organic compounds
6,7-Difluoro-1,2,3,4-tetrahydroquinoxaline-5,8-dicarbonitrile
aKey Laboratory of Fine Petrochemical Technology, Changzhou University, Changzhou 213164, People's Republic of China, and bTianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300457, People's Republic of China
*Correspondence e-mail: hemingyangjpu@yahoo.com
In the title compound, C10H6F2N4, the Car—N bonds are slightly shortened with respect to a standard aniline C—N bond [1.3580 (16) and 1.3618 (16) versus 1.39 Å], thus indicating some π–π conjgation with the electron-acceptor CN groups. The molecule, except for two C atom of the ethylene bridge, is nearly planar, the largest deviation of the other non-H atoms from the mean plane being 0.309 (2) Å. The N—C—C—N torsion angle involving the ethylene bridge is 50.23 (18)°. In the crystal, molecules are connected by pairs of N—H⋯N hydrogen bonds into chains along [21-1].
Related literature
For general background to the synthesis and use of tetrafluoroterephthalonitrile and its derivatives, see: Meazza et al. (2007). For reference structural data on tetrafluoroterephthalic acid, see: Orthaber et al. (2010). For standard bond lengths, see: Allen et al. (1987). For hydrogen bonding graph-set descriptors, see: Etter (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813003206/yk2078sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813003206/yk2078Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813003206/yk2078Isup3.cml
Compound (I) was synthesized by the ultrasound reaction of tetrafluoroterephthalonitrile and ethylenediamine at room temperature in the presence of sulfur and assisted by ultrasound irradiation. The title compound was purified through
with ethyl acetate/petroleum ether as the Qualified crystalline samples were obtained through slow evaporation from the EtOH solution of (I).All H atoms were positioned geometrically (C–H = 0.97 Å, N–H = 0.86 Å) and included in the
in the riding-model approximation, with Uiso(H) = 1.2Ueq(C,N).Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H6F2N4 | Z = 2 |
Mr = 220.19 | F(000) = 224 |
Triclinic, P1 | Dx = 1.541 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.2173 (9) Å | Cell parameters from 2503 reflections |
b = 8.7011 (15) Å | θ = 2.5–27.6° |
c = 11.1453 (19) Å | µ = 0.13 mm−1 |
α = 75.545 (2)° | T = 293 K |
β = 81.854 (2)° | Block, colorless |
γ = 76.427 (2)° | 0.28 × 0.24 × 0.16 mm |
V = 474.40 (14) Å3 |
Bruker APEXII CCD diffractometer | 2141 independent reflections |
Radiation source: fine-focus sealed tube | 1816 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 27.6°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −6→6 |
Tmin = 0.964, Tmax = 0.980 | k = −11→11 |
4155 measured reflections | l = −14→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0825P)2 + 0.0701P] where P = (Fo2 + 2Fc2)/3 |
2141 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C10H6F2N4 | γ = 76.427 (2)° |
Mr = 220.19 | V = 474.40 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.2173 (9) Å | Mo Kα radiation |
b = 8.7011 (15) Å | µ = 0.13 mm−1 |
c = 11.1453 (19) Å | T = 293 K |
α = 75.545 (2)° | 0.28 × 0.24 × 0.16 mm |
β = 81.854 (2)° |
Bruker APEXII CCD diffractometer | 2141 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1816 reflections with I > 2σ(I) |
Tmin = 0.964, Tmax = 0.980 | Rint = 0.026 |
4155 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.29 e Å−3 |
2141 reflections | Δρmin = −0.23 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5584 (3) | 0.24423 (15) | 0.57193 (12) | 0.0414 (3) | |
C2 | −0.1573 (3) | −0.09578 (15) | 0.89446 (12) | 0.0403 (3) | |
C3 | 0.3758 (2) | 0.16100 (14) | 0.65684 (11) | 0.0359 (3) | |
C4 | 0.4178 (2) | −0.00938 (14) | 0.67660 (11) | 0.0382 (3) | |
C5 | 0.2446 (3) | −0.09029 (14) | 0.75315 (12) | 0.0389 (3) | |
C6 | 0.0223 (2) | −0.00551 (14) | 0.81451 (11) | 0.0359 (3) | |
C7 | −0.0247 (2) | 0.16328 (14) | 0.79859 (11) | 0.0348 (3) | |
C8 | 0.1573 (2) | 0.24965 (14) | 0.71567 (11) | 0.0355 (3) | |
C9 | −0.2521 (3) | 0.41626 (17) | 0.85819 (15) | 0.0548 (4) | |
H9A | −0.1510 | 0.4206 | 0.9235 | 0.066* | |
H9B | −0.4347 | 0.4681 | 0.8760 | 0.066* | |
C10 | −0.1447 (3) | 0.50503 (16) | 0.73570 (16) | 0.0539 (4) | |
H10A | −0.2651 | 0.5195 | 0.6731 | 0.065* | |
H10B | −0.1288 | 0.6115 | 0.7421 | 0.065* | |
F1 | 0.63601 (16) | −0.08862 (10) | 0.61981 (8) | 0.0525 (3) | |
F2 | 0.28294 (18) | −0.25305 (9) | 0.77522 (9) | 0.0548 (3) | |
N1 | 0.6992 (3) | 0.31503 (17) | 0.50478 (13) | 0.0574 (4) | |
N2 | −0.3029 (3) | −0.16595 (16) | 0.95803 (12) | 0.0560 (3) | |
N3 | 0.1134 (2) | 0.41386 (13) | 0.69902 (12) | 0.0481 (3) | |
H3 | 0.2066 | 0.4607 | 0.6368 | 0.058* | |
N4 | −0.2375 (2) | 0.24862 (13) | 0.85611 (11) | 0.0463 (3) | |
H4 | −0.3500 | 0.2005 | 0.9065 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0426 (7) | 0.0361 (6) | 0.0434 (7) | −0.0099 (5) | 0.0025 (5) | −0.0070 (5) |
C2 | 0.0442 (7) | 0.0324 (6) | 0.0425 (7) | −0.0105 (5) | −0.0031 (5) | −0.0029 (5) |
C3 | 0.0368 (6) | 0.0330 (6) | 0.0366 (6) | −0.0104 (5) | 0.0008 (5) | −0.0046 (5) |
C4 | 0.0385 (6) | 0.0328 (6) | 0.0413 (6) | −0.0054 (5) | 0.0013 (5) | −0.0093 (5) |
C5 | 0.0450 (7) | 0.0263 (5) | 0.0438 (7) | −0.0075 (5) | −0.0038 (5) | −0.0050 (5) |
C6 | 0.0384 (6) | 0.0307 (6) | 0.0372 (6) | −0.0106 (5) | −0.0021 (5) | −0.0029 (5) |
C7 | 0.0348 (6) | 0.0307 (6) | 0.0367 (6) | −0.0080 (4) | −0.0009 (5) | −0.0038 (4) |
C8 | 0.0374 (6) | 0.0290 (6) | 0.0389 (6) | −0.0091 (4) | −0.0014 (5) | −0.0043 (4) |
C9 | 0.0552 (8) | 0.0362 (7) | 0.0657 (9) | −0.0042 (6) | 0.0124 (7) | −0.0132 (6) |
C10 | 0.0528 (8) | 0.0307 (6) | 0.0715 (10) | −0.0053 (5) | 0.0069 (7) | −0.0091 (6) |
F1 | 0.0486 (5) | 0.0416 (4) | 0.0609 (5) | −0.0030 (3) | 0.0120 (4) | −0.0149 (4) |
F2 | 0.0620 (5) | 0.0262 (4) | 0.0709 (6) | −0.0087 (3) | 0.0058 (4) | −0.0084 (4) |
N1 | 0.0592 (8) | 0.0508 (7) | 0.0578 (7) | −0.0212 (6) | 0.0136 (6) | −0.0053 (6) |
N2 | 0.0555 (7) | 0.0487 (7) | 0.0587 (7) | −0.0205 (6) | 0.0065 (6) | 0.0002 (6) |
N3 | 0.0470 (6) | 0.0279 (5) | 0.0627 (7) | −0.0106 (4) | 0.0132 (5) | −0.0051 (5) |
N4 | 0.0420 (6) | 0.0344 (5) | 0.0564 (7) | −0.0093 (4) | 0.0126 (5) | −0.0075 (5) |
C1—N1 | 1.1425 (17) | C7—C8 | 1.4354 (16) |
C1—C3 | 1.4330 (17) | C8—N3 | 1.3618 (16) |
C2—N2 | 1.1408 (17) | C9—N4 | 1.4485 (18) |
C2—C6 | 1.4310 (17) | C9—C10 | 1.495 (2) |
C3—C8 | 1.3973 (17) | C9—H9A | 0.9700 |
C3—C4 | 1.4116 (17) | C9—H9B | 0.9700 |
C4—F1 | 1.3481 (14) | C10—N3 | 1.4537 (18) |
C4—C5 | 1.3492 (18) | C10—H10A | 0.9700 |
C5—F2 | 1.3465 (14) | C10—H10B | 0.9700 |
C5—C6 | 1.4081 (18) | N3—H3 | 0.8600 |
C6—C7 | 1.4007 (16) | N4—H4 | 0.8599 |
C7—N4 | 1.3580 (16) | ||
N1—C1—C3 | 177.89 (14) | C3—C8—C7 | 118.45 (11) |
N2—C2—C6 | 179.11 (14) | N4—C9—C10 | 110.40 (12) |
C8—C3—C4 | 121.41 (11) | N4—C9—H9A | 109.6 |
C8—C3—C1 | 119.68 (11) | C10—C9—H9A | 109.6 |
C4—C3—C1 | 118.89 (11) | N4—C9—H9B | 109.6 |
F1—C4—C5 | 121.20 (11) | C10—C9—H9B | 109.6 |
F1—C4—C3 | 118.67 (11) | H9A—C9—H9B | 108.1 |
C5—C4—C3 | 120.12 (11) | N3—C10—C9 | 109.85 (12) |
F2—C5—C4 | 121.21 (11) | N3—C10—H10A | 109.7 |
F2—C5—C6 | 118.54 (11) | C9—C10—H10A | 109.7 |
C4—C5—C6 | 120.23 (11) | N3—C10—H10B | 109.7 |
C7—C6—C5 | 121.40 (11) | C9—C10—H10B | 109.7 |
C7—C6—C2 | 120.11 (11) | H10A—C10—H10B | 108.2 |
C5—C6—C2 | 118.48 (11) | C8—N3—C10 | 120.46 (11) |
N4—C7—C6 | 122.84 (11) | C8—N3—H3 | 114.4 |
N4—C7—C8 | 118.78 (11) | C10—N3—H3 | 118.1 |
C6—C7—C8 | 118.36 (11) | C7—N4—C9 | 121.10 (11) |
N3—C8—C3 | 122.59 (11) | C7—N4—H4 | 121.1 |
N3—C8—C7 | 118.94 (11) | C9—N4—H4 | 116.3 |
C8—C3—C4—F1 | −178.24 (11) | C4—C3—C8—N3 | 179.46 (12) |
C1—C3—C4—F1 | 3.43 (18) | C1—C3—C8—N3 | −2.24 (19) |
C1—C3—C4—C5 | −177.99 (11) | C4—C3—C8—C7 | 0.62 (19) |
F1—C4—C5—F2 | −0.2 (2) | C1—C3—C8—C7 | 178.93 (10) |
C3—C4—C5—F2 | −178.78 (11) | N4—C7—C8—N3 | 1.12 (19) |
F1—C4—C5—C6 | 178.02 (11) | C6—C7—C8—N3 | 179.76 (11) |
C3—C4—C5—C6 | −0.5 (2) | N4—C7—C8—C3 | 180.00 (11) |
F2—C5—C6—C7 | 178.04 (11) | C6—C7—C8—C3 | −1.37 (18) |
C4—C5—C6—C7 | −0.3 (2) | N4—C9—C10—N3 | −50.23 (18) |
F2—C5—C6—C2 | −1.96 (18) | C3—C8—N3—C10 | 164.48 (13) |
C4—C5—C6—C2 | 179.72 (11) | C7—C8—N3—C10 | −16.7 (2) |
C5—C6—C7—N4 | 179.80 (11) | C9—C10—N3—C8 | 41.7 (2) |
C2—C6—C7—N4 | −0.20 (19) | C6—C7—N4—C9 | 167.19 (13) |
C5—C6—C7—C8 | 1.22 (19) | C8—C7—N4—C9 | −14.2 (2) |
C2—C6—C7—C8 | −178.78 (10) | C10—C9—N4—C7 | 39.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···N1i | 0.86 | 2.29 | 3.075 (2) | 152 |
N4—H4···N2ii | 0.86 | 2.21 | 3.0358 (19) | 160 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x−1, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C10H6F2N4 |
Mr | 220.19 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 5.2173 (9), 8.7011 (15), 11.1453 (19) |
α, β, γ (°) | 75.545 (2), 81.854 (2), 76.427 (2) |
V (Å3) | 474.40 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.28 × 0.24 × 0.16 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.964, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4155, 2141, 1816 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.652 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.140, 1.06 |
No. of reflections | 2141 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.23 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···N1i | 0.86 | 2.29 | 3.075 (2) | 152 |
N4—H4···N2ii | 0.86 | 2.21 | 3.0358 (19) | 160 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x−1, −y, −z+2. |
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Meazza, G., Bettarini, F. & Fornara, L. (2007). WO Patent No. 2007101587. Google Scholar
Orthaber, A., Seidel, C., Belaj, F., Albering, J. H., Pietschnig, R. & Ruschewitz, U. (2010). Inorg. Chem. 49, 9350–9357. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As important organic intermediates, tetrafluoroterephthalonitrile and its hydrolyzed product tetrafluoroterephthalic acid can be used to prepare pesticide tefluthrin (Meazza et al., 2007; Orthaber et al., 2010). The SNAr reaction of tetrafluoroterephthalonitrile with ethylenediamine under ultrasound irradiation yields 6,7-difluoro-1,2,3,4-tetrahydroquinoxaline-5,8-dicarbonitrile [C10H6F2N4, compound (I)] as the main product. While the crystal structure of compound (I) was suspiciously unknown. Herein, we report the crystal structure of (I) for comparison and reference purposes.
Compound (I) crystallizes in triclinic P1 space group. A perspective view of the title compound (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges. In the molecule, two nitrile groups are nearly coplanar with the central benzene plane. Within the tetrahydroquinoxaline ring, the torsion angle N3–C10–C9–N4 is -50.23 (18)°. Hydrogen-bonding interactions between the imino groups and cyano groups give rise to cyclic system of two N–H···N bonds between two adjacent molecules with the graph-set motif R22(12) (Etter, 1990). Due to the chemical symmetry of the molecule itself, such hydrogen-bonding interactions link the molecules to form a one-dimensional (1-D) tape structure (Fig. 2).