metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m165-m166

Bis{2-[(guanidino­imino)­meth­yl]phenolato-κ3N,N′,O}cobalt(III) chloride hemihydrate

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bCentre for Microscopy, Characterisation and Analysis, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

(Received 30 January 2013; accepted 15 February 2013; online 23 February 2013)

The title compound, [Co(C8H9N4O)2]Cl·0.5H2O, is a solvatomorph of the corresponding trihydrate. Unlike in the structure of the latter compound, there are two different cations in the asymmetric unit of the title compound. The ligand mol­ecules are deprotonated at the phenol O atom and octa­hedrally coordinate the CoIII atoms through the azomethine N and phenolate O atoms in a mer configuration. In the crystal, the cations, chloride ions and lattice water mol­ecules are linked by N—H⋯O, N—H⋯Cl, O—H⋯Cl and O—H⋯O inter­actions, forming a two-dimensional network parallel to (10-1).

Related literature

For direct synthesis using metal powders, see: Chygorin et al. (2012[Chygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boča, R. & Ozarowski, A. (2012). Inorg. Chem. 51, 386-396.]). For solvatomorphism, see: Desiraju (2004[Desiraju, G. R. (2004). Cryst. Growth Des. 4, 1089-1090.]); Bernstein (2005[Bernstein, J. (2005). Cryst. Growth Des. 5, 1661-1662.]); Nangia (2006[Nangia, A. (2006). Cryst. Growth Des. 6, 2-4.]); Brittain (2012[Brittain, H. G. (2012). J. Pharm. Sci. 101, 464-484.]). For the structure of the trihydrate solvatomorph of the title compound, see: Chumakov et al. (2006[Chumakov, Yu. M., Tsapkov, V. I., Bocelli, G., Antosyak, B. Ya., Shova, S. G. & Gulea, A. P. (2006). Crystallogr. Rep. 51, 60-67.]). For the structures of two different solvated crystalline forms of a related Schiff base ligand, see: Gutierrez et al. (2011[Gutierrez, J., Eisenberg, R., Herrensmith, G., Tobin, T., Li, T. & Long, S. (2011). Acta Cryst. C67, o310-o314.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H9N4O)2]Cl·0.5H2O

  • Mr = 457.77

  • Triclinic, [P \overline 1]

  • a = 9.9043 (2) Å

  • b = 10.2078 (2) Å

  • c = 18.5358 (4) Å

  • α = 100.773 (2)°

  • β = 92.019 (2)°

  • γ = 91.458 (2)°

  • V = 1838.84 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 100 K

  • 0.39 × 0.31 × 0.17 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), derived from an expression by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.720, Tmax = 0.864

  • 84837 measured reflections

  • 23430 independent reflections

  • 19519 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.06

  • 23430 reflections

  • 522 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N125 1.8914 (9)
Co1—N122 1.8955 (8)
Co1—O11 1.8967 (8)
Co1—N222 1.8987 (9)
Co1—N225 1.9017 (9)
Co1—O21 1.9290 (8)
Co2—N322 1.8863 (8)
Co2—N422 1.8918 (8)
Co2—N425 1.8945 (9)
Co2—N325 1.9026 (9)
Co2—O31 1.9041 (8)
Co2—O41 1.9202 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N123—H123⋯O21i 0.88 2.29 2.8823 (12) 124
N125—H125⋯Cl1 0.88 2.36 3.1152 (9) 144
N126—H12B⋯O21i 0.88 2.44 3.0709 (13) 129
N223—H223⋯Cl2ii 0.88 2.34 3.0948 (10) 144
N226—H22A⋯O1 0.88 1.95 2.8177 (14) 167
N226—H22B⋯Cl2ii 0.88 2.7 3.4131 (12) 138
N323—H323⋯O41iii 0.88 2.17 2.8311 (11) 131
N325—H325⋯Cl2 0.88 2.77 3.5086 (9) 142
N326—H32A⋯Cl2 0.88 2.59 3.3801 (10) 149
N326—H32B⋯O1iv 0.88 2.14 2.9861 (14) 162
N423—H423⋯Cl1v 0.88 2.31 3.0960 (9) 149
N425—H425⋯Cl2vi 0.88 2.77 3.3659 (10) 126
N426—H42B⋯Cl1v 0.88 2.48 3.2573 (10) 148
O1—H1B⋯Cl1vii 0.83 (2) 2.28 (2) 3.0538 (10) 155 (2)
O1—H1A⋯O31viii 0.86 (2) 2.23 (2) 3.0227 (12) 153 (2)
O1—H1A⋯O41viii 0.86 (2) 2.28 (2) 2.8568 (12) 125 (2)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z+2; (iv) x, y+1, z+1; (v) -x+2, -y+1, -z+1; (vi) -x+1, -y+2, -z+2; (vii) x-1, y, z; (viii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Solvatomorphism, sometimes called pseudopolymorphism, deals with crystals formed by the same substance but crystallized with different amounts or types of solvent molecules (Desiraju, 2004; Bernstein, 2005; Nangia, 2006; Brittain, 2012). The propensity of a given molecule towards hydrogen-bond formation with the solvent molecules leads to the formation of solvatomorphs of the parent compound with different packing motifs. Like polymorphism, solvatomorphism is commonly observed in structures of organic compounds and is of great significance in pharmaceuticals and materials.

The title compound is a solvatomorph of the complex bis(salicylideneguanylhydrazino-N,N',O)-cobalt(III) chloride trihydrate (refcode GEMJOY; Chumakov et al., 2006). It was isolated in an attempt to prepare a heterometallic Co/Mn compound with the ligand, HL, that was synthesized from Schiff base formation of 2-hydroxybenzaldehyde with aminoguanidine hydrochloride. Details of the used synthetic approach as well as its applications were given by Chygorin et al. (2012). Remarkably, the related ligand, that was made from Schiff base formation of 2,6-dichloro-4-hydroxybenzaldehyde and aminoguanidine bicarbonate, iself was shown to form two solvated crystalline forms (Gutierrez et al., 2011).

The title compound, [Co(C8H9N4O)2Cl].0.5(H2O), is formed of discrete [CoL2]+ cations, chloride anions and water molecules of crystallizaion. Unlike GEMJOY there are two independent cations in the asymmetric unit of the title compound. Both cations are very similar and have no crystallographically imposed symmetry (Fig. 1). The ligand molecules are deprotonated at the phenol oxygen atom and coordinate to the CoIII atoms through the azomethine N and phenol O atoms in such a way that the CoIII atoms are octahedrally surrounded by two anionic ligands in a mer configuration. The Co–N/O distances (Table 1) fall in the range 1.8863 (8)–1.9290 (8) Å, the trans angles at the metal atoms are equal to 172.24 (4)–176.71 (4)°, the cis angles vary from 82.33 (4) to 94.86 (4)°. The coordination geometries around the CoIII atoms are similar to that found in GEMJOY (Chumakov et al., 2006). The deprotonated ligand molecules adopt an almost planar conformation. In the crystal lattice, the cations, chloride ions, and lattice water molecules are linked together by intermolecular N—H···O, N—H···Cl, O—H···Cl and O—H···O interactions to form a two-dimensional network parallel to (101) (Fig. 2, Table 2).

Related literature top

For direct synthesis using metal powders, see: Chygorin et al. (2012). For solvatomorphism, see: Desiraju (2004); Bernstein (2005); Nangia (2006); Brittain (2012). For the structure of the trihydrate solvatomorph of the title compound, see: Chumakov et al. (2006). For the structures of two different solvated crystalline forms of a related Schiff base ligand, see: Gutierrez et al. (2011).

Experimental top

Cobalt powder (0.03 g, 0.5 mmol), MnCl2.4H2O (0.10 g, 0.5 mmol), HL.HCl (0.21 g, 1 mmol) and methanol (30 ml) were heated to 323–333 K and magnetically stirred for 50 minutes. The resulting red-brown solution was filtered and allowed to stand at room temperature. Dark-red block-shaped microcrystals of the title compound were formed after 6 days. They were collected by filter-suction, washed with dry PriOH and finally dried in vacuo (yield: 25%).

Refinement top

H atoms were placed at idealized positions with a constrained C—H distance of 0.95 and an N—H distance of 0.88 Å and refined as part of riding models. Uiso(H) values were set at 1.2Ueq of the attached atom. Water molecule H atoms were refined with geometries restrained to ideal values. The highest remaining electron density peaks (min, max) are 0.60 Å from Co1, and 0.18 Å from H323, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of one of the cations with the numbering scheme (the non-hydrogen atoms ellipsoids are shown at the 30% probability level).
[Figure 2] Fig. 2. Perspective packing diagram viewed down the b axis revealing two-dimensional layers parallel to (101) formed by intermolecular N—H···O, N—H···Cl, O—H···Cl and O—H···O interactions (CH hydrogen atoms were omitted for clarity; hydrogen bonds shown as dashed lines).
Bis{2-[(guanidinoimino)methyl]phenolato-κ3N,N',O}cobalt(III) chloride hemihydrate top
Crystal data top
[Co(C8H9N4O)2]Cl·0.5H2OZ = 4
Mr = 457.77F(000) = 940
Triclinic, P1Dx = 1.654 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9043 (2) ÅCell parameters from 29670 reflections
b = 10.2078 (2) Åθ = 2.8–40.7°
c = 18.5358 (4) ŵ = 1.11 mm1
α = 100.773 (2)°T = 100 K
β = 92.019 (2)°Block, dark red
γ = 91.458 (2)°0.39 × 0.31 × 0.17 mm
V = 1838.84 (7) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
23430 independent reflections
Graphite monochromator19519 reflections with I > 2σ(I)
Detector resolution: 16.0009 pixels mm-1Rint = 0.035
ω scansθmax = 40.5°, θmin = 2.9°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011), derived from an expression by Clark & Reid (1995)]
h = 1818
Tmin = 0.720, Tmax = 0.864k = 1818
84837 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.4736P]
where P = (Fo2 + 2Fc2)/3
23430 reflections(Δ/σ)max = 0.003
522 parametersΔρmax = 1.07 e Å3
2 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Co(C8H9N4O)2]Cl·0.5H2Oγ = 91.458 (2)°
Mr = 457.77V = 1838.84 (7) Å3
Triclinic, P1Z = 4
a = 9.9043 (2) ÅMo Kα radiation
b = 10.2078 (2) ŵ = 1.11 mm1
c = 18.5358 (4) ÅT = 100 K
α = 100.773 (2)°0.39 × 0.31 × 0.17 mm
β = 92.019 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
23430 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011), derived from an expression by Clark & Reid (1995)]
19519 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.864Rint = 0.035
84837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.07 e Å3
23430 reflectionsΔρmin = 0.80 e Å3
522 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Water molecule hydrogen atoms were refined with geometries restrained to ideal values.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.827167 (13)0.083852 (13)0.376939 (7)0.01187 (3)
Co20.611810 (13)0.650408 (13)0.893594 (7)0.01106 (3)
Cl11.24863 (3)0.03691 (3)0.287310 (15)0.01975 (5)
Cl20.19760 (3)0.96175 (3)0.937412 (15)0.02252 (5)
C110.61323 (10)0.21108 (10)0.46047 (5)0.01394 (14)
O110.68370 (9)0.20168 (8)0.40119 (4)0.01830 (14)
C120.62893 (10)0.13118 (10)0.51533 (5)0.01361 (14)
C1210.71910 (10)0.02208 (10)0.50915 (5)0.01423 (14)
H1210.71690.03330.5450.017*
N1220.80287 (9)0.00421 (8)0.45719 (5)0.01313 (12)
N1230.88511 (9)0.11340 (9)0.45539 (5)0.01570 (14)
H1230.87810.17060.48530.019*
C1240.97792 (10)0.12184 (10)0.40195 (6)0.01488 (15)
N1250.96716 (9)0.03880 (9)0.35708 (5)0.01636 (14)
H1251.02090.03950.32020.02*
N1261.06788 (10)0.21989 (10)0.39836 (6)0.01985 (16)
H12A1.12620.23170.36320.024*
H12B1.06820.2720.43120.024*
C130.55435 (11)0.15794 (11)0.57983 (6)0.01724 (16)
H130.56620.10410.61610.021*
C140.46482 (11)0.26027 (11)0.59135 (6)0.01894 (17)
H140.41890.28030.6360.023*
C150.44326 (11)0.33395 (11)0.53561 (6)0.01864 (17)
H150.37910.40230.5420.022*
C160.51319 (11)0.30936 (11)0.47170 (6)0.01784 (16)
H160.4940.35930.43430.021*
C211.03067 (11)0.29884 (10)0.41005 (6)0.01690 (16)
O210.95157 (9)0.21235 (8)0.43595 (4)0.01865 (14)
C221.04017 (10)0.30740 (10)0.33508 (6)0.01608 (15)
C2210.95235 (11)0.23312 (10)0.27791 (6)0.01705 (16)
H2210.96310.24610.2290.02*
N2220.85960 (9)0.14963 (9)0.28963 (5)0.01468 (13)
N2230.77566 (11)0.08933 (10)0.23131 (5)0.02135 (18)
H2230.7740.11410.18830.026*
C2240.69561 (11)0.01190 (11)0.24619 (6)0.01745 (16)
N2250.70323 (9)0.03298 (9)0.31335 (5)0.01625 (14)
H2250.65510.0960.32810.02*
N2260.61571 (12)0.07642 (12)0.19052 (6)0.0265 (2)
H22A0.56020.14130.19740.032*
H22B0.61860.0540.1470.032*
C231.13407 (11)0.39789 (11)0.31360 (8)0.02135 (19)
H231.1410.40050.26290.026*
C241.21588 (12)0.48250 (13)0.36462 (9)0.0280 (3)
H241.28030.54150.34960.034*
C251.20178 (15)0.47938 (13)0.43866 (9)0.0309 (3)
H251.25450.53980.47460.037*
C261.11214 (14)0.38969 (12)0.46114 (8)0.0259 (2)
H261.10550.38950.51210.031*
C310.81815 (10)0.45597 (10)0.88106 (6)0.01493 (15)
O310.74001 (8)0.52997 (8)0.84714 (4)0.01635 (12)
C320.81293 (10)0.44656 (10)0.95638 (6)0.01497 (15)
C3210.72252 (10)0.52156 (10)1.00603 (5)0.01487 (15)
H3210.72670.51141.0560.018*
N3220.63581 (8)0.60210 (8)0.98648 (4)0.01268 (12)
N3230.55486 (9)0.67200 (9)1.03967 (5)0.01466 (13)
H3230.55840.66331.0860.018*
C3240.46931 (10)0.75565 (10)1.01209 (5)0.01389 (14)
N3250.47942 (9)0.76188 (9)0.94286 (5)0.01487 (13)
H3250.42910.81350.92070.018*
N3260.38727 (10)0.82889 (10)1.05904 (5)0.01765 (15)
H32A0.33450.88691.04360.021*
H32B0.38640.81871.10510.021*
C330.89567 (11)0.35678 (11)0.98563 (7)0.01903 (17)
H330.89170.3521.03620.023*
C340.98220 (11)0.27588 (11)0.94183 (7)0.02107 (19)
H341.03620.21460.96170.025*
C350.98897 (11)0.28567 (11)0.86789 (7)0.02109 (19)
H351.04860.23070.83750.025*
C360.91026 (11)0.37418 (12)0.83803 (7)0.02006 (18)
H360.91830.38010.78780.024*
C410.39361 (9)0.49962 (9)0.80545 (5)0.01243 (13)
O410.47794 (8)0.50957 (7)0.86352 (4)0.01390 (11)
C420.39925 (10)0.58283 (9)0.75193 (5)0.01252 (13)
C4210.50038 (10)0.68781 (9)0.75368 (5)0.01374 (14)
H4210.50020.73560.71440.016*
N4220.59111 (9)0.71972 (8)0.80620 (4)0.01260 (12)
N4230.68689 (10)0.81840 (9)0.80302 (5)0.01686 (15)
H4230.69740.85340.76360.02*
C4240.76384 (10)0.85724 (10)0.86595 (5)0.01469 (15)
N4250.74711 (9)0.78781 (9)0.91742 (5)0.01589 (14)
H4250.79440.80330.95940.019*
N4260.85036 (11)0.96201 (10)0.86903 (6)0.02079 (17)
H42A0.90250.98950.90870.025*
H42B0.85481.00310.83140.025*
C430.30388 (10)0.56265 (10)0.69219 (5)0.01464 (15)
H430.30780.61940.65710.018*
C440.20508 (10)0.46259 (10)0.68353 (6)0.01570 (15)
H440.1410.45090.64330.019*
C450.20096 (10)0.37876 (10)0.73500 (5)0.01538 (15)
H450.13470.30820.72910.018*
C460.29211 (10)0.39713 (10)0.79446 (5)0.01503 (15)
H460.28640.33930.82890.018*
O10.40782 (10)0.26387 (9)0.20245 (5)0.02312 (16)
H1B0.3487 (18)0.2225 (19)0.2271 (11)0.030 (5)*
H1A0.390 (2)0.3477 (16)0.1956 (14)0.048 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01376 (5)0.01180 (5)0.01037 (5)0.00082 (4)0.00077 (4)0.00302 (4)
Co20.01325 (5)0.01103 (5)0.00952 (5)0.00078 (4)0.00045 (4)0.00388 (4)
Cl10.02057 (10)0.02147 (11)0.01993 (10)0.00328 (8)0.00516 (8)0.00978 (8)
Cl20.03053 (13)0.02318 (11)0.01366 (9)0.00391 (10)0.00127 (9)0.00303 (8)
C110.0155 (4)0.0131 (3)0.0139 (3)0.0000 (3)0.0011 (3)0.0041 (3)
O110.0230 (3)0.0180 (3)0.0166 (3)0.0059 (3)0.0064 (3)0.0085 (3)
C120.0144 (3)0.0135 (3)0.0136 (3)0.0001 (3)0.0012 (3)0.0042 (3)
C1210.0166 (4)0.0148 (4)0.0123 (3)0.0003 (3)0.0011 (3)0.0051 (3)
N1220.0149 (3)0.0123 (3)0.0126 (3)0.0010 (2)0.0002 (2)0.0034 (2)
N1230.0186 (3)0.0143 (3)0.0153 (3)0.0035 (3)0.0012 (3)0.0051 (3)
C1240.0143 (3)0.0146 (4)0.0148 (4)0.0003 (3)0.0014 (3)0.0007 (3)
N1250.0154 (3)0.0186 (4)0.0155 (3)0.0019 (3)0.0029 (3)0.0038 (3)
N1260.0184 (4)0.0184 (4)0.0220 (4)0.0053 (3)0.0013 (3)0.0017 (3)
C130.0178 (4)0.0198 (4)0.0155 (4)0.0016 (3)0.0035 (3)0.0062 (3)
C140.0188 (4)0.0196 (4)0.0196 (4)0.0021 (3)0.0058 (3)0.0056 (3)
C150.0179 (4)0.0172 (4)0.0214 (4)0.0030 (3)0.0038 (3)0.0044 (3)
C160.0196 (4)0.0164 (4)0.0191 (4)0.0037 (3)0.0020 (3)0.0067 (3)
C210.0181 (4)0.0128 (3)0.0196 (4)0.0012 (3)0.0019 (3)0.0032 (3)
O210.0250 (4)0.0165 (3)0.0138 (3)0.0065 (3)0.0014 (3)0.0026 (2)
C220.0146 (4)0.0137 (4)0.0204 (4)0.0005 (3)0.0020 (3)0.0044 (3)
C2210.0211 (4)0.0157 (4)0.0148 (4)0.0020 (3)0.0042 (3)0.0040 (3)
N2220.0183 (3)0.0145 (3)0.0112 (3)0.0023 (3)0.0007 (2)0.0027 (2)
N2230.0319 (5)0.0207 (4)0.0112 (3)0.0099 (4)0.0026 (3)0.0043 (3)
C2240.0204 (4)0.0161 (4)0.0156 (4)0.0029 (3)0.0032 (3)0.0035 (3)
N2250.0176 (3)0.0164 (3)0.0155 (3)0.0042 (3)0.0014 (3)0.0058 (3)
N2260.0330 (5)0.0265 (5)0.0191 (4)0.0122 (4)0.0104 (4)0.0055 (4)
C230.0164 (4)0.0168 (4)0.0328 (6)0.0004 (3)0.0048 (4)0.0091 (4)
C240.0169 (4)0.0191 (5)0.0503 (8)0.0044 (4)0.0043 (5)0.0143 (5)
C250.0296 (6)0.0192 (5)0.0440 (8)0.0086 (4)0.0168 (5)0.0111 (5)
C260.0319 (6)0.0173 (4)0.0276 (5)0.0068 (4)0.0117 (5)0.0054 (4)
C310.0136 (3)0.0142 (4)0.0177 (4)0.0008 (3)0.0002 (3)0.0052 (3)
O310.0179 (3)0.0184 (3)0.0144 (3)0.0044 (2)0.0024 (2)0.0064 (2)
C320.0145 (3)0.0140 (3)0.0172 (4)0.0016 (3)0.0024 (3)0.0057 (3)
C3210.0168 (4)0.0154 (4)0.0133 (3)0.0017 (3)0.0024 (3)0.0058 (3)
N3220.0145 (3)0.0133 (3)0.0108 (3)0.0009 (2)0.0008 (2)0.0040 (2)
N3230.0176 (3)0.0172 (3)0.0100 (3)0.0001 (3)0.0005 (2)0.0047 (2)
C3240.0152 (3)0.0143 (3)0.0119 (3)0.0018 (3)0.0008 (3)0.0022 (3)
N3250.0183 (3)0.0155 (3)0.0114 (3)0.0021 (3)0.0003 (2)0.0041 (2)
N3260.0188 (4)0.0198 (4)0.0140 (3)0.0015 (3)0.0016 (3)0.0018 (3)
C330.0181 (4)0.0173 (4)0.0227 (4)0.0001 (3)0.0048 (3)0.0075 (3)
C340.0161 (4)0.0174 (4)0.0308 (5)0.0006 (3)0.0045 (4)0.0082 (4)
C350.0158 (4)0.0179 (4)0.0304 (5)0.0020 (3)0.0018 (4)0.0063 (4)
C360.0180 (4)0.0204 (4)0.0235 (5)0.0039 (3)0.0041 (3)0.0074 (4)
C410.0142 (3)0.0126 (3)0.0109 (3)0.0001 (3)0.0002 (3)0.0034 (3)
O410.0169 (3)0.0139 (3)0.0115 (3)0.0035 (2)0.0028 (2)0.0053 (2)
C420.0146 (3)0.0125 (3)0.0108 (3)0.0004 (3)0.0005 (3)0.0032 (3)
C4210.0181 (4)0.0129 (3)0.0109 (3)0.0011 (3)0.0005 (3)0.0042 (3)
N4220.0154 (3)0.0116 (3)0.0114 (3)0.0018 (2)0.0000 (2)0.0040 (2)
N4230.0221 (4)0.0159 (3)0.0133 (3)0.0075 (3)0.0023 (3)0.0064 (3)
C4240.0167 (4)0.0143 (3)0.0134 (3)0.0027 (3)0.0009 (3)0.0039 (3)
N4250.0184 (3)0.0167 (3)0.0133 (3)0.0045 (3)0.0032 (3)0.0060 (3)
N4260.0239 (4)0.0202 (4)0.0188 (4)0.0101 (3)0.0045 (3)0.0077 (3)
C430.0173 (4)0.0151 (4)0.0119 (3)0.0007 (3)0.0017 (3)0.0040 (3)
C440.0154 (4)0.0176 (4)0.0137 (3)0.0007 (3)0.0021 (3)0.0024 (3)
C450.0148 (4)0.0169 (4)0.0140 (4)0.0017 (3)0.0002 (3)0.0023 (3)
C460.0164 (4)0.0155 (4)0.0137 (3)0.0021 (3)0.0005 (3)0.0047 (3)
O10.0218 (4)0.0188 (4)0.0273 (4)0.0004 (3)0.0044 (3)0.0001 (3)
Geometric parameters (Å, º) top
Co1—N1251.8914 (9)C24—C251.391 (2)
Co1—N1221.8955 (8)C24—H240.95
Co1—O111.8967 (8)C25—C261.3883 (19)
Co1—N2221.8987 (9)C25—H250.95
Co1—N2251.9017 (9)C26—H260.95
Co1—O211.9290 (8)C31—O311.3183 (13)
Co2—N3221.8863 (8)C31—C361.4165 (15)
Co2—N4221.8918 (8)C31—C321.4199 (15)
Co2—N4251.8945 (9)C32—C331.4135 (14)
Co2—N3251.9026 (9)C32—C3211.4367 (15)
Co2—O311.9041 (8)C321—N3221.2924 (13)
Co2—O411.9202 (7)C321—H3210.95
C11—O111.3122 (13)N322—N3231.3949 (12)
C11—C161.4208 (14)N323—C3241.3704 (13)
C11—C121.4244 (13)N323—H3230.88
C12—C131.4142 (14)C324—N3251.3038 (13)
C12—C1211.4356 (14)C324—N3261.3468 (14)
C121—N1221.2880 (13)N325—H3250.88
C121—H1210.95N326—H32A0.88
N122—N1231.3932 (12)N326—H32B0.88
N123—C1241.3674 (14)C33—C341.3820 (18)
N123—H1230.88C33—H330.95
C124—N1251.2976 (14)C34—C351.3965 (18)
C124—N1261.3509 (14)C34—H340.95
N125—H1250.88C35—C361.3866 (16)
N126—H12A0.88C35—H350.95
N126—H12B0.88C36—H360.95
C13—C141.3784 (16)C41—O411.3257 (12)
C13—H130.95C41—C461.4138 (14)
C14—C151.4007 (16)C41—C421.4232 (13)
C14—H140.95C42—C431.4114 (13)
C15—C161.3790 (16)C42—C4211.4432 (13)
C15—H150.95C421—N4221.2909 (13)
C16—H160.95C421—H4210.95
C21—O211.3318 (13)N422—N4231.3768 (12)
C21—C261.4099 (16)N423—C4241.3594 (13)
C21—C221.4148 (16)N423—H4230.88
C22—C231.4130 (15)C424—N4251.3030 (13)
C22—C2211.4337 (15)C424—N4261.3448 (13)
C221—N2221.2887 (13)N425—H4250.88
C221—H2210.95N426—H42A0.88
N222—N2231.3786 (13)N426—H42B0.88
N223—C2241.3612 (14)C43—C441.3796 (15)
N223—H2230.88C43—H430.95
C224—N2251.3023 (14)C44—C451.3965 (15)
C224—N2261.3366 (14)C44—H440.95
N225—H2250.88C45—C461.3817 (14)
N226—H22A0.88C45—H450.95
N226—H22B0.88C46—H460.95
C23—C241.3792 (19)O1—H1B0.831 (15)
C23—H230.95O1—H1A0.855 (16)
N125—Co1—N12282.33 (4)C224—N226—H22B120
N125—Co1—O11176.71 (4)H22A—N226—H22B120
N122—Co1—O1194.41 (3)C24—C23—C22121.45 (12)
N125—Co1—N22290.99 (4)C24—C23—H23119.3
N122—Co1—N222172.24 (4)C22—C23—H23119.3
O11—Co1—N22292.24 (4)C23—C24—C25118.35 (11)
N125—Co1—N22591.40 (4)C23—C24—H24120.8
N122—Co1—N22593.71 (4)C25—C24—H24120.8
O11—Co1—N22588.41 (4)C26—C25—C24121.32 (12)
N222—Co1—N22582.46 (4)C26—C25—H25119.3
N125—Co1—O2190.54 (4)C24—C25—H25119.3
N122—Co1—O2190.76 (4)C25—C26—C21121.52 (13)
O11—Co1—O2189.88 (4)C25—C26—H26119.2
N222—Co1—O2193.26 (4)C21—C26—H26119.2
N225—Co1—O21175.32 (4)O31—C31—C36117.30 (10)
N322—Co2—N422173.31 (4)O31—C31—C32125.34 (9)
N322—Co2—N42591.61 (4)C36—C31—C32117.29 (9)
N422—Co2—N42583.09 (4)C31—O31—Co2124.92 (7)
N322—Co2—N32582.54 (4)C33—C32—C31120.31 (10)
N422—Co2—N32593.51 (4)C33—C32—C321116.39 (9)
N425—Co2—N32591.69 (4)C31—C32—C321123.26 (9)
N322—Co2—O3194.86 (4)N322—C321—C32123.59 (9)
N422—Co2—O3189.31 (3)N322—C321—H321118.2
N425—Co2—O3190.92 (4)C32—C321—H321118.2
N325—Co2—O31176.37 (4)C321—N322—N323118.73 (8)
N322—Co2—O4191.23 (3)C321—N322—Co2127.74 (7)
N422—Co2—O4194.22 (3)N323—N322—Co2113.34 (6)
N425—Co2—O41176.60 (4)C324—N323—N322112.88 (8)
N325—Co2—O4190.55 (4)C324—N323—H323123.6
O31—Co2—O4186.96 (4)N322—N323—H323123.6
O11—C11—C16117.83 (9)N325—C324—N326125.59 (10)
O11—C11—C12125.45 (9)N325—C324—N323116.56 (9)
C16—C11—C12116.72 (9)N326—C324—N323117.76 (9)
C11—O11—Co1125.27 (7)C324—N325—Co2114.58 (7)
C13—C12—C11120.15 (9)C324—N325—H325122.7
C13—C12—C121116.76 (9)Co2—N325—H325122.7
C11—C12—C121123.09 (9)C324—N326—H32A120
N122—C121—C12123.01 (9)C324—N326—H32B120
N122—C121—H121118.5H32A—N326—H32B120
C12—C121—H121118.5C34—C33—C32121.06 (11)
C121—N122—N123118.73 (8)C34—C33—H33119.5
C121—N122—Co1128.28 (7)C32—C33—H33119.5
N123—N122—Co1112.94 (6)C33—C34—C35118.93 (10)
C124—N123—N122112.47 (8)C33—C34—H34120.5
C124—N123—H123123.8C35—C34—H34120.5
N122—N123—H123123.8C36—C35—C34121.18 (11)
N125—C124—N126125.95 (10)C36—C35—H35119.4
N125—C124—N123116.79 (9)C34—C35—H35119.4
N126—C124—N123117.17 (10)C35—C36—C31121.20 (11)
C124—N125—Co1114.90 (7)C35—C36—H36119.4
C124—N125—H125122.6C31—C36—H36119.4
Co1—N125—H125122.6O41—C41—C46118.06 (8)
C124—N126—H12A120O41—C41—C42124.85 (8)
C124—N126—H12B120C46—C41—C42117.07 (8)
H12A—N126—H12B120C41—O41—Co2124.80 (6)
C14—C13—C12121.56 (10)C43—C42—C41119.80 (9)
C14—C13—H13119.2C43—C42—C421116.49 (8)
C12—C13—H13119.2C41—C42—C421123.69 (8)
C13—C14—C15118.39 (10)N422—C421—C42123.03 (8)
C13—C14—H14120.8N422—C421—H421118.5
C15—C14—H14120.8C42—C421—H421118.5
C16—C15—C14121.43 (10)C421—N422—N423119.74 (8)
C16—C15—H15119.3C421—N422—Co2128.41 (7)
C14—C15—H15119.3N423—N422—Co2111.83 (6)
C15—C16—C11121.47 (10)C424—N423—N422114.35 (8)
C15—C16—H16119.3C424—N423—H423122.8
C11—C16—H16119.3N422—N423—H423122.8
O21—C21—C26117.74 (10)N425—C424—N426126.29 (9)
O21—C21—C22125.39 (9)N425—C424—N423116.35 (9)
C26—C21—C22116.87 (10)N426—C424—N423117.36 (9)
C21—O21—Co1124.97 (7)C424—N425—Co2113.87 (7)
C23—C22—C21120.36 (10)C424—N425—H425123.1
C23—C22—C221116.38 (10)Co2—N425—H425123.1
C21—C22—C221123.16 (9)C424—N426—H42A120
N222—C221—C22123.24 (9)C424—N426—H42B120
N222—C221—H221118.4H42A—N426—H42B120
C22—C221—H221118.4C44—C43—C42121.65 (9)
C221—N222—N223118.41 (9)C44—C43—H43119.2
C221—N222—Co1128.88 (8)C42—C43—H43119.2
N223—N222—Co1112.52 (6)C43—C44—C45118.77 (9)
C224—N223—N222114.01 (9)C43—C44—H44120.6
C224—N223—H223123C45—C44—H44120.6
N222—N223—H223123C46—C45—C44120.81 (9)
N225—C224—N226127.36 (10)C46—C45—H45119.6
N225—C224—N223116.43 (9)C44—C45—H45119.6
N226—C224—N223116.19 (10)C45—C46—C41121.87 (9)
C224—N225—Co1114.34 (7)C45—C46—H46119.1
C224—N225—H225122.8C41—C46—H46119.1
Co1—N225—H225122.8H1B—O1—H1A110 (2)
C224—N226—H22A120
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N123—H123···O21i0.882.292.8823 (12)124
N125—H125···Cl10.882.363.1152 (9)144
N126—H12B···O21i0.882.443.0709 (13)129
N223—H223···Cl2ii0.882.343.0948 (10)144
N226—H22A···O10.881.952.8177 (14)167
N226—H22B···Cl2ii0.882.73.4131 (12)138
N323—H323···O41iii0.882.172.8311 (11)131
N325—H325···Cl20.882.773.5086 (9)142
N326—H32A···Cl20.882.593.3801 (10)149
N326—H32B···O1iv0.882.142.9861 (14)162
N423—H423···Cl1v0.882.313.0960 (9)149
N425—H425···Cl2vi0.882.773.3659 (10)126
N426—H42B···Cl1v0.882.483.2573 (10)148
O1—H1B···Cl1vii0.83 (2)2.28 (2)3.0538 (10)155 (2)
O1—H1A···O31viii0.86 (2)2.23 (2)3.0227 (12)153 (2)
O1—H1A···O41viii0.86 (2)2.28 (2)2.8568 (12)125 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x, y+1, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+2, z+2; (vii) x1, y, z; (viii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C8H9N4O)2]Cl·0.5H2O
Mr457.77
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.9043 (2), 10.2078 (2), 18.5358 (4)
α, β, γ (°)100.773 (2), 92.019 (2), 91.458 (2)
V3)1838.84 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.39 × 0.31 × 0.17
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2011), derived from an expression by Clark & Reid (1995)]
Tmin, Tmax0.720, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
84837, 23430, 19519
Rint0.035
(sin θ/λ)max1)0.914
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.06
No. of reflections23430
No. of parameters522
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.07, 0.80

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), WinGX (Farrugia, 2012).

Selected bond lengths (Å) top
Co1—N1251.8914 (9)Co2—N3221.8863 (8)
Co1—N1221.8955 (8)Co2—N4221.8918 (8)
Co1—O111.8967 (8)Co2—N4251.8945 (9)
Co1—N2221.8987 (9)Co2—N3251.9026 (9)
Co1—N2251.9017 (9)Co2—O311.9041 (8)
Co1—O211.9290 (8)Co2—O411.9202 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N123—H123···O21i0.882.292.8823 (12)124.4
N125—H125···Cl10.882.363.1152 (9)144.3
N126—H12B···O21i0.882.443.0709 (13)129
N223—H223···Cl2ii0.882.343.0948 (10)143.5
N226—H22A···O10.881.952.8177 (14)167.4
N226—H22B···Cl2ii0.882.73.4131 (12)138.4
N323—H323···O41iii0.882.172.8311 (11)131.1
N325—H325···Cl20.882.773.5086 (9)141.9
N326—H32A···Cl20.882.593.3801 (10)149.3
N326—H32B···O1iv0.882.142.9861 (14)162.4
N423—H423···Cl1v0.882.313.0960 (9)149
N425—H425···Cl2vi0.882.773.3659 (10)126.1
N426—H42B···Cl1v0.882.483.2573 (10)147.5
O1—H1B···Cl1vii0.831 (15)2.280 (16)3.0538 (10)155.2 (19)
O1—H1A···O31viii0.855 (16)2.234 (18)3.0227 (12)153 (2)
O1—H1A···O41viii0.855 (16)2.28 (2)2.8568 (12)125 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x, y+1, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+2, z+2; (vii) x1, y, z; (viii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterization & Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J. (2005). Cryst. Growth Des. 5, 1661–1662.  Web of Science CrossRef CAS Google Scholar
First citationBrittain, H. G. (2012). J. Pharm. Sci. 101, 464–484.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChumakov, Yu. M., Tsapkov, V. I., Bocelli, G., Antosyak, B. Ya., Shova, S. G. & Gulea, A. P. (2006). Crystallogr. Rep. 51, 60–67.  Web of Science CrossRef CAS Google Scholar
First citationChygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boča, R. & Ozarowski, A. (2012). Inorg. Chem. 51, 386–396.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. (2004). Cryst. Growth Des. 4, 1089–1090.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGutierrez, J., Eisenberg, R., Herrensmith, G., Tobin, T., Li, T. & Long, S. (2011). Acta Cryst. C67, o310–o314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationNangia, A. (2006). Cryst. Growth Des. 6, 2–4.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m165-m166
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds