organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o395-o396

(8-Benzoyl-2,7-dimeth­­oxy­naphthalen-1-yl)(4-phen­­oxy­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 9 February 2013; accepted 13 February 2013; online 20 February 2013)

In the mol­ecule of the title compound, C32H24O5, the benzoyl group and the 4-phenoxy substituted benzoyl group at the 1- and 8-positions of the naphthalene ring system are aligned almost anti­parallel. The two benzene rings make a dihedral angle of 21.18 (10)°, and are inclined to the naphthalene ring system by 86.53 (9) and 82.95 (8)°, respectively. In the crystal, C—H⋯O inter­actions are observed involving aromatic and meth­oxy H atoms with ketonic carbonyl O atoms, as well as C—H⋯π inter­actions between aromatic H atoms and the π-systems of naphthalene and benzene rings. These interactions form a three-dimensional architecture and afford a waved alignment of the naphthalene ring systems along the c axis.

Related literature

For the synthesis of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]); Sasagawa et al. (2011[Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.], 2013[Sasagawa, K., Sakamoto, R., Kusakabe, T., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o146.]); Muto et al. (2012[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o906.]).

[Scheme 1]

Experimental

Crystal data
  • C32H24O5

  • Mr = 488.51

  • Orthorhombic, P 21 21 21

  • a = 8.19645 (10) Å

  • b = 11.5051 (2) Å

  • c = 26.4916 (4) Å

  • V = 2498.18 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 193 K

  • 0.60 × 0.30 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.802, Tmax = 0.868

  • 46867 measured reflections

  • 2605 independent reflections

  • 2543 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.04

  • 2605 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C27–C32, C12–C17 and C5–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C30—H30⋯O5i 0.95 2.52 3.423 (3) 158
C7—H7⋯O5ii 0.95 2.37 3.304 (3) 168
C25—H25B⋯O5ii 0.98 2.34 3.122 (3) 136
C3—H3⋯O1iii 0.95 2.40 3.310 (2) 160
C20—H20⋯Cg1iv 0.95 2.84 3.652 (3) 144
C23—H23⋯Cg2v 0.95 2.76 3.628 (2) 151
C29—H29⋯Cg3i 0.95 2.85 3.652 (3) 142
Symmetry codes: (i) x+1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridgeational Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), {8-[4-(butoxy)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(butoxy)phenyl] methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa et al., 2011) and [2,7-dimethoxy-8-(4-methoxybenzoyl)-naphthalen-1-yl](4-methoxyphenyl) methanone chloroform monosolvate [1,8-bis(4-methoxybenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa et al., 2013).

The aroyl groups in the 1,8-diaroylnaphthalene compounds are almost perpendicular to the naphthalene rings, and oriented in opposite directions (anti-orientation). According to our knowledge, most 1,8-diaroylnaphthalene derivatives have anti-oriented structures. Recently, we have also clarified another structure of the 1,8-diaroylnaphthalene derivatives, in which the two aroyl groups are situated in same direction (syn-orientation), [2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene; Hijikata et al., 2010].

Moreover, we have reported the asymmetric 1,8-diaroylnaphthalene derivatives, [8-(4-chlorobenzoyl)-2,7-dimethoxynaphthalen-1-yl](2,4,6-trimethylphenyl) methanone (Muto et al., 2012). As a part of our ongoing studies on the molecular structures of these kinds of asymmetric homologous molecules, the X-ray crystal structure of the title compound, 2,7-dimethoxynaphthalene bearing benzoyl and phenoxybenzoyl groups at the 1,8-positions, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. The benzoyl group and 4-phenoxybenzoyl group are situated in the anti-orientation. The dihedral angle between the best planes of the benzene rings of two kinds of benzoyl groups is 21.18 (10) °. The dihedral angles of the best planes of the benzene rings of the benzoyl moiety and 4-phenoxybenzoyl moiety with the naphthalene ring are 86.53 (9) and 82.95 (8) °, respectively. In addition, the dihedral angle between both benzene rings of the 4-phenoxyphenyl moiety is 69.19 (10) °.

The two ketonic carbonyl moieties (C11=O1, C26=O5) and the benzene ring of two benzoyl moieties lie in the same plane [torsion angle O1—C11—C12—C13 = 7.3 (2) °, O5—C26—C27—C32 = 1.3 (3) °]. In the crystal, C—H···O and C—H···π interactions effectively contribute to the stabilization of the molecular packing (Table 1): a C—H···O interaction between the hydrogen atom of the 4-position of the benzoyl group and the oxygen atom of the carbonyl moiety in the benzoyl group, a C—H···π interaction between the hydrogen atom of the 3-position of the benzoyl group and the π-system of the naphthalene ring (Fig. 2), C—H···O interactions of a hydrogen atom of the methoxy group at the 2-position of the naphthalene ring and a hydrogen atom at the 3-position of the naphthalene ring with the carbonyl oxygen atom of the benzoyl group, a C—H···π interaction between the hydrogen atom of the 3-position of the phenoxy moiety and the π-system of the benzoyl group (Fig. 3), a C—H···O interaction between the hydrogen atom at the 6-position of the naphthalene ring and the carbonyl oxygen atom of the phenoxybenzoyl group (Fig. 4), and a C—H···π interaction between the hydrogen atom of the 6-position of the phenoxy moiety and the π-system of the internal benzene ring of 4-phenoxybenzoyl group.

Related literature top

For formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Nakaema et al. (2008); Hijikata et al. (2010); Sasagawa et al. (2011, 2013); Muto et al. (2012).

Experimental top

In a 10 ml one-necked flask, [8-(4-benzoyl)-2,7-dimethoxynaphthalen-1-yl](4-fluorophenyl)-methanone (1.0 mmol, 414 mg), phenol (1.5 mmol, 141 mg), potassium carbonate (2.5 mmol, 346 mg) and freshly distilled dimethylacetamide (2.5 ml) were stirred at 423 K for 6 h. This mixture was poured into 2M aqueous HCl (100 ml). The aqueous layer was extracted with ethyl acetate (20 ml × 3). The combined extracts were washed with water followed by washing with brine. The extracts thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 88%). The crude product was purified by recrystallization from methanol (yield 47%). Colorless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from ethanol.

Spectroscopic Data:

1H NMR δ (500 MHz, CDCl3): 3.69 (3H, s), 3.72 (3H, s), 6.86 (2H, d, J = 8.5 Hz), 7.09 (2H, d, J = 7.5 Hz), 7.16–7.22 (3H, m), 7.32–7.71 (4H, m), 7.50 (1H, t, J = 7.5 Hz), 7.64–7.71 (4H, m), 7.94 (1H, d, J = 9.0 Hz), 7.95 (1H, d, J = 9.0 Hz) p.p.m.

13C NMR δ (125 MHz, CDCl3): 56.39, 56.45, 111.18, 116.70, 120.28, 121.43, 121.46, 124.33, 124.34, 125.49, 127.94, 129.07, 129.66, 129.86, 131.38, 131.93, 131.99, 132.57, 133.49, 138.59, 155.52, 156.07, 156.23, 161.51, 195.29, 196.72 p.p.m.

IR (KBr): 1659 (C=O), 1599, 1580, 1512 (Ar), 1240 (OMe) cm-1

HRMS (m/z): [M+H]+ calcd. for C32H25O5, 489.1702, found, 489.1690

m.p. = 466.1—469.7 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å with Uĩso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Intermolecular C—H···O interactions between H30 and O5 [symmetry code: 1 + x, y, z] along the a axis (dashed lines).
[Figure 3] Fig. 3. Intermolecular C—H···O interactions between H25B and O5, H7 and O5 [symmetry code: -x, 1/2 + y, 1/2 - z] along the b axis (dashed lines).
[Figure 4] Fig. 4. Intermolecular C—H···O interactions between H3 and O1 [symmetry code: -1/2 + x, 1/2 - y, 1 - z] along the c axis (dashed lines).
(8-Benzoyl-2,7-dimethoxynaphthalen-1-yl)(4-phenoxyphenyl)methanone top
Crystal data top
C32H24O5F(000) = 1024
Mr = 488.51Dx = 1.299 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54187 Å
Hall symbol: P 2ac 2abCell parameters from 44479 reflections
a = 8.19645 (10) Åθ = 3.3–68.3°
b = 11.5051 (2) ŵ = 0.71 mm1
c = 26.4916 (4) ÅT = 193 K
V = 2498.18 (7) Å3Block, colourless
Z = 40.60 × 0.30 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2605 independent reflections
Radiation source: rotating anode2543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.000 pixels mm-1θmax = 68.3°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
k = 1313
Tmin = 0.802, Tmax = 0.868l = 3131
46867 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.3758P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2605 reflectionsΔρmax = 0.19 e Å3
337 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (2)
Crystal data top
C32H24O5V = 2498.18 (7) Å3
Mr = 488.51Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.19645 (10) ŵ = 0.71 mm1
b = 11.5051 (2) ÅT = 193 K
c = 26.4916 (4) Å0.60 × 0.30 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2605 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
2543 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.868Rint = 0.030
46867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
2605 reflectionsΔρmin = 0.14 e Å3
337 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31166 (15)0.05570 (11)0.41889 (5)0.0395 (3)
O20.2584 (2)0.31098 (13)0.44425 (6)0.0630 (5)
O30.08516 (19)0.16347 (12)0.50987 (4)0.0461 (3)
O40.1135 (2)0.25452 (15)0.24234 (5)0.0582 (4)
O50.11094 (17)0.02780 (12)0.31322 (5)0.0429 (3)
C10.0961 (2)0.19406 (14)0.42338 (6)0.0334 (4)
C20.0552 (2)0.23680 (15)0.47042 (7)0.0374 (4)
C30.0139 (3)0.34833 (17)0.47642 (7)0.0429 (4)
H30.03700.37780.50910.051*
C40.0469 (2)0.41295 (15)0.43472 (7)0.0432 (4)
H40.09760.48670.43870.052*
C50.0081 (2)0.37364 (15)0.38559 (7)0.0381 (4)
C60.0466 (3)0.44090 (16)0.34258 (8)0.0450 (4)
H60.09980.51360.34690.054*
C70.0093 (3)0.40417 (18)0.29486 (8)0.0475 (5)
H70.03730.45010.26630.057*
C80.0710 (2)0.29759 (18)0.28879 (7)0.0416 (4)
C90.1126 (2)0.22877 (15)0.32944 (6)0.0347 (4)
C100.0701 (2)0.26357 (14)0.37942 (6)0.0328 (4)
C110.1648 (2)0.07161 (15)0.42218 (6)0.0330 (4)
C120.0487 (2)0.02714 (15)0.42656 (6)0.0353 (4)
C130.1101 (3)0.13927 (16)0.43272 (7)0.0421 (4)
H130.22470.15160.43350.050*
C140.0055 (3)0.23210 (16)0.43770 (8)0.0476 (5)
H140.04770.30830.44220.057*
C150.1609 (3)0.21421 (18)0.43615 (7)0.0466 (5)
C160.2252 (3)0.10405 (19)0.42947 (8)0.0512 (5)
H160.33990.09250.42800.061*
C170.1191 (3)0.01104 (17)0.42499 (8)0.0436 (4)
H170.16180.06510.42080.052*
C180.3900 (3)0.33373 (16)0.41261 (7)0.0440 (4)
C190.3950 (3)0.3008 (2)0.36259 (8)0.0556 (5)
H190.31120.25340.34880.067*
C200.5230 (3)0.3373 (2)0.33277 (9)0.0665 (7)
H200.52750.31440.29830.080*
C210.6440 (3)0.4065 (2)0.35234 (11)0.0697 (7)
H210.73080.43270.33150.084*
C220.6383 (3)0.4377 (2)0.40272 (10)0.0657 (7)
H220.72290.48430.41660.079*
C230.5117 (3)0.40221 (19)0.43289 (8)0.0536 (5)
H230.50790.42450.46740.064*
C240.0591 (3)0.2062 (2)0.55989 (7)0.0537 (5)
H24A0.05670.22480.56440.064*
H24B0.12470.27630.56520.064*
H24C0.09140.14660.58440.064*
C250.0032 (3)0.2714 (2)0.20238 (8)0.0599 (6)
H25A0.01910.21060.17700.072*
H25B0.02230.34770.18700.072*
H25C0.10870.26770.21530.072*
C260.1933 (2)0.11466 (16)0.31671 (6)0.0340 (4)
C270.3730 (2)0.11156 (18)0.30852 (6)0.0375 (4)
C280.4689 (2)0.2093 (2)0.31499 (7)0.0458 (5)
H280.42030.28200.32300.055*
C290.6378 (3)0.2002 (3)0.30959 (9)0.0597 (6)
H290.70480.26660.31460.072*
C300.7076 (3)0.0954 (3)0.29705 (9)0.0633 (6)
H300.82260.08980.29350.076*
C310.6119 (3)0.0014 (2)0.28961 (10)0.0641 (6)
H310.66060.07330.28040.077*
C320.4452 (3)0.0062 (2)0.29560 (9)0.0519 (5)
H320.37930.06090.29090.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0357 (7)0.0423 (7)0.0407 (6)0.0005 (6)0.0008 (5)0.0043 (5)
O20.0731 (11)0.0508 (8)0.0652 (9)0.0268 (8)0.0251 (9)0.0206 (7)
O30.0606 (9)0.0469 (7)0.0309 (6)0.0056 (7)0.0013 (6)0.0039 (5)
O40.0563 (9)0.0850 (11)0.0335 (6)0.0205 (9)0.0023 (6)0.0061 (7)
O50.0376 (7)0.0425 (7)0.0486 (7)0.0058 (6)0.0001 (6)0.0108 (6)
C10.0326 (9)0.0323 (8)0.0353 (8)0.0049 (7)0.0005 (7)0.0028 (7)
C20.0385 (9)0.0365 (9)0.0373 (8)0.0046 (8)0.0015 (8)0.0042 (7)
C30.0465 (11)0.0398 (9)0.0423 (10)0.0036 (9)0.0075 (9)0.0118 (8)
C40.0442 (10)0.0293 (8)0.0562 (11)0.0002 (8)0.0080 (9)0.0082 (8)
C50.0358 (9)0.0293 (8)0.0492 (10)0.0041 (8)0.0034 (8)0.0003 (7)
C60.0432 (10)0.0326 (9)0.0594 (11)0.0010 (8)0.0046 (9)0.0058 (8)
C70.0460 (11)0.0468 (10)0.0497 (10)0.0018 (10)0.0007 (9)0.0144 (9)
C80.0363 (10)0.0498 (10)0.0386 (9)0.0014 (9)0.0035 (8)0.0065 (8)
C90.0296 (8)0.0373 (9)0.0372 (9)0.0028 (8)0.0005 (7)0.0010 (7)
C100.0305 (8)0.0301 (8)0.0377 (8)0.0050 (7)0.0012 (7)0.0025 (7)
C110.0395 (9)0.0338 (8)0.0257 (7)0.0016 (7)0.0016 (7)0.0032 (6)
C120.0418 (10)0.0333 (8)0.0308 (8)0.0028 (8)0.0026 (7)0.0009 (7)
C130.0450 (10)0.0371 (9)0.0441 (10)0.0008 (9)0.0056 (9)0.0009 (8)
C140.0607 (13)0.0321 (9)0.0501 (10)0.0026 (9)0.0120 (10)0.0028 (8)
C150.0568 (12)0.0402 (10)0.0429 (9)0.0141 (9)0.0099 (9)0.0061 (8)
C160.0432 (11)0.0484 (11)0.0619 (12)0.0089 (10)0.0056 (10)0.0059 (10)
C170.0440 (10)0.0346 (9)0.0523 (11)0.0014 (8)0.0006 (9)0.0021 (8)
C180.0490 (11)0.0372 (9)0.0457 (10)0.0064 (9)0.0048 (9)0.0007 (8)
C190.0554 (13)0.0614 (13)0.0500 (11)0.0127 (12)0.0002 (10)0.0091 (10)
C200.0739 (17)0.0763 (15)0.0492 (12)0.0144 (15)0.0147 (12)0.0059 (11)
C210.0610 (15)0.0718 (15)0.0764 (15)0.0165 (14)0.0230 (13)0.0024 (13)
C220.0521 (13)0.0650 (15)0.0799 (16)0.0196 (13)0.0008 (12)0.0079 (12)
C230.0609 (13)0.0502 (11)0.0498 (11)0.0139 (11)0.0020 (10)0.0055 (9)
C240.0649 (14)0.0632 (12)0.0329 (9)0.0060 (12)0.0038 (9)0.0084 (9)
C250.0696 (15)0.0599 (13)0.0503 (11)0.0168 (13)0.0132 (11)0.0093 (10)
C260.0340 (9)0.0408 (9)0.0273 (7)0.0001 (8)0.0015 (7)0.0035 (7)
C270.0330 (9)0.0494 (10)0.0301 (8)0.0016 (8)0.0010 (7)0.0007 (8)
C280.0383 (10)0.0595 (12)0.0395 (9)0.0057 (10)0.0019 (8)0.0073 (9)
C290.0379 (11)0.0877 (17)0.0536 (12)0.0151 (12)0.0018 (9)0.0076 (12)
C300.0320 (10)0.0962 (19)0.0618 (13)0.0077 (13)0.0013 (10)0.0102 (14)
C310.0475 (12)0.0696 (15)0.0753 (15)0.0188 (12)0.0093 (12)0.0099 (13)
C320.0427 (11)0.0504 (12)0.0625 (13)0.0074 (10)0.0058 (10)0.0041 (10)
Geometric parameters (Å, º) top
O1—C111.220 (2)C16—C171.384 (3)
O2—C151.387 (2)C16—H160.9500
O2—C181.391 (2)C17—H170.9500
O3—C21.365 (2)C18—C191.379 (3)
O3—C241.429 (2)C18—C231.380 (3)
O4—C81.372 (2)C19—C201.378 (3)
O4—C251.406 (3)C19—H190.9500
O5—C261.209 (2)C20—C211.374 (4)
C1—C21.381 (2)C20—H200.9500
C1—C101.429 (2)C21—C221.383 (4)
C1—C111.518 (2)C21—H210.9500
C2—C31.412 (3)C22—C231.372 (3)
C3—C41.359 (3)C22—H220.9500
C3—H30.9500C23—H230.9500
C4—C51.414 (3)C24—H24A0.9800
C4—H40.9500C24—H24B0.9800
C5—C61.413 (3)C24—H24C0.9800
C5—C101.428 (2)C25—H25A0.9800
C6—C71.368 (3)C25—H25B0.9800
C6—H60.9500C25—H25C0.9800
C7—C81.401 (3)C26—C271.489 (2)
C7—H70.9500C27—C281.383 (3)
C8—C91.379 (3)C27—C321.392 (3)
C9—C101.427 (2)C28—C291.396 (3)
C9—C261.508 (3)C28—H280.9500
C11—C121.487 (2)C29—C301.375 (4)
C12—C171.388 (3)C29—H290.9500
C12—C131.394 (3)C30—C311.377 (4)
C13—C141.376 (3)C30—H300.9500
C13—H130.9500C31—C321.378 (3)
C14—C151.380 (3)C31—H310.9500
C14—H140.9500C32—H320.9500
C15—C161.384 (3)
C15—O2—C18120.31 (15)C12—C17—H17119.4
C2—O3—C24118.06 (16)C19—C18—C23120.6 (2)
C8—O4—C25117.51 (17)C19—C18—O2123.43 (19)
C2—C1—C10120.00 (15)C23—C18—O2115.69 (18)
C2—C1—C11116.07 (15)C20—C19—C18119.3 (2)
C10—C1—C11123.92 (15)C20—C19—H19120.3
O3—C2—C1115.28 (15)C18—C19—H19120.3
O3—C2—C3123.22 (16)C21—C20—C19120.7 (2)
C1—C2—C3121.50 (16)C21—C20—H20119.7
C4—C3—C2119.07 (17)C19—C20—H20119.7
C4—C3—H3120.5C20—C21—C22119.4 (2)
C2—C3—H3120.5C20—C21—H21120.3
C3—C4—C5121.89 (17)C22—C21—H21120.3
C3—C4—H4119.1C23—C22—C21120.7 (2)
C5—C4—H4119.1C23—C22—H22119.6
C6—C5—C4121.11 (17)C21—C22—H22119.6
C6—C5—C10119.57 (16)C22—C23—C18119.3 (2)
C4—C5—C10119.32 (16)C22—C23—H23120.3
C7—C6—C5121.75 (17)C18—C23—H23120.3
C7—C6—H6119.1O3—C24—H24A109.5
C5—C6—H6119.1O3—C24—H24B109.5
C6—C7—C8118.78 (17)H24A—C24—H24B109.5
C6—C7—H7120.6O3—C24—H24C109.5
C8—C7—H7120.6H24A—C24—H24C109.5
O4—C8—C9115.46 (17)H24B—C24—H24C109.5
O4—C8—C7122.59 (17)O4—C25—H25A109.5
C9—C8—C7121.95 (17)O4—C25—H25B109.5
C8—C9—C10120.18 (17)H25A—C25—H25B109.5
C8—C9—C26115.71 (16)O4—C25—H25C109.5
C10—C9—C26123.98 (15)H25A—C25—H25C109.5
C9—C10—C5117.68 (15)H25B—C25—H25C109.5
C9—C10—C1124.26 (15)O5—C26—C27121.40 (18)
C5—C10—C1118.03 (15)O5—C26—C9119.47 (15)
O1—C11—C12121.49 (16)C27—C26—C9119.13 (17)
O1—C11—C1120.45 (16)C28—C27—C32119.81 (18)
C12—C11—C1118.04 (15)C28—C27—C26121.65 (19)
C17—C12—C13118.98 (18)C32—C27—C26118.52 (19)
C17—C12—C11122.00 (17)C27—C28—C29119.3 (2)
C13—C12—C11119.02 (17)C27—C28—H28120.3
C14—C13—C12120.31 (19)C29—C28—H28120.3
C14—C13—H13119.8C30—C29—C28120.2 (2)
C12—C13—H13119.8C30—C29—H29119.9
C13—C14—C15119.80 (19)C28—C29—H29119.9
C13—C14—H14120.1C29—C30—C31120.5 (2)
C15—C14—H14120.1C29—C30—H30119.8
C14—C15—C16121.14 (19)C31—C30—H30119.8
C14—C15—O2116.44 (19)C30—C31—C32119.8 (2)
C16—C15—O2122.33 (19)C30—C31—H31120.1
C17—C16—C15118.6 (2)C32—C31—H31120.1
C17—C16—H16120.7C31—C32—C27120.3 (2)
C15—C16—H16120.7C31—C32—H32119.8
C16—C17—C12121.12 (19)C27—C32—H32119.8
C16—C17—H17119.4
C24—O3—C2—C1174.60 (18)O1—C11—C12—C137.3 (3)
C24—O3—C2—C35.9 (3)C1—C11—C12—C13171.04 (16)
C10—C1—C2—O3179.94 (15)C17—C12—C13—C140.7 (3)
C11—C1—C2—O31.2 (2)C11—C12—C13—C14178.93 (16)
C10—C1—C2—C30.6 (3)C12—C13—C14—C150.6 (3)
C11—C1—C2—C3178.30 (16)C13—C14—C15—C160.2 (3)
O3—C2—C3—C4176.71 (18)C13—C14—C15—O2176.52 (16)
C1—C2—C3—C42.7 (3)C18—O2—C15—C14133.4 (2)
C2—C3—C4—C52.6 (3)C18—O2—C15—C1649.9 (3)
C3—C4—C5—C6178.59 (19)C14—C15—C16—C170.8 (3)
C3—C4—C5—C100.8 (3)O2—C15—C16—C17175.70 (19)
C4—C5—C6—C7179.8 (2)C15—C16—C17—C120.7 (3)
C10—C5—C6—C70.8 (3)C13—C12—C17—C160.1 (3)
C5—C6—C7—C80.8 (3)C11—C12—C17—C16179.56 (17)
C25—O4—C8—C9141.6 (2)C15—O2—C18—C1929.0 (3)
C25—O4—C8—C738.4 (3)C15—O2—C18—C23157.0 (2)
C6—C7—C8—O4179.69 (19)C23—C18—C19—C200.3 (4)
C6—C7—C8—C90.3 (3)O2—C18—C19—C20173.4 (2)
O4—C8—C9—C10178.22 (17)C18—C19—C20—C210.5 (4)
C7—C8—C9—C101.8 (3)C19—C20—C21—C221.2 (4)
O4—C8—C9—C262.1 (2)C20—C21—C22—C231.3 (4)
C7—C8—C9—C26177.96 (17)C21—C22—C23—C180.6 (4)
C8—C9—C10—C53.3 (3)C19—C18—C23—C220.2 (4)
C26—C9—C10—C5179.09 (16)O2—C18—C23—C22174.0 (2)
C8—C9—C10—C1174.74 (17)C8—C9—C26—O594.6 (2)
C26—C9—C10—C11.0 (3)C10—C9—C26—O581.4 (2)
C6—C5—C10—C92.8 (3)C8—C9—C26—C2785.2 (2)
C4—C5—C10—C9177.78 (17)C10—C9—C26—C2798.9 (2)
C6—C5—C10—C1175.38 (17)O5—C26—C27—C28176.63 (17)
C4—C5—C10—C14.1 (2)C9—C26—C27—C283.6 (3)
C2—C1—C10—C9178.04 (17)O5—C26—C27—C321.3 (3)
C11—C1—C10—C93.2 (3)C9—C26—C27—C32178.47 (17)
C2—C1—C10—C53.9 (2)C32—C27—C28—C291.5 (3)
C11—C1—C10—C5174.87 (15)C26—C27—C28—C29176.44 (18)
C2—C1—C11—O1100.0 (2)C27—C28—C29—C301.2 (3)
C10—C1—C11—O181.2 (2)C28—C29—C30—C310.1 (4)
C2—C1—C11—C1278.3 (2)C29—C30—C31—C321.1 (4)
C10—C1—C11—C12100.50 (19)C30—C31—C32—C270.8 (4)
O1—C11—C12—C17173.09 (18)C28—C27—C32—C310.5 (3)
C1—C11—C12—C178.6 (2)C26—C27—C32—C31177.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C27–C32, C12–C17 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C30—H30···O5i0.952.523.423 (3)158
C7—H7···O5ii0.952.373.304 (3)168
C25—H25B···O5ii0.982.343.122 (3)136
C3—H3···O1iii0.952.403.310 (2)160
C20—H20···Cg1iv0.952.843.652 (3)144
C23—H23···Cg2v0.952.763.628 (2)151
C29—H29···Cg3i0.952.853.652 (3)142
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1; (iv) x, y1/2, z+1/2; (v) x1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC32H24O5
Mr488.51
Crystal system, space groupOrthorhombic, P212121
Temperature (K)193
a, b, c (Å)8.19645 (10), 11.5051 (2), 26.4916 (4)
V3)2498.18 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.60 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.802, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
46867, 2605, 2543
Rint0.030
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.04
No. of reflections2605
No. of parameters337
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: PROCESS-AUTO (Rigaku, 1998), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C27–C32, C12–C17 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C30—H30···O5i0.952.523.423 (3)158
C7—H7···O5ii0.952.373.304 (3)168
C25—H25B···O5ii0.982.343.122 (3)136
C3—H3···O1iii0.952.403.310 (2)160
C20—H20···Cg1iv0.952.843.652 (3)144
C23—H23···Cg2v0.952.763.628 (2)151
C29—H29···Cg3i0.952.853.652 (3)142
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1; (iv) x, y1/2, z+1/2; (v) x1/2, y1/2, z+1.
 

Acknowledgements

Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, is thanked for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridgeational Laboratory, Tennessee, USA.  Google Scholar
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o906.  CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSasagawa, K., Sakamoto, R., Kusakabe, T., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o146.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o395-o396
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds