metal-organic compounds
catena-Poly[[bis[4-(dimethylamino)pyridine-κN1]cobalt(II)]-di-μ-azido-κ4N1:N3]
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Constantine I, 25000 Constantine, Algeria
*Correspondence e-mail: Lamiabendjeddou@yahoo.fr
The title layered polymer, [Co(N3)2(C7H10N2)2]n, contains CoII, azide and 4-(dimethylamino)pyridine (4-DMAP) species with site symmetries m2m, 2 and m, respectively. The Co2+ ion adopts an octahedral coordination geometry in which four N atoms from azide ligands lie in the equatorial plane and two 4-DMAP N atoms occupy the axial positions. The CoII atoms are connected by two bridging azide ligands, resulting in a chain parallel to the c axis.
Related literature
For applications of coordination polymers, see: Fujita et al. (1994); Hagrman et al. (1999); Hoskins & Robson (1990); Yaghi & Li (1995). For a related Cu complex, see: Dalai et al. (2002).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).
Supporting information
10.1107/S1600536813005205/vm2189sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813005205/vm2189Isup2.hkl
A mixture of NaN3 and CoCl2.6H2O in methanol was stirred for half an hour, then 4-dimethylaminopyridine was added to the solution and the reaction continued to stir for one hour. After filtration, the pink filtrate was allowed to stand at room temperature. Pink crystals were obtained by slow evaporation.
The aromatic H atoms were placed at calculated positions with C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).[Co(N3)2(C7H10N2)2] | F(000) = 804 |
Mr = 387.33 | Dx = 1.493 Mg m−3 |
Orthorhombic, Cmcm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2c 2 | Cell parameters from 1393 reflections |
a = 9.622 (5) Å | θ = 3.1–30.0° |
b = 18.404 (5) Å | µ = 1.02 mm−1 |
c = 9.734 (5) Å | T = 293 K |
V = 1723.7 (13) Å3 | Needle, pink |
Z = 4 | 0.1 × 0.09 × 0.08 mm |
Bruker APEXII diffractometer | 1099 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.031 |
Graphite monochromator | θmax = 30.0°, θmin = 3.1° |
ϕ scans | h = −11→13 |
5192 measured reflections | k = −25→25 |
1393 independent reflections | l = −9→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0383P)2 + 1.0521P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.086 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.43 e Å−3 |
1393 reflections | Δρmin = −0.37 e Å−3 |
79 parameters |
[Co(N3)2(C7H10N2)2] | V = 1723.7 (13) Å3 |
Mr = 387.33 | Z = 4 |
Orthorhombic, Cmcm | Mo Kα radiation |
a = 9.622 (5) Å | µ = 1.02 mm−1 |
b = 18.404 (5) Å | T = 293 K |
c = 9.734 (5) Å | 0.1 × 0.09 × 0.08 mm |
Bruker APEXII diffractometer | 1099 reflections with I > 2σ(I) |
5192 measured reflections | Rint = 0.031 |
1393 independent reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.43 e Å−3 |
1393 reflections | Δρmin = −0.37 e Å−3 |
79 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co | 0.50000 | 0.45887 (2) | 0.25000 | 0.0257 (1) | |
N1 | 0.33908 (16) | 0.45953 (7) | 0.09288 (16) | 0.0355 (4) | |
N1A | 0.50000 | 0.34420 (13) | 0.25000 | 0.0267 (8) | |
N1B | 0.50000 | 0.57488 (14) | 0.25000 | 0.0279 (8) | |
N2 | 0.34145 (19) | 0.50000 | 0.00000 | 0.0263 (5) | |
N2A | 0.50000 | 0.11621 (15) | 0.25000 | 0.0383 (10) | |
N2B | 0.50000 | 0.80246 (14) | 0.25000 | 0.0358 (9) | |
C1A | 0.50000 | 0.07558 (14) | 0.1240 (3) | 0.0536 (10) | |
C1B | 0.6285 (3) | 0.84282 (14) | 0.25000 | 0.0514 (9) | |
C2A | 0.50000 | 0.19006 (16) | 0.25000 | 0.0280 (9) | |
C2B | 0.50000 | 0.72899 (16) | 0.25000 | 0.0264 (9) | |
C3A | 0.50000 | 0.23072 (12) | 0.1278 (3) | 0.0315 (7) | |
C3B | 0.6237 (2) | 0.68797 (12) | 0.25000 | 0.0318 (7) | |
C4A | 0.50000 | 0.30567 (12) | 0.1330 (3) | 0.0311 (7) | |
C4B | 0.6178 (2) | 0.61381 (12) | 0.25000 | 0.0313 (7) | |
H1B1 | 0.60862 | 0.89393 | 0.25000 | 0.0769* | |
H1B2 | 0.68126 | 0.83069 | 0.16947 | 0.0769* | 0.500 |
H1B3 | 0.68126 | 0.83069 | 0.33053 | 0.0769* | 0.500 |
H3A | 0.50000 | 0.20711 | 0.04332 | 0.0377* | |
H3B | 0.70933 | 0.71138 | 0.25000 | 0.0382* | |
H1A1 | 0.50000 | 0.02454 | 0.14436 | 0.0805* | |
H4A | 0.50000 | 0.33101 | 0.05031 | 0.0373* | |
H4B | 0.70142 | 0.58851 | 0.25000 | 0.0376* | |
H1A2 | 0.58146 | 0.08752 | 0.07175 | 0.0805* | 0.500 |
H1A3 | 0.41854 | 0.08752 | 0.07175 | 0.0805* | 0.500 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co | 0.0356 (3) | 0.0196 (2) | 0.0218 (2) | 0.0000 | 0.0000 | 0.0000 |
N1 | 0.0437 (8) | 0.0333 (7) | 0.0296 (8) | −0.0070 (6) | −0.0062 (7) | 0.0078 (6) |
N1A | 0.0357 (15) | 0.0223 (11) | 0.0222 (14) | 0.0000 | 0.0000 | 0.0000 |
N1B | 0.0291 (14) | 0.0221 (12) | 0.0324 (16) | 0.0000 | 0.0000 | 0.0000 |
N2 | 0.0259 (9) | 0.0259 (8) | 0.0270 (10) | 0.0000 | 0.0000 | −0.0017 (8) |
N2A | 0.0530 (19) | 0.0234 (13) | 0.0385 (18) | 0.0000 | 0.0000 | 0.0000 |
N2B | 0.0355 (15) | 0.0209 (12) | 0.051 (2) | 0.0000 | 0.0000 | 0.0000 |
C1A | 0.074 (2) | 0.0299 (13) | 0.057 (2) | 0.0000 | 0.0000 | −0.0100 (13) |
C1B | 0.0459 (16) | 0.0292 (12) | 0.079 (2) | −0.0094 (11) | 0.0000 | 0.0000 |
C2A | 0.0265 (15) | 0.0234 (13) | 0.0341 (19) | 0.0000 | 0.0000 | 0.0000 |
C2B | 0.0277 (15) | 0.0242 (13) | 0.0272 (17) | 0.0000 | 0.0000 | 0.0000 |
C3A | 0.0422 (13) | 0.0266 (10) | 0.0256 (12) | 0.0000 | 0.0000 | −0.0049 (9) |
C3B | 0.0227 (10) | 0.0283 (10) | 0.0445 (15) | −0.0022 (8) | 0.0000 | 0.0000 |
C4A | 0.0450 (13) | 0.0274 (10) | 0.0209 (12) | 0.0000 | 0.0000 | 0.0016 (9) |
C4B | 0.0242 (11) | 0.0287 (10) | 0.0411 (14) | 0.0036 (8) | 0.0000 | 0.0000 |
Co—N1 | 2.1764 (19) | C2A—C3A | 1.405 (3) |
Co—N1A | 2.110 (3) | C2A—C3Ai | 1.405 (3) |
Co—N1B | 2.135 (3) | C2B—C3B | 1.410 (3) |
Co—N1i | 2.1764 (19) | C2B—C3Bi | 1.410 (3) |
Co—N1ii | 2.1764 (19) | C3A—C4A | 1.380 (3) |
Co—N1iii | 2.1764 (19) | C3B—C4B | 1.366 (3) |
N1—N2 | 1.1716 (16) | C1A—H1A1 | 0.9600 |
N1A—C4A | 1.342 (3) | C1A—H1A2 | 0.9600 |
N1A—C4Ai | 1.342 (3) | C1A—H1A3 | 0.9600 |
N1B—C4B | 1.341 (3) | C1B—H1B1 | 0.9600 |
N1B—C4Bi | 1.340 (3) | C1B—H1B2 | 0.9600 |
N2A—C1A | 1.437 (3) | C1B—H1B3 | 0.9600 |
N2A—C2A | 1.359 (4) | C3A—H3A | 0.9300 |
N2A—C1Ai | 1.437 (3) | C3B—H3B | 0.9300 |
N2B—C1B | 1.442 (3) | C4A—H4A | 0.9300 |
N2B—C2B | 1.352 (4) | C4B—H4B | 0.9300 |
N2B—C1Bi | 1.442 (3) | ||
N1—Co—N1A | 90.32 (4) | N2A—C2A—C3Ai | 122.17 (14) |
N1—Co—N1B | 89.68 (4) | C3A—C2A—C3Ai | 115.7 (2) |
N1—Co—N1i | 179.36 (5) | N2B—C2B—C3B | 122.39 (13) |
N1—Co—N1ii | 89.29 (6) | N2B—C2B—C3Bi | 122.39 (13) |
N1—Co—N1iii | 90.70 (6) | C3B—C2B—C3Bi | 115.2 (2) |
N1A—Co—N1B | 180.00 | C2A—C3A—C4A | 120.1 (3) |
N1i—Co—N1A | 90.32 (4) | C2B—C3B—C4B | 120.00 (19) |
N1ii—Co—N1A | 90.32 (4) | N1A—C4A—C3A | 124.0 (3) |
N1iii—Co—N1A | 90.32 (4) | N1B—C4B—C3B | 124.68 (19) |
N1i—Co—N1B | 89.68 (4) | N2A—C1A—H1A1 | 109.00 |
N1ii—Co—N1B | 89.68 (4) | N2A—C1A—H1A2 | 109.00 |
N1iii—Co—N1B | 89.68 (4) | N2A—C1A—H1A3 | 109.00 |
N1i—Co—N1ii | 90.70 (6) | H1A1—C1A—H1A2 | 109.00 |
N1i—Co—N1iii | 89.29 (6) | H1A1—C1A—H1A3 | 109.00 |
N1ii—Co—N1iii | 179.36 (5) | H1A2—C1A—H1A3 | 109.00 |
Co—N1—N2 | 122.14 (12) | N2B—C1B—H1B1 | 110.00 |
Co—N1A—C4A | 121.91 (14) | N2B—C1B—H1B2 | 109.00 |
Co—N1A—C4Ai | 121.91 (14) | N2B—C1B—H1B3 | 109.00 |
C4A—N1A—C4Ai | 116.2 (2) | H1B1—C1B—H1B2 | 109.00 |
Co—N1B—C4B | 122.30 (13) | H1B1—C1B—H1B3 | 109.00 |
Co—N1B—C4Bi | 122.32 (13) | H1B2—C1B—H1B3 | 109.00 |
C4B—N1B—C4Bi | 115.4 (2) | C2A—C3A—H3A | 120.00 |
N1—N2—N1iv | 177.8 (2) | C4A—C3A—H3A | 120.00 |
C1A—N2A—C2A | 121.37 (14) | C2B—C3B—H3B | 120.00 |
C1A—N2A—C1Ai | 117.3 (2) | C4B—C3B—H3B | 120.00 |
C1Ai—N2A—C2A | 121.37 (14) | N1A—C4A—H4A | 118.00 |
C1B—N2B—C2B | 121.00 (14) | C3A—C4A—H4A | 118.00 |
C1B—N2B—C1Bi | 118.0 (2) | N1B—C4B—H4B | 118.00 |
C1Bi—N2B—C2B | 121.00 (14) | C3B—C4B—H4B | 118.00 |
N2A—C2A—C3A | 122.17 (14) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, y, −z+1/2; (iii) −x+1, y, z; (iv) x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Co(N3)2(C7H10N2)2] |
Mr | 387.33 |
Crystal system, space group | Orthorhombic, Cmcm |
Temperature (K) | 293 |
a, b, c (Å) | 9.622 (5), 18.404 (5), 9.734 (5) |
V (Å3) | 1723.7 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.02 |
Crystal size (mm) | 0.1 × 0.09 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5192, 1393, 1099 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.086, 1.07 |
No. of reflections | 1393 |
No. of parameters | 79 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.37 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).
Acknowledgements
This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université de Constantine 1, Algeria. Thanks are also due to MESRS and ATRST (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie, Algérie) via the PNR program for financial support.
References
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Dalai, S., Mukherjee, P. S., Mallah, T., Drew, M. G. B. & Chaudhuri, N. R. (2002). Inorg. Chem. Commun. 5, 472–474. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fujita, M., Kwan, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152. CSD CrossRef CAS Web of Science Google Scholar
Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. Engl. 38, 2638–2684. CrossRef PubMed Google Scholar
Hoskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1564–1575. CSD CrossRef Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ . Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yaghi, O. M. & Li, J. (1995). J. Am. Chem. Soc. 117, 10401–10402. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of coordination polymers has evolved rapidly in recent years and a variety of topologies has been constructed through ligand design and the use of different transition metal geometries. These polymers may have interesting properties and applications, e.g. adsorption, ion exchange, non-linear optical and magnetic materials (Hoskins et al., 1990; Fujita et al., 1994; Yaghi & Li, 1995; Hagrman et al., 1999).
Pseudohalide anions are excellent ligands for obtaining discrete, one-dimensional, two-dimensional or three-dimensional systems. Among these, the azido ligand is the most versatile in linking divalent metal ions. When the azide group acts as bridging ligand there are two typical coordination modes: end-to-end (EE or µ-1,3) in which the resulting complexes usually shows ferromagnetic behavior, and end-on (EO or µ-1,1) which results in antiferromagnetic behavior.
In the course of our investigation of functional coordination complexes and polymers, a new azide-bridged coordination polymer with 4-dimethylaminopyridine has been prepared and structurally characterized.
Part of the structure of (I) with the atom numbering scheme is shown in Figure 1. The structure consists of layers of cobalt atoms linked by double end-to-end (EE) azido bridges, placed along the [001] direction at b = 0 and b = 1/2, forming a one-dimensional polymeric chain with each cobalt(II) ion in an octahedral environment (Fig. 2). In the crystal, parallel one-dimensional polymers form a three-dimensional network. The minimum interdinuclear Co···Co distance bridged by the EE-azido ligands is 5.097 (2) Å. In this structure, the ligand L displays monodentate binding to CoII.
The octahedral coordination around the cobalt(II) atoms (Fig. 3, Table 1) consists of two L ligands coordinated via the pyridine nitrogen atom which occupy the axial positions (Co—N1A = 2.110 (3) Å and Co—N1B = 2.135 (3) Å) and four azide bridges in the equatorial plane (Co—N1 = 2.1764 (19) Å) which act as symmetrical end-to-end (µ-1,3) double bridges betwee two neighboring cobalt atoms.
This structure can be compared with that observed for [Cu(L)2(N3)2]n (L: 4-dimethylaminopyridine (Dalai et al., 2002), which shows also double end-to-end (EE) azido bridges. Here each copper is bonded to two nitrogen atoms of the pyridine ligands (1.999 (7) Å, 2.014 (7) Å) and two nitrogen atoms of the azide (2.029 (5) Å). There are also two weak attachments to two nitrogen atoms of the azide (2.611 (6) Å) in axial positions to create a doubl EE-bridged one-dimensional polymer with each copper(II) ion in a pseudo-octahedral environment. The distance between two neighboring copper ions is 5.20 (1) Å.