metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m162-m163

(Butane-1,2,3,4-tetraol-κ3O1,O2,O3)(ethanol-κO)tris­­(nitrato-κ2O,O′)holmium(III)

aBeijing National Laboratory for Molecular Sciences, The State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China, bChemical Engineering College, Inner Mongolia University of Technology, People's Republic of China, and cState Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, People's Republic of China
*Correspondence e-mail: xyz@pku.edu.cn

(Received 23 November 2012; accepted 30 January 2013; online 20 February 2013)

In the title HoIII–erythritol complex, [Ho(NO3)3(C4H10O4)(C2H5OH)], the HoIII cation is chelated by a tridentate erythritol ligand and three bidentate nitrate anions. An ethanol mol­ecule further coordinates the HoIII cation, completing the irregular O10 coordination geometry. In the crystal, an extensive O—H⋯O hydrogen-bond network links the mol­ecules into a three-dimensional supra­molecular structure.

Related literature

For crystal structures of related lanthanide nitrate–erythritol complexes, see: Gyurcsik & Nagy (2000[Gyurcsik, B. & Nagy, L. (2000). Coord. Chem. Rev. 203, 81-148.]); Yang et al. (2003[Yang, L.-M., Su, Y.-L., Xu, Y.-Z., Wang, Z.-M., Guo, Z.-H., Weng, S.-F., Yan, C.-H., Zhang, S.-W. & Wu, J.-G. (2003). Inorg. Chem. 42, 5844-5856.], 2004[Yang, L.-M., Su, Y.-L., Xu, Y.-Z., Zhang, S.-W., Wu, J.-G. & Zhao, K. (2004). J. Inorg. Biochem. 98, 1251-1260.], 2012[Yang, L.-M., Hua, X.-H., Xue, J.-H., Pan, Q.-H., Yu, L., Li, W.-H., Xu, Y.-Z., Zhao, G.-Z., Liu, L.-M., Liu, K.-X., Chen, J.-E. & Wu, J.-G. (2012). Inorg. Chem. 51, 499-510.]).

[Scheme 1]

Experimental

Crystal data
  • [Ho(NO3)3(C4H10O4)(C2H6O)]

  • Mr = 519.15

  • Monoclinic, P 21 /c

  • a = 7.7501 (16) Å

  • b = 12.783 (3) Å

  • c = 15.164 (3) Å

  • β = 100.35 (3)°

  • V = 1477.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.44 mm−1

  • T = 173 K

  • 0.26 × 0.19 × 0.19 mm

Data collection
  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.25, Tmax = 0.36

  • 10146 measured reflections

  • 3376 independent reflections

  • 3198 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.061

  • S = 1.19

  • 3376 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Selected bond lengths (Å)

Ho1—O1 2.367 (3)
Ho1—O2 2.373 (3)
Ho1—O3 2.473 (3)
Ho1—O5 2.364 (3)
Ho1—O6 2.443 (3)
Ho1—O7 2.444 (3)
Ho1—O9 2.449 (3)
Ho1—O10 2.497 (3)
Ho1—O12 2.590 (3)
Ho1—O13 2.445 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.84 1.86 2.665 (4) 161
O2—H2⋯O12ii 0.84 1.99 2.794 (4) 159
O3—H3⋯O10iii 0.84 2.08 2.914 (4) 177
O4—H4⋯O14iv 0.84 2.12 2.894 (4) 153
O5—H5⋯O8v 0.84 2.03 2.863 (4) 169
Symmetry codes: (i) -x+2, -y, -z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) -x+2, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The interaction between carbohydrates and metal ions is of increasing interest as it occurs in many important biological processes (Gyurcsik & Nagy, 2000). Erythritol is a model compound to study the coordination behavior of hydroxyl groups to metal ions. For lanthanide nitrate-erythritol complexes, two kinds of metal complexes were observed: coordinate complex with water and coordinate complex without water (Yang et al., 2003, 2004, 2012). The title holmium nitrate-erythritol complex is belonging to the complexes without water.

The title complex denoted as HoEN, where E stands for erythritol and N stands for nitrate, which is shown in Fig. 1. The coordinating number is 10 (three hydroxyl groups from one erythritol molecule, one hydroxyl group from ethanol, and three bidentate nitrate ions). Erythritol molecule is an O1,O2,O3-three hydroxyl group donor. The structure of HoEN is similar to NdEN, EuEN, YEN, GdEN and TbEN (Yang et al., 2003, 2004, 2012). Because of the variation of ionic radii of rare earth elements, significant changes in Ln—O distances can be observed on comparison of LnEN complexes. Ho—O distances in the compound range from 2.364 to 2.590 Å, the average Ho—O distance is 2.444 Å. Y—O distances range from 2.358 to 2.594 Å, the average Y—O distance is 2.447 Å in YEN; Nd—O distances range from 2.455 to 2.620 Å, the average Nd—O distance is 2.528 Å in NdEN; Eu—O distances range from 2.421 to 2.600 Å, the average Eu—O distance is 2.494 Å in EuEN; Gd—O distances range from 2.398 to 2.596 Å, the average Gd—O distance is 2.478 Å in GdEN; Tb—O distances range from 2.373 to 2.581 Å, the average Tb—O distance is 2.410 Å in TbEN. The changes on M—O distances are consistent with the effect of lanthanide contraction.

The O-M-O (the oxygen atoms from coordinated hydroxyl groups of erythritol) bond angles are also variation of different LnEN complexes. O-Ho-O bond angles are 68.71 (9) (O1-Ho-O2), 68.54 (9) (O1-Ho-O3) and 64.58 (9)° (O2-Ho-O3). O-Y-O bond angles are 68.71 (12), 68.70 (11) and 64.32 (11)°. O-Nd-O bond angles are 66.57 (10), 66.54 (10) and 62.49 (10)°. O-Eu-O bond angles are 67.31 (8), 67.40 (8) and 63.62 (8)°. O-Gd-O bond angles are 67.97 (12), 67.66 (12)and 63.56 (12)°. O-Tb-O bond angles are 68.2 (3), 68.0 (3)and 63.7 (3)°. The changes of O-M-O bond angles are related with the changes of M—O distances.

Related literature top

For crystal structures of related lanthanide nitrate–erythritol complexes, see: Gyurcsik & Nagy (2000); Yang et al. (2003, 2004, 2012).

Experimental top

Ho(NO3)3.6H2O (3 mmol) and erythritol (3 mmol) were dissolved in 6 ml water and 6 ml ethanol. The solution was put on a water bath, and the temperature was raised to 353 K. Small aliquots of EtOH were periodically added to the solution during the heating process to prolong the reaction time. The resulting mixtures were filtered and left for crystallization in room temperature, the suitable crystals for X-ray diffraction measurements were obtained in two weeks.

Refinement top

The C-bound H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding model approximation, Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located in a difference Fourier map and were refined with distance restranits of O—H = 0.84 Å, Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, displacement ellipsoids drawn at 30% probability level. The Hydrogen atoms have been omitted for clarity.
(Butane-1,2,3,4-tetraol-κ3O1,O2,O3)(ethanol-κO)tris(nitrato-κ2O,O')holmium(III) top
Crystal data top
[Ho(NO3)3(C4H10O4)(C2H6O)]F(000) = 1008
Mr = 519.15Dx = 2.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5233 reflections
a = 7.7501 (16) Åθ = 2.1–27.5°
b = 12.783 (3) ŵ = 5.44 mm1
c = 15.164 (3) ÅT = 173 K
β = 100.35 (3)°Block, colorless
V = 1477.8 (5) Å30.26 × 0.19 × 0.19 mm
Z = 4
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3376 independent reflections
Radiation source: fine-focus sealed tube3198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scans at fixed χ = 45°h = 109
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 1416
Tmin = 0.25, Tmax = 0.36l = 1919
10146 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0123P)2 + 3.0745P]
where P = (Fo2 + 2Fc2)/3
3376 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Ho(NO3)3(C4H10O4)(C2H6O)]V = 1477.8 (5) Å3
Mr = 519.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7501 (16) ŵ = 5.44 mm1
b = 12.783 (3) ÅT = 173 K
c = 15.164 (3) Å0.26 × 0.19 × 0.19 mm
β = 100.35 (3)°
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3376 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
3198 reflections with I > 2σ(I)
Tmin = 0.25, Tmax = 0.36Rint = 0.038
10146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.19Δρmax = 1.11 e Å3
3376 reflectionsΔρmin = 0.83 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ho10.87485 (2)0.104079 (12)0.252907 (11)0.01270 (6)
O10.8663 (3)0.1741 (2)0.10772 (18)0.0164 (6)
H10.80360.14100.06600.025*
O21.1423 (3)0.1887 (2)0.24123 (17)0.0148 (6)
H21.14060.25090.25890.022*
O31.0696 (3)0.00635 (19)0.16970 (17)0.0150 (5)
H31.09690.05510.18610.023*
O41.2729 (4)0.0786 (2)0.04468 (19)0.0211 (6)
H41.36610.08460.08230.025*
O50.6941 (4)0.0507 (2)0.3547 (2)0.0226 (6)
H50.73170.00520.39330.027*
O61.0213 (4)0.1747 (2)0.39669 (19)0.0231 (6)
O71.0682 (4)0.0119 (2)0.3731 (2)0.0229 (6)
O81.2006 (4)0.0879 (3)0.4970 (2)0.0307 (7)
O90.6021 (4)0.2037 (2)0.2129 (2)0.0213 (6)
O100.8267 (4)0.2959 (2)0.2684 (2)0.0209 (6)
O110.5809 (4)0.3735 (2)0.2135 (2)0.0281 (7)
O120.8170 (4)0.0952 (2)0.23689 (19)0.0178 (6)
O130.6491 (4)0.0108 (2)0.14891 (19)0.0185 (6)
O140.6096 (4)0.1565 (2)0.1343 (2)0.0279 (7)
N11.0997 (5)0.0912 (3)0.4249 (2)0.0200 (7)
N20.6662 (4)0.2943 (3)0.2309 (2)0.0178 (7)
N30.6893 (4)0.0825 (3)0.1723 (2)0.0175 (7)
C11.0234 (5)0.2218 (3)0.0869 (3)0.0178 (8)
H1A1.01800.29870.09340.021*
H1B1.03500.20550.02440.021*
C21.1784 (5)0.1781 (3)0.1517 (3)0.0157 (8)
H2A1.28610.21900.14640.019*
C31.2153 (5)0.0621 (3)0.1435 (3)0.0144 (7)
H3A1.32450.04440.18690.017*
C41.2410 (5)0.0312 (3)0.0504 (3)0.0183 (8)
H4A1.13500.05010.00650.022*
H4B1.34150.07040.03480.022*
C50.5492 (6)0.0933 (3)0.3922 (3)0.0270 (10)
H5A0.47760.03510.40920.032*
H5B0.47350.13560.34600.032*
C60.6115 (6)0.1606 (3)0.4734 (3)0.0287 (10)
H6A0.68320.11840.52020.043*
H6B0.51000.18840.49610.043*
H6C0.68170.21870.45680.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ho10.01219 (10)0.01246 (10)0.01306 (10)0.00054 (6)0.00127 (7)0.00034 (6)
O10.0137 (14)0.0171 (14)0.0166 (14)0.0037 (11)0.0024 (11)0.0009 (10)
O20.0186 (14)0.0102 (13)0.0160 (14)0.0010 (11)0.0043 (11)0.0037 (10)
O30.0164 (14)0.0118 (13)0.0178 (14)0.0010 (11)0.0055 (11)0.0020 (10)
O40.0194 (15)0.0230 (15)0.0199 (15)0.0016 (12)0.0005 (12)0.0056 (11)
O50.0223 (15)0.0237 (16)0.0232 (16)0.0044 (12)0.0080 (13)0.0064 (12)
O60.0278 (17)0.0220 (16)0.0179 (15)0.0052 (13)0.0001 (13)0.0004 (11)
O70.0230 (15)0.0203 (15)0.0243 (16)0.0022 (12)0.0017 (13)0.0010 (12)
O80.0273 (18)0.0436 (19)0.0188 (16)0.0073 (15)0.0024 (14)0.0043 (13)
O90.0172 (14)0.0150 (14)0.0311 (17)0.0017 (12)0.0026 (12)0.0001 (12)
O100.0141 (14)0.0198 (15)0.0270 (16)0.0023 (12)0.0013 (12)0.0045 (11)
O110.0257 (17)0.0181 (15)0.040 (2)0.0102 (13)0.0039 (15)0.0035 (13)
O120.0122 (13)0.0180 (14)0.0219 (15)0.0005 (11)0.0002 (12)0.0033 (11)
O130.0169 (14)0.0125 (13)0.0243 (15)0.0012 (11)0.0008 (12)0.0017 (11)
O140.0308 (18)0.0150 (15)0.0356 (19)0.0063 (13)0.0003 (14)0.0042 (12)
N10.0182 (18)0.0266 (19)0.0147 (17)0.0032 (15)0.0019 (14)0.0017 (14)
N20.0175 (17)0.0168 (18)0.0198 (17)0.0038 (14)0.0053 (14)0.0012 (13)
N30.0160 (17)0.0163 (17)0.0201 (18)0.0003 (14)0.0033 (14)0.0019 (13)
C10.0162 (19)0.018 (2)0.020 (2)0.0032 (16)0.0041 (16)0.0033 (15)
C20.0152 (19)0.0173 (19)0.0153 (19)0.0023 (15)0.0044 (15)0.0015 (14)
C30.0121 (18)0.0134 (18)0.0172 (19)0.0006 (15)0.0010 (15)0.0001 (14)
C40.019 (2)0.019 (2)0.018 (2)0.0010 (16)0.0051 (16)0.0007 (15)
C50.025 (2)0.029 (2)0.029 (2)0.0022 (19)0.007 (2)0.0033 (18)
C60.033 (3)0.024 (2)0.028 (2)0.0014 (19)0.002 (2)0.0043 (18)
Geometric parameters (Å, º) top
Ho1—O12.367 (3)O8—N11.225 (4)
Ho1—O22.373 (3)O9—N21.271 (4)
Ho1—O32.473 (3)O10—N21.272 (4)
Ho1—O52.364 (3)O11—N21.212 (4)
Ho1—O62.443 (3)O12—N31.272 (4)
Ho1—O72.444 (3)O13—N31.267 (4)
Ho1—O92.449 (3)O14—N31.217 (4)
Ho1—O102.497 (3)C1—C21.515 (5)
Ho1—O122.590 (3)C1—H1A0.9900
Ho1—O132.445 (3)C1—H1B0.9900
O1—C11.446 (4)C2—C31.520 (5)
O1—H10.8399C2—H2A1.0000
O2—C21.441 (4)C3—C41.514 (5)
O2—H20.8400C3—H3A1.0000
O3—C31.450 (4)C4—H4A0.9900
O3—H30.8400C4—H4B0.9900
O4—C41.430 (5)C5—C61.509 (6)
O4—H40.8401C5—H5A0.9900
O5—C51.453 (5)C5—H5B0.9900
O5—H50.8400C6—H6A0.9800
O6—N11.265 (4)C6—H6B0.9800
O7—N11.279 (4)C6—H6C0.9800
O5—Ho1—O1142.74 (10)C5—O5—Ho1137.5 (2)
O5—Ho1—O2143.95 (10)C5—O5—H5100.5
O1—Ho1—O268.71 (9)Ho1—O5—H5118.9
O5—Ho1—O676.03 (10)N1—O6—Ho196.2 (2)
O1—Ho1—O6128.42 (9)N1—O7—Ho195.8 (2)
O2—Ho1—O668.05 (10)N2—O9—Ho197.7 (2)
O5—Ho1—O774.33 (10)N2—O10—Ho195.3 (2)
O1—Ho1—O7141.90 (10)N3—O12—Ho192.5 (2)
O2—Ho1—O781.29 (9)N3—O13—Ho199.6 (2)
O6—Ho1—O752.28 (10)O8—N1—O6121.5 (3)
O5—Ho1—O1380.85 (10)O8—N1—O7122.8 (3)
O1—Ho1—O1371.78 (9)O6—N1—O7115.7 (3)
O2—Ho1—O13135.05 (9)O11—N2—O9122.5 (3)
O6—Ho1—O13156.88 (10)O11—N2—O10122.4 (3)
O7—Ho1—O13121.18 (9)O9—N2—O10115.1 (3)
O5—Ho1—O974.06 (10)O14—N3—O13121.4 (3)
O1—Ho1—O972.19 (10)O14—N3—O12121.6 (3)
O2—Ho1—O9118.12 (9)O13—N3—O12117.0 (3)
O6—Ho1—O9105.73 (10)O1—C1—C2107.7 (3)
O7—Ho1—O9145.26 (10)O1—C1—H1A110.2
O13—Ho1—O966.90 (9)C2—C1—H1A110.2
O5—Ho1—O3132.46 (9)O1—C1—H1B110.2
O1—Ho1—O368.54 (9)C2—C1—H1B110.2
O2—Ho1—O364.58 (9)H1A—C1—H1B108.5
O6—Ho1—O3114.44 (9)O2—C2—C1108.1 (3)
O7—Ho1—O377.77 (9)O2—C2—C3103.8 (3)
O13—Ho1—O381.74 (9)C1—C2—C3116.5 (3)
O9—Ho1—O3135.65 (10)O2—C2—H2A109.4
O5—Ho1—O1096.08 (10)C1—C2—H2A109.4
O1—Ho1—O1074.71 (9)C3—C2—H2A109.4
O2—Ho1—O1072.95 (9)O3—C3—C4111.5 (3)
O6—Ho1—O1066.84 (9)O3—C3—C2106.9 (3)
O7—Ho1—O10119.02 (9)C4—C3—C2112.9 (3)
O13—Ho1—O10115.95 (9)O3—C3—H3A108.5
O9—Ho1—O1051.40 (9)C4—C3—H3A108.5
O3—Ho1—O10131.23 (9)C2—C3—H3A108.5
O5—Ho1—O1270.39 (9)O4—C4—C3111.4 (3)
O1—Ho1—O12108.02 (9)O4—C4—H4A109.3
O2—Ho1—O12125.46 (9)C3—C4—H4A109.3
O6—Ho1—O12119.47 (9)O4—C4—H4B109.3
O7—Ho1—O1270.65 (9)C3—C4—H4B109.3
O13—Ho1—O1250.82 (9)H4A—C4—H4B108.0
O9—Ho1—O12111.14 (9)O5—C5—C6112.1 (4)
O3—Ho1—O1264.32 (9)O5—C5—H5A109.2
O10—Ho1—O12161.43 (9)C6—C5—H5A109.2
C1—O1—Ho1118.6 (2)O5—C5—H5B109.2
C1—O1—H1116.3C6—C5—H5B109.2
Ho1—O1—H1115.3H5A—C5—H5B107.9
C2—O2—Ho1110.3 (2)C5—C6—H6A109.5
C2—O2—H2114.0C5—C6—H6B109.5
Ho1—O2—H2110.1H6A—C6—H6B109.5
C3—O3—Ho1117.9 (2)C5—C6—H6C109.5
C3—O3—H3112.0H6A—C6—H6C109.5
Ho1—O3—H3117.8H6B—C6—H6C109.5
C4—O4—H4100.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.841.862.665 (4)161
O2—H2···O12ii0.841.992.794 (4)159
O3—H3···O10iii0.842.082.914 (4)177
O4—H4···O14iv0.842.122.894 (4)153
O5—H5···O8v0.842.032.863 (4)169
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x+1, y, z; (v) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Ho(NO3)3(C4H10O4)(C2H6O)]
Mr519.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.7501 (16), 12.783 (3), 15.164 (3)
β (°) 100.35 (3)
V3)1477.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)5.44
Crystal size (mm)0.26 × 0.19 × 0.19
Data collection
DiffractometerRigaku Saturn724+ CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.25, 0.36
No. of measured, independent and
observed [I > 2σ(I)] reflections
10146, 3376, 3198
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.061, 1.19
No. of reflections3376
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.83

Computer programs: CrystalClear (Rigaku, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ho1—O12.367 (3)Ho1—O72.444 (3)
Ho1—O22.373 (3)Ho1—O92.449 (3)
Ho1—O32.473 (3)Ho1—O102.497 (3)
Ho1—O52.364 (3)Ho1—O122.590 (3)
Ho1—O62.443 (3)Ho1—O132.445 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.841.862.665 (4)161.0
O2—H2···O12ii0.841.992.794 (4)158.8
O3—H3···O10iii0.842.082.914 (4)177.2
O4—H4···O14iv0.842.122.894 (4)153.2
O5—H5···O8v0.842.032.863 (4)168.8
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x+1, y, z; (v) x+2, y, z+1.
 

Acknowledgements

The work was supported financially by the National Natural Science Foundation of China (grant Nos. 50973003 and 21001009) and the National High-Tech R&D Program of China (863 Program) of MOST (No. 2010AA03A406). Special thanks to Dr X. Hao, L. Wang, and T.-L. Liang for their assistance with the data collection.

References

First citationGyurcsik, B. & Nagy, L. (2000). Coord. Chem. Rev. 203, 81–148.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L.-M., Hua, X.-H., Xue, J.-H., Pan, Q.-H., Yu, L., Li, W.-H., Xu, Y.-Z., Zhao, G.-Z., Liu, L.-M., Liu, K.-X., Chen, J.-E. & Wu, J.-G. (2012). Inorg. Chem. 51, 499–510.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYang, L.-M., Su, Y.-L., Xu, Y.-Z., Wang, Z.-M., Guo, Z.-H., Weng, S.-F., Yan, C.-H., Zhang, S.-W. & Wu, J.-G. (2003). Inorg. Chem. 42, 5844–5856.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, L.-M., Su, Y.-L., Xu, Y.-Z., Zhang, S.-W., Wu, J.-G. & Zhao, K. (2004). J. Inorg. Biochem. 98, 1251–1260.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m162-m163
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds