijuana, B.C., México
*Correspondence e-mail: gaxiolajose@yahoo.com.mx
The title compound, (C12H16N3O)[PtCl4]Cl, consists of a 4,4′-(1-azaniumyl-2-hydroxyethane-1,2-diyl)dipyridinium trication, a square-planar tetrachloridoplatinate(II) dianion and a chloride ion. In the cation, the pyridinium rings attached to the central 1-azaniumyl-2-hydroxyethane fragment have an anti conformation, as indicated by the central C—C—C—C torsion angle of −166.5 (6)°, and they are inclined to one another by 63.5 (4)°. In the crystal, the cations and anions are linked through N—H⋯Cl and O—H⋯Cl hydrogen bonds. There are also π–π contacts [centroid–centroid distances = 3.671 (4) and 3.851 (4) Å] and a number of C—H⋯Cl interactions present, consolidating the formation of a three-dimensional supramolecular structure.
Related literature
For potential applications of organic-inorganic hybrid materials with magnetic, optical and electrical properties, see: Yao et al. (2010); Sanchez et al. (2011); Pardo et al. (2011); Piecha et al. (2012). For related tetrachloroplatinate(II) compounds, see: Fusi et al. (2012); Adarsh et al. (2010); Campos-Gaxiola et al. (2010); Adams et al. (2005). For the synthesis of the title ligand, see: Campos-Gaxiola et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus-NT (Bruker 2001); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S160053681300425X/su2560sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681300425X/su2560Isup2.hkl
The organic entities in the title compound are a product of partial hydrolysis starting from 2,4,5-tris(pyridin-4-yl)-4,5-dihydro-1,3-oxazole, which was synthesized according to a previously reported procedure (Campos-Gaxiola et al., 2012). For the preparation of the platinum compound, a solution of 2,4,5-tris(pyridin-4-yl)-4,5-dihydro-1,3-oxazole (0.05 g, 0.16 mmol) in methanol and concentrated HCl (37%, 3 ml) was added dropwise to a stirring solution of potassium tetrachloroplatinate (0.06 g, 0.16 mmol) in water (5 ml). The resulting yellow solution was stirred for 40 Min at 323 K, whereupon the solution was left to evaporate slowly at room temperature. After two weeks, yellow crystals were isolated [Yield: 45%]. Spectroscopic and other analytical data for the title compound are available in the archived CIF.
The N—H and O—H hydrogen atoms were localized in difference Fourier maps. They were refined with distance restraints: O-H = 0.84 (1) Å, N-H = 0.86 (1) (NH3+) and 0.84 (1) Å (pyN-H+), with Uiso(H) = 1.5 Ueq(O, N). C-bound H atoms were positioned geometrically and refined using a riding-model approximation: aryl C—H = 0.93 Å, alkyl C—H = 0.98 Å with Uiso(H) = 1.2 Ueq(C).
Data collection: SMART (Bruker, 2000); cell
SAINT-Plus-NT (Bruker 2001); data reduction: SAINT-Plus-NT (Bruker 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Perspective view of a fragment of the three-dimensional supramolecular network with O—H···Cl, N—H···Cl and C—H···Cl hydrogen bonds (dashed lines; see Table 1 for details). |
(C12H16N3O)[PtCl4]Cl | Z = 2 |
Mr = 590.62 | F(000) = 560 |
Triclinic, P1 | Dx = 2.326 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.636 (2) Å | Cell parameters from 926 reflections |
b = 8.082 (2) Å | θ = 2.7–27.5° |
c = 14.599 (4) Å | µ = 9.12 mm−1 |
α = 88.689 (4)° | T = 100 K |
β = 84.240 (4)° | Rectangular prism, orange |
γ = 70.148 (4)° | 0.50 × 0.26 × 0.12 mm |
V = 843.1 (4) Å3 |
Bruker SMART CCD area-detector diffractometer | 2911 independent reflections |
Radiation source: fine-focus sealed tube | 2726 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
phi and ω scans | θmax = 25.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→9 |
Tmin = 0.092, Tmax = 0.408 | k = −8→9 |
5093 measured reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.043P)2] where P = (Fo2 + 2Fc2)/3 |
2911 reflections | (Δ/σ)max < 0.001 |
217 parameters | Δρmax = 2.34 e Å−3 |
6 restraints | Δρmin = −1.98 e Å−3 |
(C12H16N3O)[PtCl4]Cl | γ = 70.148 (4)° |
Mr = 590.62 | V = 843.1 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.636 (2) Å | Mo Kα radiation |
b = 8.082 (2) Å | µ = 9.12 mm−1 |
c = 14.599 (4) Å | T = 100 K |
α = 88.689 (4)° | 0.50 × 0.26 × 0.12 mm |
β = 84.240 (4)° |
Bruker SMART CCD area-detector diffractometer | 2911 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2726 reflections with I > 2σ(I) |
Tmin = 0.092, Tmax = 0.408 | Rint = 0.043 |
5093 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 6 restraints |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 2.34 e Å−3 |
2911 reflections | Δρmin = −1.98 e Å−3 |
217 parameters |
Experimental. Spectroscopic and other analytical data for the title compound: IR (KBr, cm-1): 3409, 3198, 3071, 2882, 2825, 1706, 1620, 1500, 1417, 1331, 1295, 1232, 1031, 857 and 693. TGA: Calcd. for HCl: 4.32. Found: 4.75% (310–398 K); Calcd. for 2HCl: 8.65. Found: 8.23% (398–498 K). |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.0077 (7) | 0.6320 (7) | 0.1932 (4) | 0.0269 (17) | |
N1 | 0.3686 (8) | 0.5578 (8) | 0.1506 (4) | 0.0204 (17) | |
N2 | 0.0968 (8) | 1.1792 (8) | 0.0449 (4) | 0.0209 (19) | |
N3 | 0.2400 (9) | 0.3227 (9) | 0.4748 (4) | 0.025 (2) | |
C1 | 0.2559 (9) | 0.7175 (9) | 0.2054 (5) | 0.018 (2) | |
C2 | 0.0855 (10) | 0.6886 (9) | 0.2597 (5) | 0.021 (2) | |
C3 | 0.1431 (9) | 0.5553 (9) | 0.3366 (5) | 0.019 (2) | |
C4 | 0.2175 (10) | 0.5946 (10) | 0.4125 (5) | 0.023 (2) | |
C5 | 0.2658 (10) | 0.4784 (10) | 0.4820 (5) | 0.024 (2) | |
C6 | 0.1694 (11) | 0.2782 (10) | 0.4047 (5) | 0.027 (3) | |
C7 | 0.1181 (10) | 0.3947 (9) | 0.3338 (5) | 0.022 (2) | |
C8 | 0.1965 (9) | 0.8788 (9) | 0.1453 (5) | 0.019 (2) | |
C9 | 0.0633 (10) | 1.0334 (9) | 0.1822 (5) | 0.022 (2) | |
C10 | 0.0133 (10) | 1.1822 (9) | 0.1300 (5) | 0.022 (2) | |
C11 | 0.2254 (10) | 1.0358 (9) | 0.0076 (5) | 0.022 (2) | |
C12 | 0.2759 (10) | 0.8818 (9) | 0.0559 (5) | 0.020 (2) | |
Pt1 | 0.63165 (3) | 0.09264 (3) | 0.31275 (2) | 0.0146 (1) | |
Cl1 | 0.6085 (3) | −0.1851 (2) | 0.32558 (12) | 0.0222 (6) | |
Cl2 | 0.4705 (3) | 0.1426 (2) | 0.18394 (12) | 0.0226 (5) | |
Cl3 | 0.6558 (2) | 0.3685 (2) | 0.30103 (12) | 0.0192 (5) | |
Cl4 | 0.8053 (3) | 0.0399 (2) | 0.43690 (13) | 0.0259 (6) | |
Cl5 | 0.2607 (2) | 0.4569 (2) | 0.96236 (11) | 0.0201 (5) | |
H1 | 0.33450 | 0.73790 | 0.24990 | 0.0210* | |
H1' | −0.117 (5) | 0.650 (12) | 0.218 (5) | 0.0400* | |
H1A | 0.317 (10) | 0.528 (10) | 0.107 (4) | 0.0310* | |
H1B | 0.480 (4) | 0.560 (11) | 0.137 (5) | 0.0310* | |
H1C | 0.407 (11) | 0.467 (6) | 0.185 (4) | 0.0310* | |
H2 | 0.00200 | 0.80100 | 0.28680 | 0.0250* | |
H2' | 0.071 (11) | 1.280 (4) | 0.022 (5) | 0.0320* | |
H3' | 0.273 (11) | 0.258 (9) | 0.520 (4) | 0.0370* | |
H4 | 0.23480 | 0.70270 | 0.41600 | 0.0270* | |
H5 | 0.31520 | 0.50550 | 0.53290 | 0.0290* | |
H6 | 0.15420 | 0.16900 | 0.40300 | 0.0320* | |
H7 | 0.06670 | 0.36490 | 0.28420 | 0.0270* | |
H9 | 0.00840 | 1.03550 | 0.24220 | 0.0260* | |
H10 | −0.07810 | 1.28470 | 0.15380 | 0.0270* | |
H11 | 0.28160 | 1.03940 | −0.05160 | 0.0270* | |
H12 | 0.36310 | 0.78010 | 0.02890 | 0.0240* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.026 (3) | 0.035 (3) | 0.023 (3) | −0.015 (3) | −0.001 (2) | −0.001 (2) |
N1 | 0.020 (3) | 0.021 (3) | 0.018 (3) | −0.005 (3) | 0.001 (3) | 0.002 (3) |
N2 | 0.022 (3) | 0.013 (3) | 0.027 (4) | −0.006 (3) | 0.000 (3) | 0.002 (3) |
N3 | 0.020 (3) | 0.029 (4) | 0.020 (4) | −0.003 (3) | 0.004 (3) | 0.005 (3) |
C1 | 0.015 (3) | 0.019 (4) | 0.018 (4) | −0.005 (3) | −0.002 (3) | 0.000 (3) |
C2 | 0.021 (4) | 0.021 (4) | 0.019 (4) | −0.004 (3) | −0.002 (3) | 0.000 (3) |
C3 | 0.018 (4) | 0.024 (4) | 0.011 (3) | −0.006 (3) | 0.006 (3) | 0.000 (3) |
C4 | 0.027 (4) | 0.022 (4) | 0.019 (4) | −0.010 (3) | 0.005 (3) | −0.007 (3) |
C5 | 0.025 (4) | 0.032 (4) | 0.016 (4) | −0.012 (3) | 0.001 (3) | −0.006 (3) |
C6 | 0.036 (5) | 0.023 (4) | 0.023 (4) | −0.016 (4) | 0.008 (3) | −0.003 (3) |
C7 | 0.029 (4) | 0.026 (4) | 0.014 (4) | −0.012 (3) | −0.002 (3) | −0.004 (3) |
C8 | 0.020 (4) | 0.022 (4) | 0.017 (4) | −0.011 (3) | 0.001 (3) | −0.005 (3) |
C9 | 0.026 (4) | 0.020 (4) | 0.020 (4) | −0.010 (3) | 0.004 (3) | 0.000 (3) |
C10 | 0.030 (4) | 0.018 (4) | 0.017 (4) | −0.007 (3) | 0.004 (3) | −0.003 (3) |
C11 | 0.032 (4) | 0.022 (4) | 0.016 (4) | −0.013 (3) | −0.002 (3) | 0.002 (3) |
C12 | 0.021 (4) | 0.020 (4) | 0.018 (4) | −0.007 (3) | 0.003 (3) | −0.003 (3) |
Pt1 | 0.0164 (2) | 0.0135 (2) | 0.0136 (2) | −0.0049 (1) | −0.0005 (1) | −0.0017 (1) |
Cl1 | 0.0271 (10) | 0.0188 (9) | 0.0244 (10) | −0.0119 (8) | −0.0050 (7) | 0.0010 (7) |
Cl2 | 0.0248 (10) | 0.0238 (9) | 0.0193 (9) | −0.0077 (8) | −0.0047 (7) | −0.0010 (7) |
Cl3 | 0.0255 (9) | 0.0136 (8) | 0.0182 (9) | −0.0068 (7) | 0.0000 (7) | −0.0018 (6) |
Cl4 | 0.0365 (11) | 0.0214 (9) | 0.0243 (10) | −0.0127 (8) | −0.0144 (8) | 0.0043 (7) |
Cl5 | 0.0198 (9) | 0.0204 (9) | 0.0201 (9) | −0.0076 (7) | 0.0006 (7) | 0.0024 (7) |
Pt1—Cl2 | 2.303 (2) | C3—C4 | 1.384 (11) |
Pt1—Cl3 | 2.2999 (17) | C3—C7 | 1.377 (10) |
Pt1—Cl1 | 2.3127 (18) | C4—C5 | 1.358 (11) |
Pt1—Cl4 | 2.300 (2) | C6—C7 | 1.378 (10) |
O1—C2 | 1.428 (10) | C8—C12 | 1.386 (10) |
O1—H1' | 0.84 (6) | C8—C9 | 1.394 (10) |
N1—C1 | 1.484 (9) | C9—C10 | 1.370 (10) |
N2—C11 | 1.324 (9) | C11—C12 | 1.372 (10) |
N2—C10 | 1.335 (9) | C1—H1 | 0.9800 |
N3—C6 | 1.314 (10) | C2—H2 | 0.9800 |
N3—C5 | 1.346 (10) | C4—H4 | 0.9300 |
N1—H1B | 0.86 (5) | C5—H5 | 0.9300 |
N1—H1C | 0.86 (5) | C6—H6 | 0.9300 |
N1—H1A | 0.86 (7) | C7—H7 | 0.9300 |
N2—H2' | 0.84 (4) | C9—H9 | 0.9300 |
N3—H3' | 0.84 (6) | C10—H10 | 0.9300 |
C1—C2 | 1.539 (11) | C11—H11 | 0.9300 |
C1—C8 | 1.517 (10) | C12—H12 | 0.9300 |
C2—C3 | 1.529 (10) | ||
Cl3—Pt1—Cl4 | 89.28 (6) | C3—C7—C6 | 119.8 (7) |
Cl1—Pt1—Cl4 | 90.27 (7) | C9—C8—C12 | 118.2 (6) |
Cl1—Pt1—Cl2 | 90.20 (6) | C1—C8—C9 | 119.2 (6) |
Cl1—Pt1—Cl3 | 179.55 (7) | C1—C8—C12 | 122.6 (6) |
Cl2—Pt1—Cl3 | 90.24 (6) | C8—C9—C10 | 119.9 (7) |
Cl2—Pt1—Cl4 | 177.33 (8) | N2—C10—C9 | 119.6 (7) |
C2—O1—H1' | 105 (5) | N2—C11—C12 | 120.3 (7) |
C10—N2—C11 | 122.4 (6) | C8—C12—C11 | 119.6 (7) |
C5—N3—C6 | 123.5 (7) | C8—C1—H1 | 108.00 |
C1—N1—H1C | 112 (4) | N1—C1—H1 | 108.00 |
H1A—N1—H1B | 117 (7) | C2—C1—H1 | 108.00 |
C1—N1—H1A | 117 (5) | C3—C2—H2 | 109.00 |
H1B—N1—H1C | 93 (8) | O1—C2—H2 | 109.00 |
C1—N1—H1B | 109 (5) | C1—C2—H2 | 109.00 |
H1A—N1—H1C | 107 (7) | C3—C4—H4 | 119.00 |
C11—N2—H2' | 125 (5) | C5—C4—H4 | 119.00 |
C10—N2—H2' | 112 (5) | N3—C5—H5 | 121.00 |
C6—N3—H3' | 124 (5) | C4—C5—H5 | 121.00 |
C5—N3—H3' | 113 (5) | C7—C6—H6 | 120.00 |
N1—C1—C8 | 111.6 (6) | N3—C6—H6 | 120.00 |
N1—C1—C2 | 110.4 (6) | C3—C7—H7 | 120.00 |
C2—C1—C8 | 111.2 (6) | C6—C7—H7 | 120.00 |
O1—C2—C1 | 105.6 (6) | C8—C9—H9 | 120.00 |
O1—C2—C3 | 112.3 (6) | C10—C9—H9 | 120.00 |
C1—C2—C3 | 111.8 (6) | C9—C10—H10 | 120.00 |
C2—C3—C7 | 121.2 (7) | N2—C10—H10 | 120.00 |
C2—C3—C4 | 120.9 (6) | N2—C11—H11 | 120.00 |
C4—C3—C7 | 118.0 (7) | C12—C11—H11 | 120.00 |
C3—C4—C5 | 121.3 (7) | C11—C12—H12 | 120.00 |
N3—C5—C4 | 118.0 (7) | C8—C12—H12 | 120.00 |
N3—C6—C7 | 119.5 (7) | ||
C11—N2—C10—C9 | 1.2 (12) | C1—C2—C3—C4 | 68.4 (9) |
C10—N2—C11—C12 | 1.0 (12) | C1—C2—C3—C7 | −113.4 (8) |
C6—N3—C5—C4 | −0.6 (12) | C2—C3—C4—C5 | 178.7 (7) |
C5—N3—C6—C7 | 0.1 (12) | C7—C3—C4—C5 | 0.4 (12) |
N1—C1—C2—O1 | −53.4 (7) | C2—C3—C7—C6 | −179.2 (7) |
N1—C1—C2—C3 | 69.1 (7) | C4—C3—C7—C6 | −0.9 (11) |
C8—C1—C2—O1 | 71.1 (7) | C3—C4—C5—N3 | 0.3 (12) |
C8—C1—C2—C3 | −166.5 (6) | N3—C6—C7—C3 | 0.7 (12) |
N1—C1—C8—C9 | 168.8 (7) | C1—C8—C9—C10 | 177.5 (7) |
N1—C1—C8—C12 | −14.3 (10) | C12—C8—C9—C10 | 0.5 (11) |
C2—C1—C8—C9 | 45.1 (9) | C1—C8—C12—C11 | −175.3 (7) |
C2—C1—C8—C12 | −138.1 (7) | C9—C8—C12—C11 | 1.6 (11) |
O1—C2—C3—C4 | −173.2 (7) | C8—C9—C10—N2 | −1.9 (12) |
O1—C2—C3—C7 | 5.1 (10) | N2—C11—C12—C8 | −2.4 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1′···Cl1i | 0.84 (6) | 2.49 (7) | 3.250 (6) | 152 (6) |
N1—H1A···Cl5ii | 0.86 (7) | 2.32 (6) | 3.148 (6) | 162 (7) |
N1—H1B···Cl5iii | 0.86 (5) | 2.30 (6) | 3.097 (7) | 154 (7) |
N1—H1C···Cl2 | 0.86 (5) | 2.50 (5) | 3.214 (6) | 141 (6) |
N1—H1C···Cl3 | 0.86 (5) | 2.58 (7) | 3.242 (6) | 134 (6) |
N2—H2′···Cl5iv | 0.84 (4) | 2.45 (7) | 3.088 (6) | 134 (7) |
N2—H2′···Cl5v | 0.84 (4) | 2.69 (6) | 3.272 (6) | 128 (7) |
N3—H3′···Cl1vi | 0.84 (6) | 2.50 (6) | 3.275 (6) | 155 (6) |
N3—H3′···Cl4vi | 0.84 (6) | 2.72 (7) | 3.286 (7) | 127 (7) |
C1—H1···Cl1vii | 0.98 | 2.71 | 3.660 (8) | 163 |
C5—H5···Cl3iii | 0.93 | 2.71 | 3.604 (8) | 162 |
C10—H10···Cl3i | 0.93 | 2.73 | 3.459 (8) | 136 |
C10—H10···Cl5v | 0.93 | 2.74 | 3.308 (7) | 120 |
C11—H11···Cl2viii | 0.93 | 2.64 | 3.449 (8) | 145 |
Symmetry codes: (i) x−1, y+1, z; (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z−1; (v) −x, −y+2, −z+1; (vi) −x+1, −y, −z+1; (vii) x, y+1, z; (viii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | (C12H16N3O)[PtCl4]Cl |
Mr | 590.62 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.636 (2), 8.082 (2), 14.599 (4) |
α, β, γ (°) | 88.689 (4), 84.240 (4), 70.148 (4) |
V (Å3) | 843.1 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 9.12 |
Crystal size (mm) | 0.50 × 0.26 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.092, 0.408 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5093, 2911, 2726 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.091, 1.05 |
No. of reflections | 2911 |
No. of parameters | 217 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 2.34, −1.98 |
Computer programs: SMART (Bruker, 2000), SAINT-Plus-NT (Bruker 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1'···Cl1i | 0.84 (6) | 2.49 (7) | 3.250 (6) | 152 (6) |
N1—H1A···Cl5ii | 0.86 (7) | 2.32 (6) | 3.148 (6) | 162 (7) |
N1—H1B···Cl5iii | 0.86 (5) | 2.30 (6) | 3.097 (7) | 154 (7) |
N1—H1C···Cl2 | 0.86 (5) | 2.50 (5) | 3.214 (6) | 141 (6) |
N1—H1C···Cl3 | 0.86 (5) | 2.58 (7) | 3.242 (6) | 134 (6) |
N2—H2'···Cl5iv | 0.84 (4) | 2.45 (7) | 3.088 (6) | 134 (7) |
N2—H2'···Cl5v | 0.84 (4) | 2.69 (6) | 3.272 (6) | 128 (7) |
N3—H3'···Cl1vi | 0.84 (6) | 2.50 (6) | 3.275 (6) | 155 (6) |
N3—H3'···Cl4vi | 0.84 (6) | 2.72 (7) | 3.286 (7) | 127 (7) |
C1—H1···Cl1vii | 0.98 | 2.71 | 3.660 (8) | 163 |
C5—H5···Cl3iii | 0.93 | 2.71 | 3.604 (8) | 162 |
C10—H10···Cl3i | 0.93 | 2.73 | 3.459 (8) | 136 |
C10—H10···Cl5v | 0.93 | 2.74 | 3.308 (7) | 120 |
C11—H11···Cl2viii | 0.93 | 2.64 | 3.449 (8) | 145 |
Symmetry codes: (i) x−1, y+1, z; (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z−1; (v) −x, −y+2, −z+1; (vi) −x+1, −y, −z+1; (vii) x, y+1, z; (viii) −x+1, −y+1, −z. |
Acknowledgements
This work was supported financially by the Universidad Autónoma de Sinaloa (PROFAPI 2012/032).
References
Adams, C. J., Paul, C. C., Orpen, A. G., Podesta, T. J. & Salt, B. (2005). Chem. Commun. pp. 2457–2458. Web of Science CSD CrossRef Google Scholar
Adarsh, N. N., Krishna Kumar, D. & Dastidar, P. (2010). Acta Cryst. E66, m270. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Campos-Gaxiola, J. J., Höpfl, H., Aguirre, G. & Parra-Hake, M. (2012). Acta Cryst. E68, o1873. CSD CrossRef IUCr Journals Google Scholar
Campos-Gaxiola, J. J., Vega-Paz, A., Román-Bravo, P., Höpfl, H. & Sánchez-Vázquez, M. (2010). Cryst. Growth Des. 10, 3182–3190. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fusi, V., Giorgi, L., Macedi, E., Paoli, P. & Rossi, P. (2012). Acta Cryst. E68, m1323–m1324. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pardo, R., Zayat, M. & Levy, D. (2011). Chem. Soc. Rev. 40, 672–687. Web of Science CrossRef CAS PubMed Google Scholar
Piecha, A., Bialoríska, A. & Jakubas, R. (2012). J. Mater. Chem. 22, 333–336. Web of Science CSD CrossRef CAS Google Scholar
Sanchez, C., Belleville, P., Popall, M. & Lionel, N. (2011). Chem. Soc. Rev. 40, 696–753. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yao, H. B., Gao, M. R. & Yu, S. H. (2010). Nanoscale, 2, 323–334. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrogen bond based organic–inorganic hybrid materials are receiving continuous interest because of their structural, magnetic, optical and electrical properties (Yao et al. 2010; Sanchez et al. 2011; Pardo et al. 2011 and Piecha et al. 2012). An interesting approach for the preparation of such materials consists in the utilization of supramolecular synthons containing charge-assisted N+–H···-Cl hydrogen bonds, through which organic cations and anionic metal complexes are linked to form crystalline organic–inorganic hybrid solids (Fusi et al. 2012; Adarsh et al. 2010; Campos-Gaxiola et al. 2010, and Adams et al. 2005). As a further contribution we report herein the crystal structure of the title compound.
The molecular structure of the title compound is illustrated in Fig. 1. The asymmetric unit consists of one threefold charged organic cation in a general position, one independent [PtCl4]2- dianion, and one chloride atom (Fig 1). In the cation, the pyridinium rings attached to the central 2-ammoniumethanol fragment show anti conformation, as indicated by the C8—C1—C2—C3 torsion angle of -166.5 (6)°. The pyridinium rings form a dihedral angle of 63.5 (4)°. The Pt atom is embedded in a square-planar coordination environment with Pt—Cl distances ranging from 2.2999 (17) to 2.3127 (18) Å.
In the crystal, the cations and anions are linked by charge-assisted N+—H···-Cl, O—H···-Cl hydrogen bonds (Table 1). There are also a number of C—H···Cl contacts and π—π interactions present, consolidating the formation of the three-dimensional supramolecular structure (Table 1 and Fig 2). The π—π interactions are parallel slipped interactions involving inversion related pyridinium rings, Cg1 = N2/C8-C12 and Cg2 = N3/C3-C7 [Cg1···Cg1i = 3.851 (4); normal distance 3.487 (3) Å; slippage 1.634 Å; symmetry code: (i) -x, -y+2, -z: Cg2···Cg2ii = 3.671 (4) Å; normal distance 3.460 (3) Å; slippage 1.225 Å; symmetry code: (ii) -x, -y+1, -z].