metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m173-m174

Di­aqua­bis­­(2-chloro­benzoato-κO)bis­­(nicotinamide-κN1)cobalt(II)

aDepartment of Physics, Karabük University, 78050 Karabük, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 15 February 2013; accepted 20 February 2013; online 28 February 2013)

In the title complex, [Co(C7H4ClO2)2(C6H6N2O)2(H2O)2], the CoII cation is located on an inversion center and is coord­inated by two 2-chloro­benzoate anions, two nicotin­amide (NA) ligands and two water mol­ecules. The four O atoms in the equatorial plane around the CoII cation form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two pyridine N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 29.7 (4)°, while the pyridine and benzene rings are oriented at a dihedral angle of 83.17 (15)°. Intra­molecular O—H⋯O hydrogen bonding occurs between the carboxyl­ate group and coordinating water mol­ecule. In the crystal, inter­molecular N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For background to niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For information on the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefouglu, H. (1996). Acta Cryst. C52, 2470-2473.], 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607-m608.]); Hökelek & Necefoğlu (1998[Hökelek, T. & Necefouglu, H. (1998). Acta Cryst. C54, 1242-1244.], 2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]); Necefoğlu et al. (2011a[Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011a). Acta Cryst. E67, m900-m901.],b[Necefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011b). Acta Cryst. E67, m619-m620.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H4ClO2)2(C6H6N2O)2(H2O)2]

  • Mr = 650.32

  • Monoclinic, P 21 /n

  • a = 7.8679 (2) Å

  • b = 17.9522 (3) Å

  • c = 9.8492 (2) Å

  • β = 106.637 (3)°

  • V = 1332.92 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 100 K

  • 0.39 × 0.33 × 0.23 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.708, Tmax = 0.811

  • 10778 measured reflections

  • 3285 independent reflections

  • 2366 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.237

  • S = 1.23

  • 3285 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.42 e Å−3

  • Δρmin = −1.61 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1 2.129 (4)
Co1—O2 2.102 (4)
Co1—O4 2.153 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1i 0.82 (10) 2.11 (9) 2.861 (6) 152 (9)
N2—H22⋯O3ii 0.90 (7) 2.20 (6) 2.932 (7) 138 (5)
O4—H41⋯O3iii 0.78 (9) 2.20 (10) 2.890 (6) 147 (10)
O4—H42⋯O1 0.96 (9) 1.72 (9) 2.628 (7) 155 (8)
C6—H6⋯O1iv 0.93 2.55 3.468 (8) 170
C10—H10⋯O1i 0.93 2.60 3.476 (7) 158
Symmetry codes: (i) x, y, z+1; (ii) -x-1, -y, -z+1; (iii) -x-1, -y, -z; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a mononuclear complex, where the CoII ion is located on a crystallographic inversion center. The asymmetric unit contains one 2-chlorobenzoate (CB) anion, one nicotinamide (NA) ligand and one coordinated water molecule, all ligands are monodentate (Fig. 1). The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2] (Hökelek et al., 1996), [Cu(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2011a), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2] (Hökelek & Necefoğlu, 1998), [Co(C9H9O2)2(C10H14N2O)2(H2O)2] (Necefoğlu et al., 2011b), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), [Mn(C9H10NO2)2(H2O)4].2H2O (Hökelek & Necefoğlu, 2007) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009b) have also been reported. In the copper(II) complex mentioned above the two benzoate ions coordinate to the CuII atom as bidentate ligands, while in the other structures all the ligands coordinate in a monodentate manner.

In the title complex, the four symmetry related O atoms (O2, O2', O4 and O4') in the equatorial plane around the CoII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two symmetry related N atoms of the NA ligands (N1 and N1') in the axial positions (Fig. 1).

The near equalities of the C1—O1 [1.254 (7) Å] and C1—O2 [1.273 (7) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The Co—O bond lengths are 2.102 (4) Å (for benzoate oxygens) and 2.153 (4) Å (for water oxygens), and the Co—N bond length is 2.129 (4) Å, close to standard values (Allen et al., 1987). The Co atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by -0.6474 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring A (C2—C7) is 29.65 (41)°, while that between rings A and B (N1/C8—C12) is 83.17 (15)°. Intramolecular O—H···O hydrogen bonding occurs between the carboxylate group and coordinated water molecule (Table 1, Fig. 1).

In the crystal structure, intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional supramolecular network.

Related literature top

For background to niacin, see: Krishnamachari (1974). For infomation on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b); Hökelek & Necefoğlu (1998, 2007); Necefoğlu et al. (2011a,b). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of CoSO4.7H2O (1.40 g, 5 mmol) in H2O (40 ml) and nicotinamide (1.78 g, 10 mmol) in H2O (20 ml) with sodium 2-chlorobenzoate (2.23 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for two weeks, giving pink single crystals (yield; 3.065 g, 72%).

Refinement top

Atoms H21, H22 (for NH2) and H41, H42 (for H2O) were located in a difference Fourier map and refined isotropically. The C-bound H-atoms were positioned geometrically with C—H = 0.93 Å for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 1.17 Å from Co1 and the deepest hole 0.80 Å from Co1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2102) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator: (') 1-x, -y, -z.
Diaquabis(2-chlorobenzoato-κO)bis(nicotinamide-κN1)cobalt(II) top
Crystal data top
[Co(C7H4ClO2)2(C6H6N2O)2(H2O)2]F(000) = 666
Mr = 650.32Dx = 1.620 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4735 reflections
a = 7.8679 (2) Åθ = 2.4–27.9°
b = 17.9522 (3) ŵ = 0.90 mm1
c = 9.8492 (2) ÅT = 100 K
β = 106.637 (3)°Block, pink
V = 1332.92 (5) Å30.39 × 0.33 × 0.23 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3285 independent reflections
Radiation source: fine-focus sealed tube2366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 610
Tmin = 0.708, Tmax = 0.811k = 2318
10778 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.237H atoms treated by a mixture of independent and constrained refinement
S = 1.23 w = 1/[σ2(Fo2) + (0.0784P)2 + 7.9389P]
where P = (Fo2 + 2Fc2)/3
3285 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 1.42 e Å3
0 restraintsΔρmin = 1.61 e Å3
Crystal data top
[Co(C7H4ClO2)2(C6H6N2O)2(H2O)2]V = 1332.92 (5) Å3
Mr = 650.32Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.8679 (2) ŵ = 0.90 mm1
b = 17.9522 (3) ÅT = 100 K
c = 9.8492 (2) Å0.39 × 0.33 × 0.23 mm
β = 106.637 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3285 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2366 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.811Rint = 0.061
10778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.237H atoms treated by a mixture of independent and constrained refinement
S = 1.23Δρmax = 1.42 e Å3
3285 reflectionsΔρmin = 1.61 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.00000.0169 (3)
Cl10.0922 (2)0.28811 (9)0.32577 (17)0.0282 (4)
O10.1130 (5)0.1367 (2)0.2254 (4)0.0223 (9)
O20.1155 (5)0.0988 (2)0.0461 (4)0.0192 (8)
O30.4515 (5)0.0095 (3)0.3249 (4)0.0250 (10)
O40.2634 (6)0.0436 (3)0.0890 (4)0.0211 (9)
H410.329 (12)0.014 (5)0.133 (10)0.04 (3)*
H420.241 (11)0.084 (5)0.146 (9)0.05 (2)*
N10.0041 (6)0.0446 (3)0.1993 (5)0.0175 (10)
N20.3567 (7)0.0816 (3)0.5201 (5)0.0244 (12)
H210.282 (12)0.108 (5)0.573 (10)0.05 (3)*
H220.457 (8)0.071 (3)0.543 (7)0.013 (15)*
C10.0477 (7)0.1383 (3)0.1558 (6)0.0180 (11)
C20.1707 (8)0.1857 (3)0.2106 (6)0.0188 (11)
C30.1181 (8)0.2488 (3)0.2961 (6)0.0196 (11)
C40.2310 (8)0.2848 (4)0.3596 (6)0.0214 (12)
H40.19190.32630.41660.026*
C50.4023 (8)0.2589 (4)0.3380 (6)0.0236 (12)
H50.47740.28180.38300.028*
C60.4619 (8)0.1984 (4)0.2485 (6)0.0233 (12)
H60.57840.18210.23030.028*
C70.3468 (8)0.1629 (4)0.1870 (6)0.0207 (12)
H70.38790.12240.12780.025*
C80.1512 (7)0.0371 (3)0.2405 (5)0.0179 (11)
H80.24690.01130.18190.021*
C90.1672 (7)0.0661 (3)0.3663 (5)0.0173 (11)
C100.0260 (8)0.1057 (3)0.4526 (6)0.0211 (12)
H100.03390.12670.53690.025*
C110.1259 (8)0.1134 (4)0.4115 (6)0.0227 (12)
H110.22250.13950.46800.027*
C120.1337 (7)0.0817 (3)0.2846 (5)0.0189 (11)
H120.23750.08630.25810.023*
C130.3372 (7)0.0508 (3)0.4019 (6)0.0188 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0160 (5)0.0304 (6)0.0024 (4)0.0006 (4)0.0000.0003 (4)
Cl10.0217 (7)0.0377 (9)0.0220 (8)0.0073 (6)0.0009 (6)0.0057 (6)
O10.019 (2)0.039 (3)0.0062 (18)0.0013 (17)0.0009 (15)0.0015 (17)
O20.0159 (19)0.035 (2)0.0026 (17)0.0021 (16)0.0033 (15)0.0011 (15)
O30.019 (2)0.047 (3)0.0072 (18)0.0064 (18)0.0008 (15)0.0044 (18)
O40.020 (2)0.034 (3)0.0059 (19)0.0020 (18)0.0014 (16)0.0009 (18)
N10.018 (2)0.029 (3)0.004 (2)0.0013 (19)0.0005 (17)0.0005 (18)
N20.019 (3)0.049 (4)0.007 (2)0.007 (2)0.007 (2)0.006 (2)
C10.017 (2)0.027 (3)0.007 (2)0.001 (2)0.001 (2)0.003 (2)
C20.020 (3)0.029 (3)0.004 (2)0.004 (2)0.001 (2)0.003 (2)
C30.018 (3)0.031 (3)0.007 (2)0.001 (2)0.001 (2)0.004 (2)
C40.021 (3)0.032 (3)0.007 (3)0.003 (2)0.002 (2)0.001 (2)
C50.024 (3)0.038 (3)0.008 (3)0.007 (3)0.004 (2)0.002 (2)
C60.019 (3)0.034 (3)0.015 (3)0.002 (2)0.001 (2)0.004 (2)
C70.018 (3)0.031 (3)0.008 (2)0.002 (2)0.004 (2)0.002 (2)
C80.016 (3)0.030 (3)0.004 (2)0.002 (2)0.002 (2)0.002 (2)
C90.014 (2)0.030 (3)0.006 (2)0.002 (2)0.001 (2)0.002 (2)
C100.023 (3)0.032 (3)0.006 (2)0.003 (2)0.001 (2)0.004 (2)
C110.018 (3)0.036 (3)0.008 (3)0.003 (2)0.006 (2)0.005 (2)
C120.015 (3)0.035 (3)0.005 (2)0.000 (2)0.000 (2)0.002 (2)
C130.013 (2)0.036 (3)0.006 (2)0.000 (2)0.000 (2)0.001 (2)
Geometric parameters (Å, º) top
Co1—N12.129 (4)C2—C71.399 (8)
Co1—N1i2.129 (4)C3—C41.384 (8)
Co1—O22.102 (4)C4—C51.383 (8)
Co1—O2i2.102 (4)C4—H40.9300
Co1—O42.153 (4)C5—H50.9300
Co1—O4i2.153 (4)C6—C51.392 (9)
Cl1—C31.744 (6)C6—H60.9300
O1—C11.254 (7)C7—C61.381 (8)
O2—C11.273 (7)C7—H70.9300
O3—C131.243 (7)C8—H80.9300
O4—H410.78 (9)C9—C81.382 (7)
O4—H420.96 (9)C9—C101.386 (8)
N1—C81.339 (7)C9—C131.502 (7)
N1—C121.343 (7)C10—C111.374 (8)
N2—C131.337 (7)C10—H100.9300
N2—H210.81 (9)C11—H110.9300
N2—H220.90 (6)C12—C111.390 (8)
C1—C21.501 (8)C12—H120.9300
C2—C31.402 (8)
O2—Co1—O2i180.0 (2)C4—C3—C2122.1 (5)
O2—Co1—O491.75 (17)C4—C3—Cl1115.9 (5)
O2i—Co1—O488.25 (17)C3—C4—H4120.1
O2—Co1—O4i88.25 (17)C5—C4—C3119.8 (6)
O2i—Co1—O4i91.75 (17)C5—C4—H4120.1
O2—Co1—N190.19 (16)C4—C5—C6119.7 (5)
O2i—Co1—N189.81 (16)C4—C5—H5120.1
O2—Co1—N1i89.81 (16)C6—C5—H5120.1
O2i—Co1—N1i90.19 (16)C5—C6—H6120.2
O4—Co1—O4i180.0 (2)C7—C6—C5119.6 (6)
N1—Co1—O488.39 (17)C7—C6—H6120.2
N1i—Co1—N1180.0 (3)C2—C7—H7118.8
N1i—Co1—O491.61 (17)C6—C7—C2122.3 (6)
N1—Co1—O4i91.61 (17)C6—C7—H7118.8
N1i—Co1—O4i88.39 (17)N1—C8—C9122.8 (5)
C1—O2—Co1123.4 (4)N1—C8—H8118.6
Co1—O4—H41113 (6)C9—C8—H8118.6
Co1—O4—H42101 (5)C8—C9—C10118.7 (5)
H41—O4—H42113 (8)C8—C9—C13117.1 (5)
C8—N1—Co1119.0 (4)C10—C9—C13124.1 (5)
C8—N1—C12118.3 (5)C9—C10—H10120.6
C12—N1—Co1122.8 (4)C11—C10—C9118.9 (5)
C13—N2—H21124 (6)C11—C10—H10120.6
C13—N2—H22117 (4)C10—C11—C12119.3 (5)
H22—N2—H21119 (7)C10—C11—H11120.4
O1—C1—O2124.2 (5)C12—C11—H11120.4
O1—C1—C2118.0 (5)N1—C12—C11122.0 (5)
O2—C1—C2117.6 (5)N1—C12—H12119.0
C3—C2—C1124.4 (5)C11—C12—H12119.0
C7—C2—C1119.0 (5)O3—C13—N2122.3 (5)
C7—C2—C3116.4 (5)O3—C13—C9120.2 (5)
C2—C3—Cl1122.0 (4)N2—C13—C9117.4 (5)
O4—Co1—O2—C134.9 (4)C1—C2—C3—Cl110.4 (8)
O4i—Co1—O2—C1145.1 (4)C1—C2—C3—C4171.1 (5)
N1—Co1—O2—C1123.3 (4)C7—C2—C3—Cl1175.5 (4)
N1i—Co1—O2—C156.7 (4)C7—C2—C3—C43.0 (8)
O2—Co1—N1—C8134.5 (4)C1—C2—C7—C6171.9 (5)
O2i—Co1—N1—C845.5 (4)C3—C2—C7—C62.5 (8)
O2—Co1—N1—C1243.9 (4)Cl1—C3—C4—C5177.9 (4)
O2i—Co1—N1—C12136.1 (4)C2—C3—C4—C50.7 (9)
O4—Co1—N1—C842.8 (4)C3—C4—C5—C62.3 (9)
O4i—Co1—N1—C8137.2 (4)C7—C6—C5—C42.7 (9)
O4—Co1—N1—C12135.6 (5)C2—C7—C6—C50.3 (9)
O4i—Co1—N1—C1244.4 (5)C10—C9—C8—N11.1 (9)
Co1—O2—C1—O121.7 (8)C13—C9—C8—N1177.6 (5)
Co1—O2—C1—C2154.0 (4)C8—C9—C10—C111.3 (9)
Co1—N1—C8—C9178.2 (4)C13—C9—C10—C11177.2 (6)
C12—N1—C8—C90.3 (9)C8—C9—C13—O34.8 (8)
Co1—N1—C12—C11177.0 (4)C8—C9—C13—N2176.9 (6)
C8—N1—C12—C111.4 (8)C10—C9—C13—O3173.8 (6)
O1—C1—C2—C326.3 (8)C10—C9—C13—N24.5 (9)
O1—C1—C2—C7147.6 (5)C9—C10—C11—C120.3 (9)
O2—C1—C2—C3157.8 (5)N1—C12—C11—C101.1 (9)
O2—C1—C2—C728.3 (8)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1ii0.82 (10)2.11 (9)2.861 (6)152 (9)
N2—H22···O3iii0.90 (7)2.20 (6)2.932 (7)138 (5)
O4—H41···O3iv0.78 (9)2.20 (10)2.890 (6)147 (10)
O4—H42···O10.96 (9)1.72 (9)2.628 (7)155 (8)
C6—H6···O1v0.932.553.468 (8)170
C10—H10···O1ii0.932.603.476 (7)158
Symmetry codes: (ii) x, y, z+1; (iii) x1, y, z+1; (iv) x1, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C7H4ClO2)2(C6H6N2O)2(H2O)2]
Mr650.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.8679 (2), 17.9522 (3), 9.8492 (2)
β (°) 106.637 (3)
V3)1332.92 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.39 × 0.33 × 0.23
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.708, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
10778, 3285, 2366
Rint0.061
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.237, 1.23
No. of reflections3285
No. of parameters202
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.42, 1.61

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2102) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—N12.129 (4)Co1—O42.153 (4)
Co1—O22.102 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1i0.82 (10)2.11 (9)2.861 (6)152 (9)
N2—H22···O3ii0.90 (7)2.20 (6)2.932 (7)138 (5)
O4—H41···O3iii0.78 (9)2.20 (10)2.890 (6)147 (10)
O4—H42···O10.96 (9)1.72 (9)2.628 (7)155 (8)
C6—H6···O1iv0.932.553.468 (8)170
C10—H10···O1i0.932.603.476 (7)158
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+1; (iii) x1, y, z; (iv) x+1, y, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H. & Necefouglu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefouglu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011b). Acta Cryst. E67, m619–m620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNecefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011a). Acta Cryst. E67, m900–m901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages m173-m174
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds