metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­[4-(di­methyl­amino)­pyridine-κN1]cobalt(II)]-di-μ-azido-κ4N1:N3]

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Constantine I, 25000 Constantine, Algeria
*Correspondence e-mail: Lamiabendjeddou@yahoo.fr

(Received 10 February 2013; accepted 22 February 2013; online 28 February 2013)

The title layered polymer, [Co(N3)2(C7H10N2)2]n, contains CoII, azide and 4-(dimethyl­amino)­pyridine (4-DMAP) species with site symmetries m2m, 2 and m, respectively. The Co2+ ion adopts an octa­hedral coordination geometry in which four N atoms from azide ligands lie in the equatorial plane and two 4-DMAP N atoms occupy the axial positions. The CoII atoms are connected by two bridging azide ligands, resulting in a chain parallel to the c axis.

Related literature

For applications of coordination polymers, see: Fujita et al. (1994[Fujita, M., Kwan, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]); Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. Engl. 38, 2638-2684.]); Hoskins & Robson (1990[Hoskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1564-1575.]); Yaghi & Li (1995[Yaghi, O. M. & Li, J. (1995). J. Am. Chem. Soc. 117, 10401-10402.]). For a related Cu complex, see: Dalai et al. (2002[Dalai, S., Mukherjee, P. S., Mallah, T., Drew, M. G. B. & Chaudhuri, N. R. (2002). Inorg. Chem. Commun. 5, 472-474.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(N3)2(C7H10N2)2]

  • Mr = 387.33

  • Orthorhombic, C m c m

  • a = 9.622 (5) Å

  • b = 18.404 (5) Å

  • c = 9.734 (5) Å

  • V = 1723.7 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.1 × 0.09 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • 5192 measured reflections

  • 1393 independent reflections

  • 1099 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.07

  • 1393 reflections

  • 79 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Co—N1 2.1764 (19)
Co—N1A 2.110 (3)
Co—N1B 2.135 (3)

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and POVRay (Persistence of Vision Team, 2004[Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ .]).

Supporting information


Comment top

The chemistry of coordination polymers has evolved rapidly in recent years and a variety of topologies has been constructed through ligand design and the use of different transition metal geometries. These polymers may have interesting properties and applications, e.g. adsorption, ion exchange, non-linear optical and magnetic materials (Hoskins et al., 1990; Fujita et al., 1994; Yaghi & Li, 1995; Hagrman et al., 1999).

Pseudohalide anions are excellent ligands for obtaining discrete, one-dimensional, two-dimensional or three-dimensional systems. Among these, the azido ligand is the most versatile in linking divalent metal ions. When the azide group acts as bridging ligand there are two typical coordination modes: end-to-end (EE or µ-1,3) in which the resulting complexes usually shows ferromagnetic behavior, and end-on (EO or µ-1,1) which results in antiferromagnetic behavior.

In the course of our investigation of functional coordination complexes and polymers, a new azide-bridged coordination polymer with 4-dimethylaminopyridine has been prepared and structurally characterized.

Part of the structure of (I) with the atom numbering scheme is shown in Figure 1. The structure consists of layers of cobalt atoms linked by double end-to-end (EE) azido bridges, placed along the [001] direction at b = 0 and b = 1/2, forming a one-dimensional polymeric chain with each cobalt(II) ion in an octahedral environment (Fig. 2). In the crystal, parallel one-dimensional polymers form a three-dimensional network. The minimum interdinuclear Co···Co distance bridged by the EE-azido ligands is 5.097 (2) Å. In this structure, the ligand L displays monodentate binding to CoII.

The octahedral coordination around the cobalt(II) atoms (Fig. 3, Table 1) consists of two L ligands coordinated via the pyridine nitrogen atom which occupy the axial positions (Co—N1A = 2.110 (3) Å and Co—N1B = 2.135 (3) Å) and four azide bridges in the equatorial plane (Co—N1 = 2.1764 (19) Å) which act as symmetrical end-to-end (µ-1,3) double bridges betwee two neighboring cobalt atoms.

This structure can be compared with that observed for [Cu(L)2(N3)2]n (L: 4-dimethylaminopyridine (Dalai et al., 2002), which shows also double end-to-end (EE) azido bridges. Here each copper is bonded to two nitrogen atoms of the pyridine ligands (1.999 (7) Å, 2.014 (7) Å) and two nitrogen atoms of the azide (2.029 (5) Å). There are also two weak attachments to two nitrogen atoms of the azide (2.611 (6) Å) in axial positions to create a doubl EE-bridged one-dimensional polymer with each copper(II) ion in a pseudo-octahedral environment. The distance between two neighboring copper ions is 5.20 (1) Å.

Related literature top

For applications of coordination polymers, see: Fujita et al. (1994); Hagrman et al. (1999); Hoskins & Robson (1990); Yaghi & Li (1995). For a related Cu complex, see: Dalai et al. (2002).

Experimental top

A mixture of NaN3 and CoCl2.6H2O in methanol was stirred for half an hour, then 4-dimethylaminopyridine was added to the solution and the reaction continued to stir for one hour. After filtration, the pink filtrate was allowed to stand at room temperature. Pink crystals were obtained by slow evaporation.

Refinement top

The aromatic H atoms were placed at calculated positions with C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).

Figures top
[Figure 1] Fig. 1. View of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as spheres of arbitrary radii [symmetry codes: (i) x + 1, y, -z + 1/2; (ii) x, y, -z + 1/2; (iii) x + 1, y, z; (v) x + 1, -y + 1, -z; (vii) x + 1, -y + 1, z + 1/2; (viii) x + 1, -y + 1, z - 1/2; (ix) x, -y + 1, z - 1/2; (x) x, -y + 1, -z; (xvii) x, -y + 1, z + 1/2; (xviii) x, -y + 1, -z + 1; (xix) x + 1, -y + 1, -z + 1].
[Figure 2] Fig. 2. View of part of the crystal structure of (I), showing layers along the [001] direction. Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal structure, showing the octahedral coordination around the cobalt(II) atoms. Hydrogen atoms are omitted for clarity [symmetry codes: (i): -x + 1,y,-z + 1/2; (ii): x,y,-z + 1/2; (iii): -x + 1,y,z].
catena-Poly[[bis[4-(dimethylamino)pyridine-κN1]cobalt(II)]-di-µ-azido-κ4N1,N3] top
Crystal data top
[Co(N3)2(C7H10N2)2]F(000) = 804
Mr = 387.33Dx = 1.493 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 1393 reflections
a = 9.622 (5) Åθ = 3.1–30.0°
b = 18.404 (5) ŵ = 1.02 mm1
c = 9.734 (5) ÅT = 293 K
V = 1723.7 (13) Å3Needle, pink
Z = 40.1 × 0.09 × 0.08 mm
Data collection top
Bruker APEXII
diffractometer
1099 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 30.0°, θmin = 3.1°
ϕ scansh = 1113
5192 measured reflectionsk = 2525
1393 independent reflectionsl = 913
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0383P)2 + 1.0521P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.43 e Å3
1393 reflectionsΔρmin = 0.37 e Å3
79 parameters
Crystal data top
[Co(N3)2(C7H10N2)2]V = 1723.7 (13) Å3
Mr = 387.33Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 9.622 (5) ŵ = 1.02 mm1
b = 18.404 (5) ÅT = 293 K
c = 9.734 (5) Å0.1 × 0.09 × 0.08 mm
Data collection top
Bruker APEXII
diffractometer
1099 reflections with I > 2σ(I)
5192 measured reflectionsRint = 0.031
1393 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.07Δρmax = 0.43 e Å3
1393 reflectionsΔρmin = 0.37 e Å3
79 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co0.500000.45887 (2)0.250000.0257 (1)
N10.33908 (16)0.45953 (7)0.09288 (16)0.0355 (4)
N1A0.500000.34420 (13)0.250000.0267 (8)
N1B0.500000.57488 (14)0.250000.0279 (8)
N20.34145 (19)0.500000.000000.0263 (5)
N2A0.500000.11621 (15)0.250000.0383 (10)
N2B0.500000.80246 (14)0.250000.0358 (9)
C1A0.500000.07558 (14)0.1240 (3)0.0536 (10)
C1B0.6285 (3)0.84282 (14)0.250000.0514 (9)
C2A0.500000.19006 (16)0.250000.0280 (9)
C2B0.500000.72899 (16)0.250000.0264 (9)
C3A0.500000.23072 (12)0.1278 (3)0.0315 (7)
C3B0.6237 (2)0.68797 (12)0.250000.0318 (7)
C4A0.500000.30567 (12)0.1330 (3)0.0311 (7)
C4B0.6178 (2)0.61381 (12)0.250000.0313 (7)
H1B10.608620.893930.250000.0769*
H1B20.681260.830690.169470.0769*0.500
H1B30.681260.830690.330530.0769*0.500
H3A0.500000.207110.043320.0377*
H3B0.709330.711380.250000.0382*
H1A10.500000.024540.144360.0805*
H4A0.500000.331010.050310.0373*
H4B0.701420.588510.250000.0376*
H1A20.581460.087520.071750.0805*0.500
H1A30.418540.087520.071750.0805*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0356 (3)0.0196 (2)0.0218 (2)0.00000.00000.0000
N10.0437 (8)0.0333 (7)0.0296 (8)0.0070 (6)0.0062 (7)0.0078 (6)
N1A0.0357 (15)0.0223 (11)0.0222 (14)0.00000.00000.0000
N1B0.0291 (14)0.0221 (12)0.0324 (16)0.00000.00000.0000
N20.0259 (9)0.0259 (8)0.0270 (10)0.00000.00000.0017 (8)
N2A0.0530 (19)0.0234 (13)0.0385 (18)0.00000.00000.0000
N2B0.0355 (15)0.0209 (12)0.051 (2)0.00000.00000.0000
C1A0.074 (2)0.0299 (13)0.057 (2)0.00000.00000.0100 (13)
C1B0.0459 (16)0.0292 (12)0.079 (2)0.0094 (11)0.00000.0000
C2A0.0265 (15)0.0234 (13)0.0341 (19)0.00000.00000.0000
C2B0.0277 (15)0.0242 (13)0.0272 (17)0.00000.00000.0000
C3A0.0422 (13)0.0266 (10)0.0256 (12)0.00000.00000.0049 (9)
C3B0.0227 (10)0.0283 (10)0.0445 (15)0.0022 (8)0.00000.0000
C4A0.0450 (13)0.0274 (10)0.0209 (12)0.00000.00000.0016 (9)
C4B0.0242 (11)0.0287 (10)0.0411 (14)0.0036 (8)0.00000.0000
Geometric parameters (Å, º) top
Co—N12.1764 (19)C2A—C3A1.405 (3)
Co—N1A2.110 (3)C2A—C3Ai1.405 (3)
Co—N1B2.135 (3)C2B—C3B1.410 (3)
Co—N1i2.1764 (19)C2B—C3Bi1.410 (3)
Co—N1ii2.1764 (19)C3A—C4A1.380 (3)
Co—N1iii2.1764 (19)C3B—C4B1.366 (3)
N1—N21.1716 (16)C1A—H1A10.9600
N1A—C4A1.342 (3)C1A—H1A20.9600
N1A—C4Ai1.342 (3)C1A—H1A30.9600
N1B—C4B1.341 (3)C1B—H1B10.9600
N1B—C4Bi1.340 (3)C1B—H1B20.9600
N2A—C1A1.437 (3)C1B—H1B30.9600
N2A—C2A1.359 (4)C3A—H3A0.9300
N2A—C1Ai1.437 (3)C3B—H3B0.9300
N2B—C1B1.442 (3)C4A—H4A0.9300
N2B—C2B1.352 (4)C4B—H4B0.9300
N2B—C1Bi1.442 (3)
N1—Co—N1A90.32 (4)N2A—C2A—C3Ai122.17 (14)
N1—Co—N1B89.68 (4)C3A—C2A—C3Ai115.7 (2)
N1—Co—N1i179.36 (5)N2B—C2B—C3B122.39 (13)
N1—Co—N1ii89.29 (6)N2B—C2B—C3Bi122.39 (13)
N1—Co—N1iii90.70 (6)C3B—C2B—C3Bi115.2 (2)
N1A—Co—N1B180.00C2A—C3A—C4A120.1 (3)
N1i—Co—N1A90.32 (4)C2B—C3B—C4B120.00 (19)
N1ii—Co—N1A90.32 (4)N1A—C4A—C3A124.0 (3)
N1iii—Co—N1A90.32 (4)N1B—C4B—C3B124.68 (19)
N1i—Co—N1B89.68 (4)N2A—C1A—H1A1109.00
N1ii—Co—N1B89.68 (4)N2A—C1A—H1A2109.00
N1iii—Co—N1B89.68 (4)N2A—C1A—H1A3109.00
N1i—Co—N1ii90.70 (6)H1A1—C1A—H1A2109.00
N1i—Co—N1iii89.29 (6)H1A1—C1A—H1A3109.00
N1ii—Co—N1iii179.36 (5)H1A2—C1A—H1A3109.00
Co—N1—N2122.14 (12)N2B—C1B—H1B1110.00
Co—N1A—C4A121.91 (14)N2B—C1B—H1B2109.00
Co—N1A—C4Ai121.91 (14)N2B—C1B—H1B3109.00
C4A—N1A—C4Ai116.2 (2)H1B1—C1B—H1B2109.00
Co—N1B—C4B122.30 (13)H1B1—C1B—H1B3109.00
Co—N1B—C4Bi122.32 (13)H1B2—C1B—H1B3109.00
C4B—N1B—C4Bi115.4 (2)C2A—C3A—H3A120.00
N1—N2—N1iv177.8 (2)C4A—C3A—H3A120.00
C1A—N2A—C2A121.37 (14)C2B—C3B—H3B120.00
C1A—N2A—C1Ai117.3 (2)C4B—C3B—H3B120.00
C1Ai—N2A—C2A121.37 (14)N1A—C4A—H4A118.00
C1B—N2B—C2B121.00 (14)C3A—C4A—H4A118.00
C1B—N2B—C1Bi118.0 (2)N1B—C4B—H4B118.00
C1Bi—N2B—C2B121.00 (14)C3B—C4B—H4B118.00
N2A—C2A—C3A122.17 (14)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1, y, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(N3)2(C7H10N2)2]
Mr387.33
Crystal system, space groupOrthorhombic, Cmcm
Temperature (K)293
a, b, c (Å)9.622 (5), 18.404 (5), 9.734 (5)
V3)1723.7 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.1 × 0.09 × 0.08
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5192, 1393, 1099
Rint0.031
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.07
No. of reflections1393
No. of parameters79
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.37

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).

Selected bond lengths (Å) top
Co—N12.1764 (19)Co—N1B2.135 (3)
Co—N1A2.110 (3)
 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université de Constantine 1, Algeria. Thanks are also due to MESRS and ATRST (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie, Algérie) via the PNR program for financial support.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationDalai, S., Mukherjee, P. S., Mallah, T., Drew, M. G. B. & Chaudhuri, N. R. (2002). Inorg. Chem. Commun. 5, 472–474.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFujita, M., Kwan, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. Engl. 38, 2638–2684.  CrossRef PubMed Google Scholar
First citationHoskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1564–1575.  CSD CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPersistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M. & Li, J. (1995). J. Am. Chem. Soc. 117, 10401–10402.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds