organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Bis(thio­phen-3-yl)quinoxaline

aDepartment of Chemistry, Central Connecticut State University, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@mail.ccsu.edu

(Received 7 February 2013; accepted 12 February 2013; online 16 February 2013)

In the title compound, C16H10N2S2, the thienyl rings are inclined to one another by 62.71 (10)°, and are inclined by 63.94 (8) and 21.35 (8)° to the quinoline mean plane [maximum deviation = 0.031 (2) Å]. In the crystal, the mol­ecules pack in a herringbone pattern, with ππ stacking inter­actions [centroid–centroid distances = 3.7381 (15) and 3.7268 (15) Å].

Related literature

For the synthesis of the title compound, and the crystal structure of the 2,3-di(thio­phen-2-yl)quinoxaline analogue, see: Crundwell et al. (2003[Crundwell, G., Sayers, D., Herron, S. R. & Kantardjieff, K. A. (2003). Acta Cryst. E59, o314-o315.]). For the structure of a similar compound, see: Cantalupo et al. (2010[Cantalupo, S. A., Crundwell, G. & Glagovich, N. (2010). Acta Cryst. E66, o2184.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10N2S2

  • Mr = 294.38

  • Monoclinic, P 21 /c

  • a = 15.966 (2) Å

  • b = 5.5741 (15) Å

  • c = 15.629 (4) Å

  • β = 98.25 (2)°

  • V = 1376.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 293 K

  • 0.45 × 0.44 × 0.39 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.731, Tmax = 1.000

  • 30279 measured reflections

  • 4745 independent reflections

  • 2660 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.183

  • S = 0.92

  • 4745 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the title compound, Fig. 1, the quinoxaline moiety is flat, with a dihedral angle involving rings N1/N2/C1-C3/C8 and C3-C8 of 1.71 (9) °, and the two thienyl rings, S1/C9-C12 and S2/C13-C16, are inclined to the quinoxaline mean plane by 63.94 (8) and 21.35 (8) °, respectively. All bond lengths and angles fall within the typical ranges found in similar compounds (Cantalupo et al., 2010; Crundwell et al., 2003).

In the crystal, molecules pack in a herringbone pattern with π···π intermolecular contacts of 3.7381 (15) and 3.7268 (15) Å, for Cg1···Cg1i and Cg2···Cg3ii, respectively [where Cg1 is ring S1/C9-C12; Cg2 is ring S2/C13-C16; Cg3 is ring N1/N2/C1-C3/C8; symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z].

Related literature top

For the synthesis of the title compound, and the crystal structure of the 2,3-di(thiophen-2-yl)quinoxaline analogue, see: Crundwell et al. (2003). For the structure of a similar compound, see: Cantalupo et al. (2010).

Experimental top

The title compound was prepared and purified according to literature methods (Crundwell et al., 2003). Equal mole amounts of o-phenylenediamine (1.62 g, 15.0 mmol) and 3,3'-thenil (3.33 g, 15.0 mmol) were dissolved in 95% ethanol and heated in an Erlenmeyer flask in a hot water bath. Recrystallization of the crude product from boiling ethanol sufficiently purified the quinoxaline product as a pale white solid (3.71 g, 12.6 mmol; 84% yield; M.p. 403 K). Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

Hydrogen atoms were included in calculated positions and included in the refinement in the riding motion approximation: C-H = 0.93 Å with Uiso = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
2,3-Bis(thiophen-3-yl)quinoxaline top
Crystal data top
C16H10N2S2F(000) = 608
Mr = 294.38Dx = 1.420 Mg m3
Monoclinic, P21/cMelting point: 406 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.966 (2) ÅCell parameters from 3293 reflections
b = 5.5741 (15) Åθ = 4.1–33.0°
c = 15.629 (4) ŵ = 0.38 mm1
β = 98.25 (2)°T = 293 K
V = 1376.5 (6) Å3Block, white
Z = 40.45 × 0.44 × 0.39 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4745 independent reflections
Radiation source: fine-focus sealed tube2660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
Detector resolution: 16.1790 pixels mm-1θmax = 32.5°, θmin = 4.2°
ω scansh = 2323
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 88
Tmin = 0.731, Tmax = 1.000l = 2323
30279 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.1124P)2]
where P = (Fo2 + 2Fc2)/3
4745 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C16H10N2S2V = 1376.5 (6) Å3
Mr = 294.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.966 (2) ŵ = 0.38 mm1
b = 5.5741 (15) ÅT = 293 K
c = 15.629 (4) Å0.45 × 0.44 × 0.39 mm
β = 98.25 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4745 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2660 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 1.000Rint = 0.087
30279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 0.92Δρmax = 0.44 e Å3
4745 reflectionsΔρmin = 0.50 e Å3
181 parameters
Special details top

Experimental. Spectroscopic data for the title compound: 1H NMR (300 MHz, (CD3)2CO) d 8.088 (m, 1H), 7.840 (m, 1H), 7.678 (dd, 1H),7.539 (dd, 1H), 7.331 (dd, 1H); 13C NMR (300 MHz,CDCl3) d 148.81, 140.86, 140.51, 129.88, 128.90, 128.60, 127.02, 125.50.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.29116 (9)0.2491 (3)0.02718 (9)0.0397 (3)
C10.29649 (11)0.4316 (3)0.02698 (11)0.0360 (4)
C20.22246 (11)0.5650 (3)0.04216 (11)0.0373 (4)
N20.14724 (10)0.5169 (3)0.00197 (10)0.0423 (4)
C30.14154 (11)0.3343 (4)0.06015 (11)0.0406 (4)
C40.06234 (12)0.2759 (4)0.10817 (13)0.0531 (5)
H40.01460.36530.10100.064*
C50.05559 (14)0.0887 (4)0.16501 (14)0.0586 (6)
H50.00340.05250.19700.070*
C60.12757 (15)0.0510 (4)0.17559 (14)0.0543 (5)
H60.12220.17860.21430.065*
C70.20477 (13)0.0005 (4)0.12934 (13)0.0466 (5)
H70.25160.09290.13610.056*
C80.21308 (11)0.1952 (3)0.07156 (11)0.0391 (4)
C90.43076 (12)0.3380 (4)0.12458 (12)0.0478 (5)
H90.41250.18770.14000.057*
C100.38308 (11)0.4901 (3)0.07058 (11)0.0367 (4)
C110.42746 (12)0.7043 (4)0.05750 (12)0.0469 (5)
H110.40480.82910.02200.056*
C120.50766 (12)0.7072 (4)0.10303 (14)0.0535 (5)
H120.54580.83280.10190.064*
S10.52814 (3)0.45345 (12)0.16120 (4)0.0617 (2)
C130.28349 (12)0.7946 (4)0.17905 (12)0.0453 (4)
H130.33060.69730.19400.054*
C140.22447 (11)0.7587 (3)0.10719 (11)0.0387 (4)
C150.15839 (13)0.9348 (4)0.10173 (13)0.0459 (5)
H150.11220.93810.05810.055*
C160.17121 (12)1.1020 (4)0.16974 (13)0.0439 (4)
H160.13551.23040.17650.053*
S20.26067 (4)1.03661 (12)0.23738 (4)0.0598 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0331 (7)0.0495 (9)0.0355 (7)0.0031 (6)0.0019 (6)0.0029 (7)
C10.0306 (8)0.0450 (10)0.0321 (8)0.0010 (7)0.0028 (6)0.0029 (7)
C20.0324 (8)0.0463 (11)0.0324 (8)0.0016 (7)0.0020 (6)0.0040 (7)
N20.0338 (8)0.0528 (10)0.0387 (8)0.0007 (6)0.0000 (6)0.0033 (7)
C30.0352 (9)0.0495 (11)0.0353 (8)0.0035 (8)0.0007 (7)0.0041 (8)
C40.0373 (10)0.0663 (14)0.0523 (11)0.0016 (9)0.0054 (8)0.0031 (10)
C50.0437 (11)0.0759 (16)0.0515 (12)0.0120 (10)0.0088 (9)0.0036 (11)
C60.0559 (12)0.0628 (14)0.0414 (10)0.0125 (10)0.0028 (9)0.0093 (10)
C70.0445 (10)0.0530 (12)0.0418 (10)0.0057 (8)0.0043 (8)0.0053 (8)
C80.0346 (8)0.0497 (11)0.0322 (8)0.0066 (7)0.0019 (6)0.0027 (8)
C90.0388 (10)0.0525 (12)0.0490 (11)0.0023 (8)0.0045 (8)0.0020 (9)
C100.0306 (8)0.0470 (10)0.0322 (8)0.0010 (7)0.0030 (6)0.0044 (7)
C110.0424 (10)0.0518 (12)0.0461 (10)0.0055 (8)0.0049 (8)0.0037 (9)
C120.0373 (10)0.0597 (13)0.0635 (13)0.0132 (9)0.0076 (9)0.0124 (11)
S10.0398 (3)0.0779 (5)0.0612 (4)0.0005 (2)0.0134 (2)0.0057 (3)
C130.0437 (10)0.0523 (11)0.0398 (9)0.0014 (9)0.0052 (7)0.0036 (9)
C140.0358 (8)0.0446 (10)0.0368 (8)0.0011 (7)0.0092 (7)0.0008 (7)
C150.0408 (10)0.0519 (12)0.0462 (10)0.0024 (8)0.0104 (8)0.0049 (9)
C160.0397 (9)0.0428 (10)0.0518 (11)0.0044 (8)0.0154 (8)0.0022 (8)
S20.0572 (4)0.0705 (4)0.0532 (3)0.0039 (3)0.0130 (3)0.0152 (3)
Geometric parameters (Å, º) top
N1—C11.318 (2)C9—C101.351 (3)
N1—C81.370 (2)C9—S11.7040 (19)
C1—C21.445 (2)C9—H90.9300
C1—C101.487 (2)C10—C111.418 (3)
C2—N21.324 (2)C11—C121.373 (3)
C2—C141.480 (2)C11—H110.9300
N2—C31.359 (2)C12—S11.688 (2)
C3—C81.413 (3)C12—H120.9300
C3—C41.413 (2)C13—C141.373 (2)
C4—C51.365 (3)C13—S21.697 (2)
C4—H40.9300C13—H130.9300
C5—C61.417 (3)C14—C151.435 (3)
C5—H50.9300C15—C161.406 (3)
C6—C71.367 (3)C15—H150.9300
C6—H60.9300C16—S21.690 (2)
C7—C81.406 (3)C16—H160.9300
C7—H70.9300
C1—N1—C8117.70 (15)C10—C9—S1112.20 (16)
N1—C1—C2121.58 (16)C10—C9—H9123.9
N1—C1—C10115.70 (15)S1—C9—H9123.9
C2—C1—C10122.72 (16)C9—C10—C11111.71 (17)
N2—C2—C1120.83 (17)C9—C10—C1123.50 (17)
N2—C2—C14115.76 (16)C11—C10—C1124.71 (16)
C1—C2—C14123.41 (15)C12—C11—C10112.53 (18)
C2—N2—C3117.98 (16)C12—C11—H11123.7
N2—C3—C8121.18 (16)C10—C11—H11123.7
N2—C3—C4119.79 (17)C11—C12—S1111.33 (16)
C8—C3—C4118.99 (18)C11—C12—H12124.3
C5—C4—C3120.2 (2)S1—C12—H12124.3
C5—C4—H4119.9C12—S1—C992.21 (10)
C3—C4—H4119.9C14—C13—S2112.35 (15)
C4—C5—C6120.42 (19)C14—C13—H13123.8
C4—C5—H5119.8S2—C13—H13123.8
C6—C5—H5119.8C13—C14—C15111.18 (18)
C7—C6—C5120.5 (2)C13—C14—C2127.79 (17)
C7—C6—H6119.7C15—C14—C2121.00 (17)
C5—C6—H6119.7C16—C15—C14112.50 (18)
C6—C7—C8119.8 (2)C16—C15—H15123.8
C6—C7—H7120.1C14—C15—H15123.8
C8—C7—H7120.1C15—C16—S2110.37 (15)
N1—C8—C7119.34 (17)C15—C16—H16124.8
N1—C8—C3120.58 (17)S2—C16—H16124.8
C7—C8—C3120.08 (16)C16—S2—C1393.60 (10)

Experimental details

Crystal data
Chemical formulaC16H10N2S2
Mr294.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.966 (2), 5.5741 (15), 15.629 (4)
β (°) 98.25 (2)
V3)1376.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.45 × 0.44 × 0.39
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.731, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
30279, 4745, 2660
Rint0.087
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.183, 0.92
No. of reflections4745
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.50

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was funded by a CCSU–AAUP research grant.

References

First citationCantalupo, S. A., Crundwell, G. & Glagovich, N. (2010). Acta Cryst. E66, o2184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCrundwell, G., Sayers, D., Herron, S. R. & Kantardjieff, K. A. (2003). Acta Cryst. E59, o314–o315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds