organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Meth­­oxy­phen­yl)-6-methyl­amino-5-nitro-2-phenyl-4H-pyran-3-carbo­nitrile

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 13 February 2013; accepted 20 February 2013; online 28 February 2013)

In the title compound, C20H17N3O4, the central pyran ring adopts a boat conformation with the O atom and diagonally opposite C atoms displaced by 0.1171 (1) and 0.1791 (1) Å, respectively, from the mean plane defined by the other four atoms. The coplanar atoms of the pyran ring and the meth­oxy­benzene ring are nearly perpendicular, as evidenced by the dihedral angle 87.01 (1)°. The amine H atom forms an intra­molecular N—H⋯O(nitro) hydrogen bond. In the crystal, mol­ecules are linked into dimeric aggregates by N—H⋯O(nitro) hydrogen bonds, generating an R22(12) graph-set motif.

Related literature

For background to compounds containing the 4H-pyran unit, see: Brahmachari (2010[Brahmachari, G. (2010). In Handbook of Pharmaceutical Natural Products. Weinheim: Wiley-VCH Verlag GmbH & Co.]); Hatakeyama et al. (1988[Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202-1204.]). For 2-amino-4H-pyrans as photoactive materials, see: Armetso et al. (1989[Armetso, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069-3072.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17N3O4

  • Mr = 363.37

  • Monoclinic, C 2/c

  • a = 22.9422 (10) Å

  • b = 7.5828 (3) Å

  • c = 22.7319 (10) Å

  • β = 112.576 (2)°

  • V = 3651.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 15550 measured reflections

  • 4003 independent reflections

  • 2915 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.05

  • 4003 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 2.00 2.6203 (19) 128
N2—H2⋯O2i 0.86 2.26 3.0114 (18) 147
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

4H-Pyran units constitute structural features of a broad range of bioactive natural products (Brahmachari, 2010; Hatakeyama et al., 1988). 2-Amino-4H-pyrans have also been found to be useful as photoactive materials (Armetso et al., 1989). Hence, investigation of the structural features of biologically relevant tetrahydrobenzo[b]pyran derivatives is of both scientific and practical interest. In continuation of our efforts to develop useful synthetic protocols for biologically significant molecules, we herein report an efficient and environmentally benign synthesis and the crystal structure of the title compound.

In the title compound, Fig. 1, the six-membered central pyran ring adopts a boat conformation as evidenced by the puckering parameters q2 = 0.1713 (16) Å, θ = 98.1 (5)°, ϕ = 3.5 (6)° (Cremer & Pople, 1975). The dihedral angle between the methoxybenzene ring and the flat part of the pyran ring is 87.01 (1)° which means that the methoxybenzene ring is nearly perpendicular to the pyran ring. The acetonitrile group is almost coplanar with the plane of the pyrazole ring [the N3—C21—C2—C1 torsion angle is 174.04 (16) °]. The nitrile group has a typical bond length, i.e. N C = 1.141 (3) Å. The dihedral angle between the flat part of the pyran ring and the phenyl ring is 38.62 (2)°. The phenyl ring is attached to the pyran ring by an (-)-syn-clinal conformation with torsion angle C12—C11—C1—C2 of -41.54 (3)°. Similarly, the methoxybenzene ring is attached to the pyran ring by a torsion angle C4—C3—C31—C36 of -59.51 (2)°, again indicating an (-)-syn-clinal conformation. The nitro group is attached to pyran ring at C4 with the torsion angle (C5—C4—N1—O2) of -4.89 (3)°, indicating an (-)-syn-periplanar conformation.

In the crystal structure, N2—H2···O2 hydrogen bonds link molecules into dimeric pairs, Table 1. Each of these pairs generate a graph set motif of R22(12) (Bernstein et al., 1995), Fig. 2. In addition, there is a N—H···O intramolecular interaction which stabilizes the structure.

Related literature top

For background to compounds containing the 4H-pyran unit, see: Brahmachari (2010); Hatakeyama et al. (1988). For 2-amino-4H-pyrans as photoactive materials, see: Armetso et al. (1989). For graph-set motifs, see: Bernstein et al. (1995). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of benzoylacetonitrile (1.0 mmol), 4-methoxy aldehyde (1.0 mmol), Et3N (1.0 mmol) and EtOH (10 ml) were taken in 50 ml round bottom flask. The reaction mixture was stirred at room temperature for 5–10 min. Then N-methyl-1-(methylthio)-2-nitroethenamine was added into the reaction mixture followed by refluxing at 353 K. The consumption of starting material was monitored by TLC. After 90 min, the solid product was filtered and washed with diethyl ether (5 ml) and dried under vacuum in 92% yield; M.pt: 481 K.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å and N—H = 0.86 Å, and with Uiso = 1.2Ueq(C, N) for N, CH2 and CH H atoms and Uiso = 1.5Ueq(C) for CH3 H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Partial packing diagram showing N—H···O interactions as dashed lines.
4-(4-Methoxyphenyl)-6-methylamino-5-nitro-2-phenyl-4H-pyran-3-carbonitrile top
Crystal data top
C20H17N3O4F(000) = 1520
Mr = 363.37Dx = 1.322 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2000 reflections
a = 22.9422 (10) Åθ = 2–31°
b = 7.5828 (3) ŵ = 0.09 mm1
c = 22.7319 (10) ÅT = 293 K
β = 112.576 (2)°Block, colourless
V = 3651.5 (3) Å30.23 × 0.21 × 0.19 mm
Z = 8
Data collection top
Bruker Kappa APEXII
diffractometer
4003 independent reflections
Radiation source: fine-focus sealed tube2915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0 pixels mm-1θmax = 27.0°, θmin = 1.9°
ω and ϕ scansh = 2919
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 99
Tmin = 0.967, Tmax = 0.974l = 2529
15550 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0488P)2 + 2.0393P]
where P = (Fo2 + 2Fc2)/3
4003 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H17N3O4V = 3651.5 (3) Å3
Mr = 363.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.9422 (10) ŵ = 0.09 mm1
b = 7.5828 (3) ÅT = 293 K
c = 22.7319 (10) Å0.23 × 0.21 × 0.19 mm
β = 112.576 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
4003 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2915 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.028
15550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
4003 reflectionsΔρmin = 0.18 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07195 (5)0.42117 (14)0.09142 (5)0.0433 (3)
O20.03608 (6)0.15716 (16)0.01309 (6)0.0568 (3)
O30.10675 (6)0.36536 (17)0.04434 (6)0.0552 (3)
O40.26059 (5)0.44513 (17)0.34242 (5)0.0557 (3)
N10.05627 (6)0.29947 (18)0.04218 (6)0.0430 (3)
N20.06629 (7)0.18295 (18)0.03754 (6)0.0469 (3)
H20.04770.11710.01930.056*
N30.03447 (8)0.9733 (2)0.15792 (8)0.0609 (4)
C10.05459 (7)0.59078 (19)0.11380 (7)0.0368 (3)
C20.00202 (7)0.65426 (19)0.12158 (6)0.0365 (3)
C30.05189 (7)0.54950 (19)0.10871 (7)0.0375 (3)
H30.06660.62170.08140.045*
C40.02191 (7)0.38689 (19)0.07184 (7)0.0373 (3)
C50.03688 (7)0.3264 (2)0.06585 (6)0.0380 (3)
C60.12770 (10)0.1270 (3)0.03463 (11)0.0686 (6)
H6A0.13580.00860.01850.103*
H6B0.15960.20420.00690.103*
H6C0.12850.13100.07650.103*
C110.10683 (7)0.6820 (2)0.12361 (7)0.0389 (3)
C120.09563 (8)0.7928 (2)0.17560 (8)0.0488 (4)
H120.05490.80480.20620.059*
C130.14469 (9)0.8848 (3)0.18185 (9)0.0588 (5)
H130.13700.95920.21660.071*
C140.20481 (10)0.8673 (3)0.13714 (9)0.0629 (5)
H140.23760.93170.14110.075*
C150.21673 (8)0.7544 (3)0.08635 (8)0.0591 (5)
H150.25770.74070.05660.071*
C160.16784 (8)0.6615 (2)0.07965 (7)0.0477 (4)
H160.17600.58490.04540.057*
C210.01831 (7)0.8329 (2)0.14170 (7)0.0421 (4)
C310.10863 (7)0.51449 (19)0.17036 (7)0.0367 (3)
C320.16598 (7)0.5910 (2)0.17986 (8)0.0433 (4)
H320.17000.65760.14730.052*
C330.21774 (7)0.5718 (2)0.23641 (8)0.0469 (4)
H330.25590.62560.24180.056*
C340.21227 (7)0.4722 (2)0.28475 (7)0.0422 (4)
C350.15538 (8)0.3913 (2)0.27582 (7)0.0461 (4)
H350.15170.32250.30810.055*
C360.10402 (7)0.4126 (2)0.21914 (7)0.0438 (4)
H360.06600.35810.21360.053*
C370.31860 (9)0.5346 (3)0.35284 (10)0.0708 (6)
H37A0.34870.50770.39480.106*
H37B0.31130.65950.34900.106*
H37C0.33470.49660.32170.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0501 (6)0.0368 (6)0.0491 (6)0.0021 (5)0.0259 (5)0.0061 (5)
O20.0772 (9)0.0453 (7)0.0536 (7)0.0048 (6)0.0315 (6)0.0136 (6)
O30.0542 (7)0.0649 (8)0.0549 (7)0.0049 (6)0.0303 (6)0.0050 (6)
O40.0465 (7)0.0642 (8)0.0476 (6)0.0033 (6)0.0085 (5)0.0063 (6)
N10.0529 (8)0.0424 (8)0.0351 (6)0.0088 (6)0.0184 (6)0.0007 (6)
N20.0588 (9)0.0369 (7)0.0464 (7)0.0034 (6)0.0219 (6)0.0069 (6)
N30.0631 (10)0.0444 (9)0.0710 (10)0.0037 (8)0.0209 (8)0.0091 (8)
C10.0447 (8)0.0340 (8)0.0321 (7)0.0022 (7)0.0153 (6)0.0003 (6)
C20.0422 (8)0.0328 (8)0.0339 (7)0.0038 (6)0.0138 (6)0.0000 (6)
C30.0427 (8)0.0352 (8)0.0383 (7)0.0017 (6)0.0198 (6)0.0017 (6)
C40.0457 (9)0.0345 (8)0.0334 (7)0.0063 (7)0.0173 (6)0.0008 (6)
C50.0502 (9)0.0322 (8)0.0324 (7)0.0049 (7)0.0167 (6)0.0014 (6)
C60.0754 (14)0.0569 (12)0.0797 (13)0.0223 (10)0.0367 (11)0.0171 (10)
C110.0438 (9)0.0399 (8)0.0369 (7)0.0038 (7)0.0197 (6)0.0036 (6)
C120.0538 (10)0.0542 (10)0.0419 (8)0.0036 (8)0.0224 (7)0.0048 (7)
C130.0724 (13)0.0603 (12)0.0570 (10)0.0090 (10)0.0396 (10)0.0056 (9)
C140.0657 (12)0.0717 (13)0.0672 (12)0.0216 (10)0.0431 (10)0.0088 (10)
C150.0468 (10)0.0821 (14)0.0525 (10)0.0111 (9)0.0235 (8)0.0098 (10)
C160.0478 (9)0.0574 (10)0.0407 (8)0.0031 (8)0.0200 (7)0.0001 (7)
C210.0414 (8)0.0419 (9)0.0416 (8)0.0046 (7)0.0143 (7)0.0002 (7)
C310.0409 (8)0.0323 (8)0.0394 (7)0.0032 (6)0.0182 (6)0.0037 (6)
C320.0443 (9)0.0421 (9)0.0483 (8)0.0010 (7)0.0232 (7)0.0010 (7)
C330.0404 (9)0.0464 (10)0.0557 (9)0.0053 (7)0.0203 (7)0.0052 (8)
C340.0411 (8)0.0397 (9)0.0434 (8)0.0050 (7)0.0136 (7)0.0087 (7)
C350.0517 (10)0.0457 (9)0.0420 (8)0.0007 (8)0.0192 (7)0.0042 (7)
C360.0414 (9)0.0447 (9)0.0470 (9)0.0054 (7)0.0190 (7)0.0019 (7)
C370.0469 (11)0.0847 (15)0.0647 (12)0.0051 (10)0.0034 (9)0.0130 (11)
Geometric parameters (Å, º) top
O1—C51.3641 (18)C11—C121.391 (2)
O1—C11.3842 (18)C12—C131.377 (2)
O2—N11.2573 (17)C12—H120.9300
O3—N11.2448 (17)C13—C141.370 (3)
O4—C341.3688 (19)C13—H130.9300
O4—C371.430 (2)C14—C151.378 (3)
N1—C41.3868 (18)C14—H140.9300
N2—C51.311 (2)C15—C161.382 (2)
N2—C61.448 (2)C15—H150.9300
N2—H20.8602C16—H160.9300
N3—C211.141 (2)C31—C321.377 (2)
C1—C21.332 (2)C31—C361.388 (2)
C1—C111.473 (2)C32—C331.383 (2)
C2—C211.432 (2)C32—H320.9300
C2—C31.511 (2)C33—C341.378 (2)
C3—C41.501 (2)C33—H330.9300
C3—C311.526 (2)C34—C351.385 (2)
C3—H30.9800C35—C361.382 (2)
C4—C51.381 (2)C35—H350.9300
C6—H6A0.9600C36—H360.9300
C6—H6B0.9600C37—H37A0.9600
C6—H6C0.9600C37—H37B0.9600
C11—C161.381 (2)C37—H37C0.9600
C5—O1—C1120.81 (12)C14—C13—C12120.29 (17)
C34—O4—C37116.60 (15)C14—C13—H13119.9
O3—N1—O2120.97 (13)C12—C13—H13119.9
O3—N1—C4118.86 (13)C13—C14—C15120.09 (16)
O2—N1—C4120.17 (14)C13—C14—H14120.0
C5—N2—C6125.02 (15)C15—C14—H14120.0
C5—N2—H2117.5C14—C15—C16120.06 (17)
C6—N2—H2117.5C14—C15—H15120.0
C2—C1—O1120.88 (13)C16—C15—H15120.0
C2—C1—C11128.23 (14)C11—C16—C15120.19 (16)
O1—C1—C11110.85 (12)C11—C16—H16119.9
C1—C2—C21120.38 (14)C15—C16—H16119.9
C1—C2—C3123.82 (13)N3—C21—C2176.34 (17)
C21—C2—C3115.77 (13)C32—C31—C36118.06 (14)
C4—C3—C2108.74 (12)C32—C31—C3119.84 (13)
C4—C3—C31114.61 (12)C36—C31—C3122.05 (13)
C2—C3—C31110.87 (11)C31—C32—C33121.95 (15)
C4—C3—H3107.4C31—C32—H32119.0
C2—C3—H3107.4C33—C32—H32119.0
C31—C3—H3107.4C34—C33—C32119.37 (15)
C5—C4—N1120.62 (14)C34—C33—H33120.3
C5—C4—C3123.27 (13)C32—C33—H33120.3
N1—C4—C3116.10 (13)O4—C34—C33123.88 (15)
N2—C5—O1111.68 (14)O4—C34—C35116.45 (15)
N2—C5—C4128.53 (14)C33—C34—C35119.67 (14)
O1—C5—C4119.79 (13)C36—C35—C34120.22 (15)
N2—C6—H6A109.5C36—C35—H35119.9
N2—C6—H6B109.5C34—C35—H35119.9
H6A—C6—H6B109.5C35—C36—C31120.72 (15)
N2—C6—H6C109.5C35—C36—H36119.6
H6A—C6—H6C109.5C31—C36—H36119.6
H6B—C6—H6C109.5O4—C37—H37A109.5
C16—C11—C12119.20 (14)O4—C37—H37B109.5
C16—C11—C1119.67 (14)H37A—C37—H37B109.5
C12—C11—C1121.10 (14)O4—C37—H37C109.5
C13—C12—C11120.12 (16)H37A—C37—H37C109.5
C13—C12—H12119.9H37B—C37—H37C109.5
C11—C12—H12119.9
C5—O1—C1—C212.1 (2)C2—C1—C11—C1241.5 (2)
C5—O1—C1—C11165.46 (12)O1—C1—C11—C12141.09 (14)
O1—C1—C2—C21176.84 (13)C16—C11—C12—C132.0 (2)
C11—C1—C2—C210.3 (2)C1—C11—C12—C13176.20 (15)
O1—C1—C2—C31.5 (2)C11—C12—C13—C140.3 (3)
C11—C1—C2—C3178.63 (13)C12—C13—C14—C151.4 (3)
C1—C2—C3—C413.69 (19)C13—C14—C15—C161.4 (3)
C21—C2—C3—C4164.72 (12)C12—C11—C16—C152.0 (2)
C1—C2—C3—C31113.18 (15)C1—C11—C16—C15176.22 (15)
C21—C2—C3—C3168.41 (16)C14—C15—C16—C110.3 (3)
O3—N1—C4—C5174.32 (13)C1—C2—C21—N3174 (100)
O2—N1—C4—C54.9 (2)C3—C2—C21—N37 (3)
O3—N1—C4—C34.48 (19)C4—C3—C31—C32123.21 (15)
O2—N1—C4—C3176.31 (12)C2—C3—C31—C32113.23 (15)
C2—C3—C4—C514.61 (19)C4—C3—C31—C3659.51 (18)
C31—C3—C4—C5110.08 (16)C2—C3—C31—C3664.05 (18)
C2—C3—C4—N1164.15 (12)C36—C31—C32—C331.3 (2)
C31—C3—C4—N171.16 (16)C3—C31—C32—C33176.07 (14)
C6—N2—C5—O11.5 (2)C31—C32—C33—C340.5 (2)
C6—N2—C5—C4178.56 (17)C37—O4—C34—C333.3 (2)
C1—O1—C5—N2168.93 (12)C37—O4—C34—C35177.38 (15)
C1—O1—C5—C411.0 (2)C32—C33—C34—O4180.00 (14)
N1—C4—C5—N24.7 (2)C32—C33—C34—C350.7 (2)
C3—C4—C5—N2176.58 (14)O4—C34—C35—C36179.60 (14)
N1—C4—C5—O1175.20 (12)C33—C34—C35—C361.0 (2)
C3—C4—C5—O13.5 (2)C34—C35—C36—C310.2 (2)
C2—C1—C11—C16136.64 (17)C32—C31—C36—C351.0 (2)
O1—C1—C11—C1640.72 (18)C3—C31—C36—C35176.37 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.002.6203 (19)128
N2—H2···O2i0.862.263.0114 (18)147
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC20H17N3O4
Mr363.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)22.9422 (10), 7.5828 (3), 22.7319 (10)
β (°) 112.576 (2)
V3)3651.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
15550, 4003, 2915
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.05
No. of reflections4003
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.002.6203 (19)128
N2—H2···O2i0.862.263.0114 (18)147
Symmetry code: (i) x, y, z.
 

Acknowledgements

JS thanks the UGC for the FIST support. JS and RV thank the management of Madura College for their encouragement and support. RRK thanks the DST, NewDelhi, for funds under the fast-track scheme (No·SR/FT/CS-073/2009).

References

First citationArmetso, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069–3072.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrahmachari, G. (2010). In Handbook of Pharmaceutical Natural Products. Weinheim: Wiley-VCH Verlag GmbH & Co.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202–1204.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds