metal-organic compounds
(Butane-1,2,3,4-tetraol-κ3O1,O2,O3)(ethanol-κO)tris(nitrato-κ2O,O′)holmium(III)
aBeijing National Laboratory for Molecular Sciences, The State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China, bChemical Engineering College, Inner Mongolia University of Technology, People's Republic of China, and cState Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, People's Republic of China
*Correspondence e-mail: xyz@pku.edu.cn
In the title HoIII–erythritol complex, [Ho(NO3)3(C4H10O4)(C2H5OH)], the HoIII cation is chelated by a tridentate erythritol ligand and three bidentate nitrate anions. An ethanol molecule further coordinates the HoIII cation, completing the irregular O10 coordination geometry. In the crystal, an extensive O—H⋯O hydrogen-bond network links the molecules into a three-dimensional supramolecular structure.
Related literature
For crystal structures of related lanthanide nitrate–erythritol complexes, see: Gyurcsik & Nagy (2000); Yang et al. (2003, 2004, 2012).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Rigaku, 2007); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681300305X/xu5656sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: 10.1107/S160053681300305X/xu5656Isup2.cdx
Structure factors: contains datablock I. DOI: 10.1107/S160053681300305X/xu5656Isup3.hkl
Ho(NO3)3.6H2O (3 mmol) and erythritol (3 mmol) were dissolved in 6 ml water and 6 ml ethanol. The solution was put on a water bath, and the temperature was raised to 353 K. Small aliquots of EtOH were periodically added to the solution during the heating process to prolong the reaction time. The resulting mixtures were filtered and left for crystallization in room temperature, the suitable crystals for X-ray diffraction measurements were obtained in two weeks.
The C-bound H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the
in the riding model approximation, Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located in a difference Fourier map and were refined with distance restranits of O—H = 0.84 Å, Uiso(H) = 1.2Ueq(O).Data collection: CrystalClear (Rigaku, 2007); cell
CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title complex, displacement ellipsoids drawn at 30% probability level. The Hydrogen atoms have been omitted for clarity. |
[Ho(NO3)3(C4H10O4)(C2H6O)] | F(000) = 1008 |
Mr = 519.15 | Dx = 2.333 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5233 reflections |
a = 7.7501 (16) Å | θ = 2.1–27.5° |
b = 12.783 (3) Å | µ = 5.44 mm−1 |
c = 15.164 (3) Å | T = 173 K |
β = 100.35 (3)° | Block, colorless |
V = 1477.8 (5) Å3 | 0.26 × 0.19 × 0.19 mm |
Z = 4 |
Rigaku Saturn724+ CCD diffractometer | 3376 independent reflections |
Radiation source: fine-focus sealed tube | 3198 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.5°, θmin = 2.1° |
ω scans at fixed χ = 45° | h = −10→9 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) | k = −14→16 |
Tmin = 0.25, Tmax = 0.36 | l = −19→19 |
10146 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.19 | w = 1/[σ2(Fo2) + (0.0123P)2 + 3.0745P] where P = (Fo2 + 2Fc2)/3 |
3376 reflections | (Δ/σ)max = 0.001 |
218 parameters | Δρmax = 1.11 e Å−3 |
0 restraints | Δρmin = −0.83 e Å−3 |
[Ho(NO3)3(C4H10O4)(C2H6O)] | V = 1477.8 (5) Å3 |
Mr = 519.15 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.7501 (16) Å | µ = 5.44 mm−1 |
b = 12.783 (3) Å | T = 173 K |
c = 15.164 (3) Å | 0.26 × 0.19 × 0.19 mm |
β = 100.35 (3)° |
Rigaku Saturn724+ CCD diffractometer | 3376 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) | 3198 reflections with I > 2σ(I) |
Tmin = 0.25, Tmax = 0.36 | Rint = 0.038 |
10146 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.19 | Δρmax = 1.11 e Å−3 |
3376 reflections | Δρmin = −0.83 e Å−3 |
218 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ho1 | 0.87485 (2) | 0.104079 (12) | 0.252907 (11) | 0.01270 (6) | |
O1 | 0.8663 (3) | 0.1741 (2) | 0.10772 (18) | 0.0164 (6) | |
H1 | 0.8036 | 0.1410 | 0.0660 | 0.025* | |
O2 | 1.1423 (3) | 0.1887 (2) | 0.24123 (17) | 0.0148 (6) | |
H2 | 1.1406 | 0.2509 | 0.2589 | 0.022* | |
O3 | 1.0696 (3) | 0.00635 (19) | 0.16970 (17) | 0.0150 (5) | |
H3 | 1.0969 | −0.0551 | 0.1861 | 0.023* | |
O4 | 1.2729 (4) | −0.0786 (2) | 0.04468 (19) | 0.0211 (6) | |
H4 | 1.3661 | −0.0846 | 0.0823 | 0.025* | |
O5 | 0.6941 (4) | 0.0507 (2) | 0.3547 (2) | 0.0226 (6) | |
H5 | 0.7317 | 0.0052 | 0.3933 | 0.027* | |
O6 | 1.0213 (4) | 0.1747 (2) | 0.39669 (19) | 0.0231 (6) | |
O7 | 1.0682 (4) | 0.0119 (2) | 0.3731 (2) | 0.0229 (6) | |
O8 | 1.2006 (4) | 0.0879 (3) | 0.4970 (2) | 0.0307 (7) | |
O9 | 0.6021 (4) | 0.2037 (2) | 0.2129 (2) | 0.0213 (6) | |
O10 | 0.8267 (4) | 0.2959 (2) | 0.2684 (2) | 0.0209 (6) | |
O11 | 0.5809 (4) | 0.3735 (2) | 0.2135 (2) | 0.0281 (7) | |
O12 | 0.8170 (4) | −0.0952 (2) | 0.23689 (19) | 0.0178 (6) | |
O13 | 0.6491 (4) | 0.0108 (2) | 0.14891 (19) | 0.0185 (6) | |
O14 | 0.6096 (4) | −0.1565 (2) | 0.1343 (2) | 0.0279 (7) | |
N1 | 1.0997 (5) | 0.0912 (3) | 0.4249 (2) | 0.0200 (7) | |
N2 | 0.6662 (4) | 0.2943 (3) | 0.2309 (2) | 0.0178 (7) | |
N3 | 0.6893 (4) | −0.0825 (3) | 0.1723 (2) | 0.0175 (7) | |
C1 | 1.0234 (5) | 0.2218 (3) | 0.0869 (3) | 0.0178 (8) | |
H1A | 1.0180 | 0.2987 | 0.0934 | 0.021* | |
H1B | 1.0350 | 0.2055 | 0.0244 | 0.021* | |
C2 | 1.1784 (5) | 0.1781 (3) | 0.1517 (3) | 0.0157 (8) | |
H2A | 1.2861 | 0.2190 | 0.1464 | 0.019* | |
C3 | 1.2153 (5) | 0.0621 (3) | 0.1435 (3) | 0.0144 (7) | |
H3A | 1.3245 | 0.0444 | 0.1869 | 0.017* | |
C4 | 1.2410 (5) | 0.0312 (3) | 0.0504 (3) | 0.0183 (8) | |
H4A | 1.1350 | 0.0501 | 0.0065 | 0.022* | |
H4B | 1.3415 | 0.0704 | 0.0348 | 0.022* | |
C5 | 0.5492 (6) | 0.0933 (3) | 0.3922 (3) | 0.0270 (10) | |
H5A | 0.4776 | 0.0351 | 0.4092 | 0.032* | |
H5B | 0.4735 | 0.1356 | 0.3460 | 0.032* | |
C6 | 0.6115 (6) | 0.1606 (3) | 0.4734 (3) | 0.0287 (10) | |
H6A | 0.6832 | 0.1184 | 0.5202 | 0.043* | |
H6B | 0.5100 | 0.1884 | 0.4961 | 0.043* | |
H6C | 0.6817 | 0.2187 | 0.4568 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ho1 | 0.01219 (10) | 0.01246 (10) | 0.01306 (10) | 0.00054 (6) | 0.00127 (7) | 0.00034 (6) |
O1 | 0.0137 (14) | 0.0171 (14) | 0.0166 (14) | −0.0037 (11) | −0.0024 (11) | 0.0009 (10) |
O2 | 0.0186 (14) | 0.0102 (13) | 0.0160 (14) | −0.0010 (11) | 0.0043 (11) | −0.0037 (10) |
O3 | 0.0164 (14) | 0.0118 (13) | 0.0178 (14) | −0.0010 (11) | 0.0055 (11) | 0.0020 (10) |
O4 | 0.0194 (15) | 0.0230 (15) | 0.0199 (15) | 0.0016 (12) | 0.0005 (12) | −0.0056 (11) |
O5 | 0.0223 (15) | 0.0237 (16) | 0.0232 (16) | 0.0044 (12) | 0.0080 (13) | 0.0064 (12) |
O6 | 0.0278 (17) | 0.0220 (16) | 0.0179 (15) | 0.0052 (13) | −0.0001 (13) | −0.0004 (11) |
O7 | 0.0230 (15) | 0.0203 (15) | 0.0243 (16) | 0.0022 (12) | 0.0017 (13) | 0.0010 (12) |
O8 | 0.0273 (18) | 0.0436 (19) | 0.0188 (16) | 0.0073 (15) | −0.0024 (14) | 0.0043 (13) |
O9 | 0.0172 (14) | 0.0150 (14) | 0.0311 (17) | −0.0017 (12) | 0.0026 (12) | 0.0001 (12) |
O10 | 0.0141 (14) | 0.0198 (15) | 0.0270 (16) | 0.0023 (12) | −0.0013 (12) | −0.0045 (11) |
O11 | 0.0257 (17) | 0.0181 (15) | 0.040 (2) | 0.0102 (13) | 0.0039 (15) | 0.0035 (13) |
O12 | 0.0122 (13) | 0.0180 (14) | 0.0219 (15) | 0.0005 (11) | −0.0002 (12) | 0.0033 (11) |
O13 | 0.0169 (14) | 0.0125 (13) | 0.0243 (15) | 0.0012 (11) | −0.0008 (12) | 0.0017 (11) |
O14 | 0.0308 (18) | 0.0150 (15) | 0.0356 (19) | −0.0063 (13) | −0.0003 (14) | −0.0042 (12) |
N1 | 0.0182 (18) | 0.0266 (19) | 0.0147 (17) | 0.0032 (15) | 0.0019 (14) | 0.0017 (14) |
N2 | 0.0175 (17) | 0.0168 (18) | 0.0198 (17) | 0.0038 (14) | 0.0053 (14) | 0.0012 (13) |
N3 | 0.0160 (17) | 0.0163 (17) | 0.0201 (18) | 0.0003 (14) | 0.0033 (14) | −0.0019 (13) |
C1 | 0.0162 (19) | 0.018 (2) | 0.020 (2) | −0.0032 (16) | 0.0041 (16) | 0.0033 (15) |
C2 | 0.0152 (19) | 0.0173 (19) | 0.0153 (19) | −0.0023 (15) | 0.0044 (15) | −0.0015 (14) |
C3 | 0.0121 (18) | 0.0134 (18) | 0.0172 (19) | −0.0006 (15) | 0.0010 (15) | −0.0001 (14) |
C4 | 0.019 (2) | 0.019 (2) | 0.018 (2) | 0.0010 (16) | 0.0051 (16) | 0.0007 (15) |
C5 | 0.025 (2) | 0.029 (2) | 0.029 (2) | −0.0022 (19) | 0.007 (2) | −0.0033 (18) |
C6 | 0.033 (3) | 0.024 (2) | 0.028 (2) | 0.0014 (19) | 0.002 (2) | −0.0043 (18) |
Ho1—O1 | 2.367 (3) | O8—N1 | 1.225 (4) |
Ho1—O2 | 2.373 (3) | O9—N2 | 1.271 (4) |
Ho1—O3 | 2.473 (3) | O10—N2 | 1.272 (4) |
Ho1—O5 | 2.364 (3) | O11—N2 | 1.212 (4) |
Ho1—O6 | 2.443 (3) | O12—N3 | 1.272 (4) |
Ho1—O7 | 2.444 (3) | O13—N3 | 1.267 (4) |
Ho1—O9 | 2.449 (3) | O14—N3 | 1.217 (4) |
Ho1—O10 | 2.497 (3) | C1—C2 | 1.515 (5) |
Ho1—O12 | 2.590 (3) | C1—H1A | 0.9900 |
Ho1—O13 | 2.445 (3) | C1—H1B | 0.9900 |
O1—C1 | 1.446 (4) | C2—C3 | 1.520 (5) |
O1—H1 | 0.8399 | C2—H2A | 1.0000 |
O2—C2 | 1.441 (4) | C3—C4 | 1.514 (5) |
O2—H2 | 0.8400 | C3—H3A | 1.0000 |
O3—C3 | 1.450 (4) | C4—H4A | 0.9900 |
O3—H3 | 0.8400 | C4—H4B | 0.9900 |
O4—C4 | 1.430 (5) | C5—C6 | 1.509 (6) |
O4—H4 | 0.8401 | C5—H5A | 0.9900 |
O5—C5 | 1.453 (5) | C5—H5B | 0.9900 |
O5—H5 | 0.8400 | C6—H6A | 0.9800 |
O6—N1 | 1.265 (4) | C6—H6B | 0.9800 |
O7—N1 | 1.279 (4) | C6—H6C | 0.9800 |
O5—Ho1—O1 | 142.74 (10) | C5—O5—Ho1 | 137.5 (2) |
O5—Ho1—O2 | 143.95 (10) | C5—O5—H5 | 100.5 |
O1—Ho1—O2 | 68.71 (9) | Ho1—O5—H5 | 118.9 |
O5—Ho1—O6 | 76.03 (10) | N1—O6—Ho1 | 96.2 (2) |
O1—Ho1—O6 | 128.42 (9) | N1—O7—Ho1 | 95.8 (2) |
O2—Ho1—O6 | 68.05 (10) | N2—O9—Ho1 | 97.7 (2) |
O5—Ho1—O7 | 74.33 (10) | N2—O10—Ho1 | 95.3 (2) |
O1—Ho1—O7 | 141.90 (10) | N3—O12—Ho1 | 92.5 (2) |
O2—Ho1—O7 | 81.29 (9) | N3—O13—Ho1 | 99.6 (2) |
O6—Ho1—O7 | 52.28 (10) | O8—N1—O6 | 121.5 (3) |
O5—Ho1—O13 | 80.85 (10) | O8—N1—O7 | 122.8 (3) |
O1—Ho1—O13 | 71.78 (9) | O6—N1—O7 | 115.7 (3) |
O2—Ho1—O13 | 135.05 (9) | O11—N2—O9 | 122.5 (3) |
O6—Ho1—O13 | 156.88 (10) | O11—N2—O10 | 122.4 (3) |
O7—Ho1—O13 | 121.18 (9) | O9—N2—O10 | 115.1 (3) |
O5—Ho1—O9 | 74.06 (10) | O14—N3—O13 | 121.4 (3) |
O1—Ho1—O9 | 72.19 (10) | O14—N3—O12 | 121.6 (3) |
O2—Ho1—O9 | 118.12 (9) | O13—N3—O12 | 117.0 (3) |
O6—Ho1—O9 | 105.73 (10) | O1—C1—C2 | 107.7 (3) |
O7—Ho1—O9 | 145.26 (10) | O1—C1—H1A | 110.2 |
O13—Ho1—O9 | 66.90 (9) | C2—C1—H1A | 110.2 |
O5—Ho1—O3 | 132.46 (9) | O1—C1—H1B | 110.2 |
O1—Ho1—O3 | 68.54 (9) | C2—C1—H1B | 110.2 |
O2—Ho1—O3 | 64.58 (9) | H1A—C1—H1B | 108.5 |
O6—Ho1—O3 | 114.44 (9) | O2—C2—C1 | 108.1 (3) |
O7—Ho1—O3 | 77.77 (9) | O2—C2—C3 | 103.8 (3) |
O13—Ho1—O3 | 81.74 (9) | C1—C2—C3 | 116.5 (3) |
O9—Ho1—O3 | 135.65 (10) | O2—C2—H2A | 109.4 |
O5—Ho1—O10 | 96.08 (10) | C1—C2—H2A | 109.4 |
O1—Ho1—O10 | 74.71 (9) | C3—C2—H2A | 109.4 |
O2—Ho1—O10 | 72.95 (9) | O3—C3—C4 | 111.5 (3) |
O6—Ho1—O10 | 66.84 (9) | O3—C3—C2 | 106.9 (3) |
O7—Ho1—O10 | 119.02 (9) | C4—C3—C2 | 112.9 (3) |
O13—Ho1—O10 | 115.95 (9) | O3—C3—H3A | 108.5 |
O9—Ho1—O10 | 51.40 (9) | C4—C3—H3A | 108.5 |
O3—Ho1—O10 | 131.23 (9) | C2—C3—H3A | 108.5 |
O5—Ho1—O12 | 70.39 (9) | O4—C4—C3 | 111.4 (3) |
O1—Ho1—O12 | 108.02 (9) | O4—C4—H4A | 109.3 |
O2—Ho1—O12 | 125.46 (9) | C3—C4—H4A | 109.3 |
O6—Ho1—O12 | 119.47 (9) | O4—C4—H4B | 109.3 |
O7—Ho1—O12 | 70.65 (9) | C3—C4—H4B | 109.3 |
O13—Ho1—O12 | 50.82 (9) | H4A—C4—H4B | 108.0 |
O9—Ho1—O12 | 111.14 (9) | O5—C5—C6 | 112.1 (4) |
O3—Ho1—O12 | 64.32 (9) | O5—C5—H5A | 109.2 |
O10—Ho1—O12 | 161.43 (9) | C6—C5—H5A | 109.2 |
C1—O1—Ho1 | 118.6 (2) | O5—C5—H5B | 109.2 |
C1—O1—H1 | 116.3 | C6—C5—H5B | 109.2 |
Ho1—O1—H1 | 115.3 | H5A—C5—H5B | 107.9 |
C2—O2—Ho1 | 110.3 (2) | C5—C6—H6A | 109.5 |
C2—O2—H2 | 114.0 | C5—C6—H6B | 109.5 |
Ho1—O2—H2 | 110.1 | H6A—C6—H6B | 109.5 |
C3—O3—Ho1 | 117.9 (2) | C5—C6—H6C | 109.5 |
C3—O3—H3 | 112.0 | H6A—C6—H6C | 109.5 |
Ho1—O3—H3 | 117.8 | H6B—C6—H6C | 109.5 |
C4—O4—H4 | 100.7 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.84 | 1.86 | 2.665 (4) | 161 |
O2—H2···O12ii | 0.84 | 1.99 | 2.794 (4) | 159 |
O3—H3···O10iii | 0.84 | 2.08 | 2.914 (4) | 177 |
O4—H4···O14iv | 0.84 | 2.12 | 2.894 (4) | 153 |
O5—H5···O8v | 0.84 | 2.03 | 2.863 (4) | 169 |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) x+1, y, z; (v) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ho(NO3)3(C4H10O4)(C2H6O)] |
Mr | 519.15 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 7.7501 (16), 12.783 (3), 15.164 (3) |
β (°) | 100.35 (3) |
V (Å3) | 1477.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.44 |
Crystal size (mm) | 0.26 × 0.19 × 0.19 |
Data collection | |
Diffractometer | Rigaku Saturn724+ CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2007) |
Tmin, Tmax | 0.25, 0.36 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10146, 3376, 3198 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.061, 1.19 |
No. of reflections | 3376 |
No. of parameters | 218 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.11, −0.83 |
Computer programs: CrystalClear (Rigaku, 2007), SHELXTL (Sheldrick, 2008).
Ho1—O1 | 2.367 (3) | Ho1—O7 | 2.444 (3) |
Ho1—O2 | 2.373 (3) | Ho1—O9 | 2.449 (3) |
Ho1—O3 | 2.473 (3) | Ho1—O10 | 2.497 (3) |
Ho1—O5 | 2.364 (3) | Ho1—O12 | 2.590 (3) |
Ho1—O6 | 2.443 (3) | Ho1—O13 | 2.445 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.84 | 1.86 | 2.665 (4) | 161.0 |
O2—H2···O12ii | 0.84 | 1.99 | 2.794 (4) | 158.8 |
O3—H3···O10iii | 0.84 | 2.08 | 2.914 (4) | 177.2 |
O4—H4···O14iv | 0.84 | 2.12 | 2.894 (4) | 153.2 |
O5—H5···O8v | 0.84 | 2.03 | 2.863 (4) | 168.8 |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) x+1, y, z; (v) −x+2, −y, −z+1. |
Acknowledgements
The work was supported financially by the National Natural Science Foundation of China (grant Nos. 50973003 and 21001009) and the National High-Tech R&D Program of China (863 Program) of MOST (No. 2010AA03A406). Special thanks to Dr X. Hao, L. Wang, and T.-L. Liang for their assistance with the data collection.
References
Gyurcsik, B. & Nagy, L. (2000). Coord. Chem. Rev. 203, 81–148. Web of Science CrossRef CAS Google Scholar
Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L.-M., Hua, X.-H., Xue, J.-H., Pan, Q.-H., Yu, L., Li, W.-H., Xu, Y.-Z., Zhao, G.-Z., Liu, L.-M., Liu, K.-X., Chen, J.-E. & Wu, J.-G. (2012). Inorg. Chem. 51, 499–510. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yang, L.-M., Su, Y.-L., Xu, Y.-Z., Wang, Z.-M., Guo, Z.-H., Weng, S.-F., Yan, C.-H., Zhang, S.-W. & Wu, J.-G. (2003). Inorg. Chem. 42, 5844–5856. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yang, L.-M., Su, Y.-L., Xu, Y.-Z., Zhang, S.-W., Wu, J.-G. & Zhao, K. (2004). J. Inorg. Biochem. 98, 1251–1260. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The interaction between carbohydrates and metal ions is of increasing interest as it occurs in many important biological processes (Gyurcsik & Nagy, 2000). Erythritol is a model compound to study the coordination behavior of hydroxyl groups to metal ions. For lanthanide nitrate-erythritol complexes, two kinds of metal complexes were observed: coordinate complex with water and coordinate complex without water (Yang et al., 2003, 2004, 2012). The title holmium nitrate-erythritol complex is belonging to the complexes without water.
The title complex denoted as HoEN, where E stands for erythritol and N stands for nitrate, which is shown in Fig. 1. The coordinating number is 10 (three hydroxyl groups from one erythritol molecule, one hydroxyl group from ethanol, and three bidentate nitrate ions). Erythritol molecule is an O1,O2,O3-three hydroxyl group donor. The structure of HoEN is similar to NdEN, EuEN, YEN, GdEN and TbEN (Yang et al., 2003, 2004, 2012). Because of the variation of ionic radii of rare earth elements, significant changes in Ln—O distances can be observed on comparison of LnEN complexes. Ho—O distances in the compound range from 2.364 to 2.590 Å, the average Ho—O distance is 2.444 Å. Y—O distances range from 2.358 to 2.594 Å, the average Y—O distance is 2.447 Å in YEN; Nd—O distances range from 2.455 to 2.620 Å, the average Nd—O distance is 2.528 Å in NdEN; Eu—O distances range from 2.421 to 2.600 Å, the average Eu—O distance is 2.494 Å in EuEN; Gd—O distances range from 2.398 to 2.596 Å, the average Gd—O distance is 2.478 Å in GdEN; Tb—O distances range from 2.373 to 2.581 Å, the average Tb—O distance is 2.410 Å in TbEN. The changes on M—O distances are consistent with the effect of lanthanide contraction.
The O-M-O (the oxygen atoms from coordinated hydroxyl groups of erythritol) bond angles are also variation of different LnEN complexes. O-Ho-O bond angles are 68.71 (9) (O1-Ho-O2), 68.54 (9) (O1-Ho-O3) and 64.58 (9)° (O2-Ho-O3). O-Y-O bond angles are 68.71 (12), 68.70 (11) and 64.32 (11)°. O-Nd-O bond angles are 66.57 (10), 66.54 (10) and 62.49 (10)°. O-Eu-O bond angles are 67.31 (8), 67.40 (8) and 63.62 (8)°. O-Gd-O bond angles are 67.97 (12), 67.66 (12)and 63.56 (12)°. O-Tb-O bond angles are 68.2 (3), 68.0 (3)and 63.7 (3)°. The changes of O-M-O bond angles are related with the changes of M—O distances.