organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[N-(4-Meth­­oxy­phen­yl)acetamido]-1,3-thia­zol-4-yl acetate

aDepartment of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine, bDepartment of Organic Chemistry, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland, and cFaculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. A. Jurasza 2, 85-089 Bydgoszcz, Poland
*Correspondence e-mail: akgzella@ump.edu.pl

(Received 7 February 2013; accepted 12 February 2013; online 16 February 2013)

The structural analysis of the title compound, C14H14N2O4S, particularly the presence of an acetyl group at the exocyclic N atom and the C(H)—C(O2CMe)—N acet­oxy group in the thia­zole ring, may indicate that one of the starting materials, i.e. 2-(4-meth­oxy­anilino)-1,3-thia­zol-4(5H)-one, exists in the reaction mixture, at least partially, as a tautomer with an exocyclic amine N atom and an enol group. The acet­oxy and acetyl groups deviate from the thia­zole plane by 69.17 (6) and 7.25 (19)°, respectively. The thia­zole and benzene rings form a dihedral angle of 73.50 (4)°. In the crystal, centrosymmetrically related mol­ecules are connected into dimeric aggregates via C—H⋯O inter­actions.

Related literature

For the biological activity of 2-ar­yl(heter­yl)amino­thia­zol-4-one derivatives, see: Ates et al. (2000[Ates, O., Altintas, H. & Otukb, G. (2000). Arzneim. Forsch. 6, 569-575.]); Eleftheriou et al. (2012[Eleftheriou, P., Geronikaki, A., Hadjipavlou-Litina, D., Vicini, P., Filz, O., Filimonov, D., Poroikov, V., Shailendra, S., Chaudhaery, S. S., Roy, K. K. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 111-124.]); Eriksson et al. (2007[Eriksson, B., Kurz, G., Hedberg, C. & Westman, J. (2007). Patent No. WO2007010273.]); Lesyk & Zimenkovsky (2004[Lesyk, R. B. & Zimenkovsky, B. S. (2004). Curr. Org. Chem. 8, 1547-1577.]); Lesyk et al. (2003[Lesyk, R., Zimenkovsky, B., Subtelna, I., Nektegayev, I. & Kazmirchuk, G. (2003). Acta Pol. Pharm. 60, 457-466.], 2011[Lesyk, R. B., Zimenkovsky, B. S., Kaminskyy, D. V., Kryshchyshyn, A. P., Havrylyuk, D. Ya., Atamanyuk, D. V., Subtel na, I. Yu. & Khyluk, D. V. (2011). Biopolym. Cell, 27, 107-117.]); Rout & Mahapatra (1955[Rout, M. K. & Mahapatra, G. N. (1955). J. Am. Chem. Soc. 5, 2427-2428.]); Subtel'na et al. (2010[Subtel'na, I., Atamanyuk, D., Szymańska, E., Kieć-Kononowicz, K., Zimenkovsky, B., Vasylenko, O., Gzella, A. & Lesyk, R. (2010). Bioorg. Med. Chem. 18, 5090-5102.]). For prototropic tautomerism studies, see: Lesyk et al. (2003[Lesyk, R., Zimenkovsky, B., Subtelna, I., Nektegayev, I. & Kazmirchuk, G. (2003). Acta Pol. Pharm. 60, 457-466.]); Subtel'na et al. (2010[Subtel'na, I., Atamanyuk, D., Szymańska, E., Kieć-Kononowicz, K., Zimenkovsky, B., Vasylenko, O., Gzella, A. & Lesyk, R. (2010). Bioorg. Med. Chem. 18, 5090-5102.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structural study, see: Horishny et al. (2013[Horishny, V., Lesyk, R., Kowiel, M. & Gzella, A. K. (2013). Acta Cryst. E69, o356-o357.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O4S

  • Mr = 306.33

  • Triclinic, [P \overline 1]

  • a = 8.9445 (5) Å

  • b = 9.5736 (8) Å

  • c = 9.9078 (9) Å

  • α = 115.509 (9)°

  • β = 93.381 (6)°

  • γ = 108.144 (6)°

  • V = 708.95 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 130 K

  • 0.50 × 0.50 × 0.10 mm

Data collection
  • Agilent Xcalibur Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.860, Tmax = 1.000

  • 12469 measured reflections

  • 3445 independent reflections

  • 3075 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.06

  • 3445 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O20i 0.93 2.53 3.200 (2) 129
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Significant popularity of thiazolidine scaffolds in drug design is grounded on the broad spectrum of biological activity of their derivatives. Among thiazolidine derivatives the group of 2-aryl(heteryl)aminothiazol-4-one derivatives is one of the most promising (Lesyk & Zimenkovsky, 2004; Lesyk et al., 2011). 2-Aryl(heteryl)aminothiazol-4-one activities covers antibacterial (Ates et al., 2000), antifungal (Rout & Mahapatra, 1955), anti-inflammatory (Lesyk et al., 2003; Eleftheriou et al., 2012) and anticancer activities (Subtel'na et al., 2010; Eriksson et al., 2007). Moreover, literature reports indicate existence of prototropic tautomeric forms of 3-unsubstituted 2-aryl(heteryl)aminothiazol-4-ones both in solutions and solid phase which can be of significant importance for biological activity (Lesyk et al., 2003; Subtel'na et al., 2010). Dictated by these observations, the aim of the presented work was synthesis of the compound (I) as starting substance for further design of new biologically active compounds.

The investigations on the structure of the title compound, a product of the reaction of 2-(4-methoxyanilino)-1,3-thiazol-4-one with acetyl anhydride, showed the presence of an acetoxy group at C4 and an acetyl functionality at N6 (Fig. 1). Similar observations were made for the product obtained by the identical method from 2-(2,4-dimethoxyanilino)-1,3-thiazol-4-one. The presence of the C4 acetoxy and N6 acetyl groups in the structure of compound (I) and 2-[N-(2,4-dimethoxyphenyl)acetamido]-1,3-thiazol-4-yl acetate (Horishny et al., 2013) may indicate that the starting materials, i.e. 2-(4-methoxyanilino)-1,3-thiazol-4-one and 2-(2,4-dimethoxyanilino)-1,3-thiazol-4-one, exist in the reaction mixture at least partially as tautomers with an exocyclic amine nitrogen and an enol moiety (H—)C5C4—OH within the five-membered heterocyclic ring.

The C4 acetoxy group and N6 acetyl functionality are oriented differently in relation to the planar thiazole ring. The first one forms a dihedral angle of 79.22 (5)° with the mean plane of this ring whereas the second one is tilted only slightly [dihedral angle: 7.25 (19)°] (Fig. 1).

Both the C7O8 carbonyl group relative to the C2—N6 bond and the C21 O22 carbonyl group in relation to the C4—O20 bond have the same synperiplanar conformation. The torsional angles C2—N6—C7—O8 and C4—O18—C19—O20 are 4.96 (19) and -1.67 (19)°, respectively. The C13 methoxy group is approximately coplanar with the phenyl ring – the torsion angle is 1.9 (2)°. The flat phenyl and thiazole rings form a dihedral angle of 73.50 (4)°.

The bond lengths and angles in compound (I) are similar to those observed in 2-[N-(2,4-dimethoxyphenyl)acetamido]-1,3-thiazol-4-yl acetate (Horishny et al., 2013). The N6—C7 distance [1.3876 (16) Å] is longer (by about 8σ) than the normal (O)C—N tertiary amide distance [1.346 (5) Å, Allen et al., 1987].

In the crystal structure, the molecules of (I) are connected by the C5—H5···O21i hydrogen bonds into centrosymmetric dimers (Table 1, Fig. 2).

Related literature top

For the biological activity of 2-aryl(heteryl)aminothiazol-4-one derivatives, see: Ates et al. (2000); Eleftheriou et al. (2012); Eriksson et al. (2007); Lesyk & Zimenkovsky (2004); Lesyk et al. (2003, 2011); Rout & Mahapatra (1955); Subtel'na et al. (2010). For prototropic tautomerism studies, see: Lesyk et al. (2003); Subtel'na et al. (2010). For bond-length data, see: Allen et al. (1987). For a related structural study, see: Horishny et al. (2013).

Experimental top

2-(4-Methoxyanilino)thiazol-4-one in the medium of acetic anhydride was refluxed for 2 h. The obtained solution was evaporated in vacuum and the residue was recrystallized twice from benzene–hexane (1:1) mixtures.

Refinement top

All H atoms were located into the idealized positions and were refined within the riding model approximation: Cmethyl—H = 0.96 Å, C(sp2)—H = 0.93 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H. The methyl groups were refined as rigid groups which were allowed to rotate.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) together with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. The hydrogen bonding (dotted lines) in the title structure. Symmetry code: (i) -x,1 - y,1 - z. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-[N-(4-Methoxyphenyl)acetamido]-1,3-thiazol-4-yl acetate top
Crystal data top
C14H14N2O4SZ = 2
Mr = 306.33F(000) = 320
Triclinic, P1Dx = 1.435 Mg m3
Hall symbol: -P 1Melting point = 399–401 K
a = 8.9445 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5736 (8) ÅCell parameters from 5310 reflections
c = 9.9078 (9) Åθ = 2.3–29.1°
α = 115.509 (9)°µ = 0.25 mm1
β = 93.381 (6)°T = 130 K
γ = 108.144 (6)°Block, yellow
V = 708.95 (10) Å30.50 × 0.50 × 0.10 mm
Data collection top
Agilent Xcalibur Atlas
diffractometer
3445 independent reflections
Radiation source: fine-focus sealed tube3075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.3088 pixels mm-1θmax = 29.1°, θmin = 2.3°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1312
Tmin = 0.860, Tmax = 1.000l = 1213
12469 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.045P)2 + 0.2987P]
where P = (Fo2 + 2Fc2)/3
3445 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H14N2O4Sγ = 108.144 (6)°
Mr = 306.33V = 708.95 (10) Å3
Triclinic, P1Z = 2
a = 8.9445 (5) ÅMo Kα radiation
b = 9.5736 (8) ŵ = 0.25 mm1
c = 9.9078 (9) ÅT = 130 K
α = 115.509 (9)°0.50 × 0.50 × 0.10 mm
β = 93.381 (6)°
Data collection top
Agilent Xcalibur Atlas
diffractometer
3445 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3075 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 1.000Rint = 0.022
12469 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.06Δρmax = 0.37 e Å3
3445 reflectionsΔρmin = 0.27 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09020 (4)0.14762 (4)0.45516 (4)0.02269 (10)
C20.03052 (15)0.08180 (16)0.32947 (14)0.0177 (2)
N30.16077 (13)0.19958 (13)0.34043 (12)0.0191 (2)
C40.16774 (16)0.34906 (16)0.45435 (15)0.0215 (3)
C50.04751 (17)0.34910 (17)0.52956 (16)0.0249 (3)
H50.03990.44280.60900.030*
N60.00495 (12)0.08552 (13)0.22511 (12)0.0182 (2)
C70.14419 (16)0.20995 (17)0.21360 (16)0.0233 (3)
O80.24272 (12)0.17289 (13)0.28765 (13)0.0308 (2)
C90.16476 (18)0.38706 (18)0.10871 (18)0.0305 (3)
H9A0.25350.46150.12450.046*
H9B0.06780.40400.13050.046*
H9C0.18610.40890.00400.046*
C100.11162 (15)0.12397 (15)0.13403 (14)0.0182 (2)
C110.25487 (16)0.11824 (17)0.20057 (15)0.0220 (3)
H110.27700.08870.30420.026*
C120.36650 (16)0.15662 (17)0.11261 (16)0.0237 (3)
H120.46330.15270.15690.028*
C130.33070 (16)0.20089 (16)0.04265 (16)0.0229 (3)
C140.18573 (17)0.20726 (17)0.10887 (15)0.0240 (3)
H140.16230.23830.21280.029*
C150.07619 (16)0.16761 (16)0.02071 (15)0.0213 (3)
H150.02010.17010.06450.026*
O160.42891 (13)0.24239 (14)0.14095 (12)0.0321 (2)
C170.57663 (19)0.2456 (2)0.0825 (2)0.0358 (4)
H17A0.63890.13900.00390.054*
H17B0.63680.26960.16110.054*
H17C0.55370.33040.05090.054*
O180.30433 (12)0.49009 (12)0.49350 (11)0.0263 (2)
C190.31110 (16)0.56737 (17)0.40442 (16)0.0238 (3)
O200.20654 (12)0.51567 (14)0.29430 (12)0.0311 (2)
C210.46079 (18)0.7203 (2)0.4657 (2)0.0372 (4)
H21A0.54210.69450.41160.056*
H21B0.49910.75960.57300.056*
H21C0.43760.80530.45200.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02568 (18)0.02852 (19)0.02403 (18)0.01508 (14)0.01369 (13)0.01672 (15)
C20.0191 (6)0.0226 (6)0.0167 (6)0.0101 (5)0.0062 (4)0.0118 (5)
N30.0194 (5)0.0210 (5)0.0186 (5)0.0081 (4)0.0053 (4)0.0102 (4)
C40.0252 (6)0.0201 (6)0.0195 (6)0.0085 (5)0.0027 (5)0.0098 (5)
C50.0336 (7)0.0255 (7)0.0211 (6)0.0165 (6)0.0092 (5)0.0117 (6)
N60.0182 (5)0.0195 (5)0.0183 (5)0.0067 (4)0.0064 (4)0.0100 (4)
C70.0215 (6)0.0257 (7)0.0246 (7)0.0057 (5)0.0047 (5)0.0157 (6)
O80.0236 (5)0.0334 (6)0.0390 (6)0.0084 (4)0.0141 (4)0.0207 (5)
C90.0312 (7)0.0221 (7)0.0329 (8)0.0028 (6)0.0072 (6)0.0135 (6)
C100.0212 (6)0.0159 (5)0.0181 (6)0.0069 (5)0.0075 (5)0.0084 (5)
C110.0238 (6)0.0241 (6)0.0188 (6)0.0087 (5)0.0057 (5)0.0110 (5)
C120.0208 (6)0.0247 (6)0.0258 (7)0.0086 (5)0.0051 (5)0.0122 (6)
C130.0286 (7)0.0173 (6)0.0235 (7)0.0086 (5)0.0122 (5)0.0095 (5)
C140.0343 (7)0.0217 (6)0.0158 (6)0.0108 (5)0.0068 (5)0.0084 (5)
C150.0249 (6)0.0200 (6)0.0196 (6)0.0085 (5)0.0036 (5)0.0098 (5)
O160.0367 (6)0.0362 (6)0.0288 (5)0.0192 (5)0.0182 (4)0.0148 (5)
C170.0318 (8)0.0345 (8)0.0471 (10)0.0178 (7)0.0216 (7)0.0192 (7)
O180.0276 (5)0.0202 (5)0.0259 (5)0.0053 (4)0.0000 (4)0.0097 (4)
C190.0227 (6)0.0233 (6)0.0278 (7)0.0112 (5)0.0095 (5)0.0120 (6)
O200.0288 (5)0.0357 (6)0.0291 (5)0.0071 (4)0.0047 (4)0.0194 (5)
C210.0253 (7)0.0317 (8)0.0537 (10)0.0046 (6)0.0024 (7)0.0245 (8)
Geometric parameters (Å, º) top
S1—C51.7233 (15)C11—H110.9300
S1—C21.7379 (12)C12—C131.3944 (19)
C2—N31.3046 (16)C12—H120.9300
C2—N61.3979 (17)C13—O161.3649 (16)
N3—C41.3678 (17)C13—C141.390 (2)
C4—C51.3439 (19)C14—C151.3835 (18)
C4—O181.3899 (16)C14—H140.9300
C5—H50.9300C15—H150.9300
N6—C71.3876 (16)O16—C171.4258 (19)
N6—C101.4494 (15)C17—H17A0.9600
C7—O81.2196 (17)C17—H17B0.9600
C7—C91.501 (2)C17—H17C0.9600
C9—H9A0.9600O18—C191.3677 (17)
C9—H9B0.9600C19—O201.1984 (17)
C9—H9C0.9600C19—C211.491 (2)
C10—C111.3801 (18)C21—H21A0.9600
C10—C151.3907 (18)C21—H21B0.9600
C11—C121.3953 (18)C21—H21C0.9600
C5—S1—C288.70 (6)C13—C12—C11119.01 (12)
N3—C2—N6121.23 (11)C13—C12—H12120.5
N3—C2—S1115.46 (10)C11—C12—H12120.5
N6—C2—S1123.30 (9)O16—C13—C14114.88 (12)
C2—N3—C4108.79 (11)O16—C13—C12124.64 (13)
C5—C4—N3118.01 (12)C14—C13—C12120.48 (12)
C5—C4—O18123.64 (12)C15—C14—C13120.23 (12)
N3—C4—O18118.17 (11)C15—C14—H14119.9
C4—C5—S1109.03 (10)C13—C14—H14119.9
C4—C5—H5125.5C14—C15—C10119.31 (12)
S1—C5—H5125.5C14—C15—H15120.3
C7—N6—C2120.87 (11)C10—C15—H15120.3
C7—N6—C10121.59 (11)C13—O16—C17117.97 (12)
C2—N6—C10117.51 (10)O16—C17—H17A109.5
O8—C7—N6119.90 (12)O16—C17—H17B109.5
O8—C7—C9123.04 (12)H17A—C17—H17B109.5
N6—C7—C9117.05 (12)O16—C17—H17C109.5
C7—C9—H9A109.5H17A—C17—H17C109.5
C7—C9—H9B109.5H17B—C17—H17C109.5
H9A—C9—H9B109.5C19—O18—C4117.42 (10)
C7—C9—H9C109.5O20—C19—O18122.46 (12)
H9A—C9—H9C109.5O20—C19—C21126.78 (13)
H9B—C9—H9C109.5O18—C19—C21110.75 (12)
C11—C10—C15120.86 (12)C19—C21—H21A109.5
C11—C10—N6120.11 (11)C19—C21—H21B109.5
C15—C10—N6119.03 (11)H21A—C21—H21B109.5
C10—C11—C12120.11 (12)C19—C21—H21C109.5
C10—C11—H11119.9H21A—C21—H21C109.5
C12—C11—H11119.9H21B—C21—H21C109.5
C5—S1—C2—N30.81 (10)C7—N6—C10—C1575.64 (16)
C5—S1—C2—N6177.79 (11)C2—N6—C10—C15106.51 (13)
N6—C2—N3—C4177.87 (11)C15—C10—C11—C120.1 (2)
S1—C2—N3—C40.76 (13)N6—C10—C11—C12179.45 (11)
C2—N3—C4—C50.29 (16)C10—C11—C12—C130.1 (2)
C2—N3—C4—O18174.95 (10)C11—C12—C13—O16179.44 (12)
N3—C4—C5—S10.30 (15)C11—C12—C13—C140.2 (2)
O18—C4—C5—S1175.25 (10)O16—C13—C14—C15179.91 (12)
C2—S1—C5—C40.58 (10)C12—C13—C14—C150.8 (2)
N3—C2—N6—C7179.65 (11)C13—C14—C15—C101.00 (19)
S1—C2—N6—C71.83 (17)C11—C10—C15—C140.63 (19)
N3—C2—N6—C102.48 (17)N6—C10—C15—C14178.89 (11)
S1—C2—N6—C10176.04 (9)C14—C13—O16—C17177.34 (12)
C2—N6—C7—O84.96 (19)C12—C13—O16—C171.9 (2)
C10—N6—C7—O8177.26 (12)C5—C4—O18—C19102.83 (15)
C2—N6—C7—C9174.65 (12)N3—C4—O18—C1982.22 (15)
C10—N6—C7—C93.14 (18)C4—O18—C19—O201.67 (19)
C7—N6—C10—C11103.88 (14)C4—O18—C19—C21177.30 (12)
C2—N6—C10—C1173.97 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20i0.932.533.200 (2)129
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H14N2O4S
Mr306.33
Crystal system, space groupTriclinic, P1
Temperature (K)130
a, b, c (Å)8.9445 (5), 9.5736 (8), 9.9078 (9)
α, β, γ (°)115.509 (9), 93.381 (6), 108.144 (6)
V3)708.95 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.50 × 0.50 × 0.10
Data collection
DiffractometerAgilent Xcalibur Atlas
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.860, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12469, 3445, 3075
Rint0.022
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.06
No. of reflections3445
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.27

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20i0.932.533.200 (2)129
Symmetry code: (i) x, y+1, z+1.
 

References

First citationAgilent (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAtes, O., Altintas, H. & Otukb, G. (2000). Arzneim. Forsch. 6, 569–575.  Google Scholar
First citationEleftheriou, P., Geronikaki, A., Hadjipavlou-Litina, D., Vicini, P., Filz, O., Filimonov, D., Poroikov, V., Shailendra, S., Chaudhaery, S. S., Roy, K. K. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 111–124.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEriksson, B., Kurz, G., Hedberg, C. & Westman, J. (2007). Patent No. WO2007010273.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHorishny, V., Lesyk, R., Kowiel, M. & Gzella, A. K. (2013). Acta Cryst. E69, o356–o357.  CSD CrossRef IUCr Journals Google Scholar
First citationLesyk, R. B. & Zimenkovsky, B. S. (2004). Curr. Org. Chem. 8, 1547–1577.  Web of Science CrossRef CAS Google Scholar
First citationLesyk, R. B., Zimenkovsky, B. S., Kaminskyy, D. V., Kryshchyshyn, A. P., Havrylyuk, D. Ya., Atamanyuk, D. V., Subtel na, I. Yu. & Khyluk, D. V. (2011). Biopolym. Cell, 27, 107–117.  CrossRef CAS Google Scholar
First citationLesyk, R., Zimenkovsky, B., Subtelna, I., Nektegayev, I. & Kazmirchuk, G. (2003). Acta Pol. Pharm. 60, 457–466.  PubMed CAS Google Scholar
First citationRout, M. K. & Mahapatra, G. N. (1955). J. Am. Chem. Soc. 5, 2427–2428.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubtel'na, I., Atamanyuk, D., Szymańska, E., Kieć-Kononowicz, K., Zimenkovsky, B., Vasylenko, O., Gzella, A. & Lesyk, R. (2010). Bioorg. Med. Chem. 18, 5090–5102.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds