organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(4-bromo­phen­yl)pyridine-2,6-dicarboxamide

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, bUniversität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany, and cNESCOM, PO Box 2216 Islamabad, Pakistan
*Correspondence e-mail: humaira_siddiqi@yahoo.com

(Received 22 December 2012; accepted 27 January 2013; online 20 February 2013)

The mol­ecule of the title compound, C19H13Br2N3O2, lies about a twofold rotation axis. The benzene ring makes dihedral angles of 8.9 (2) and 16.4 (2)° with the central pyridine ring and the second benzene ring, respectively. An intra­molecular N—H⋯N contact occurs. In the crystal, mol­ecules are connected by pairs of N—H⋯O hydrogen bonds into chains along the c axis.

Related literature

For related structures, see: Malone et al. (1997[Malone, J. F., Murray, C. M., Dolan, G. M., Docherty, R. & Lavery, A. J. (1997). Chem. Mater. 9, 2983-2989.]); Qi et al. (2003[Qi, J. Y., Yang, Q. Y., Lam, K. H., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o415-o416.]). For imide–amide polymers, see: Sun et al. (2006[Sun, S., Li, C., Zhang, L., Du, H. L. & Burnell-Gray, J. S. (2006). Eur. Polym. J. 42, 1643-1652.]); Zhong et al. (2002[Zhong, S., Li, C. & Xiao, X. (2002). J. Membr. Sci. 199, 53-58.]). For properties of polymers containing heterocyclic groups, see: Diakoumakos & Mikroyannidis (1994[Diakoumakos, C. D. & Mikroyannidis, J. A. (1994). Polymer, 35, 1986-1990.]); Hamciuc et al. (2001[Hamciuc, E., Hamciuc, C., Sava, I. & Bruma, M. (2001). Eur. Polym. J. 37, 287-293.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13Br2N3O2

  • Mr = 475.14

  • Monoclinic, C 2/c

  • a = 9.550 (2) Å

  • b = 22.698 (5) Å

  • c = 8.748 (2) Å

  • β = 107.511 (5)°

  • V = 1808.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.50 mm−1

  • T = 130 K

  • 0.21 × 0.12 × 0.11 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.452, Tmax = 0.637

  • 8520 measured reflections

  • 2159 independent reflections

  • 1695 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.02

  • 2159 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2 0.88 2.23 2.673 (3) 111
N1—H1A⋯O1i 0.88 2.32 3.044 (3) 140
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Aromatic Poly(amide-imide)s are classified as meta aramid family. They are non-flammable, which is a permanent characteristic of their chemical structure. It includes a high proportion of aromatic groups and combined double bonds. The demand for polyamide-imide (PAI) and other high-temperature resistant polymeric materials has grown steadily because of their outstanding mechanical properties, excellent thermal and oxidative stability (Zhong et al., 2002; Sun et al., 2006). Incorporation of heterocylic groups in the polymer backbone is a rational approach which promotes solubility without affecting thermal and mechanical properties to any great extent (Diakoumakos et al., 1994, Hamciuc et al., 2001). As part of our enduring interest in solubility of aromatic poly(amide-imide)s by structural modification, we are reporting a pyridine-based monomer having inbuilt amide functionality. It enhances the solubility of resulting poly(amid-imide)s without worsening the inherent properties of the polymer.

Related literature top

For related structures, see: Malone et al. (1997); Qi et al. (2003). For imide–amide polymers, see: Sun et al. (2006); Zhong et al. (2002). For properties of polymers containing heterocyclic groups, see: Diakoumakos & Mikroyannidis (1994); Hamciuc et al. (2001).

Experimental top

In this preparation, chemicals of reagent grade quality were used without their further purification. In a 100 ml three-necked round-bottomed flask, equipped with a condenser, a nitrogen gas inlet tube, a thermometer and a magnetic stirrer, 0.02 mole (3.44 g) of 4-bromoaniline in 25 mL of dry tetrahydrofuran (THF) were stirred at 273–278 K for 30 minutes and 0.01 mol (2.04 g) of pyridine-2,6-dicarbonyl dichloride in 30 mL of THF was added dropwise by dropping funnel. Stirring was continued for further 1 h at the same conditions. The temperature of reaction mixture was then raised to 308–313 K and stirring was continued for 45 minutes. The flask content was cooled to room temperature, poured into water and left for 24 h. Resulting dark brown precipitate was filtered, washed with hot water and 5% NaOH solution. Finally, product was washed with hot water and methanol, dried under vacuum at 353 K. The crude product was recrystallized from THF-ethylacetate mixture (1:2).

Refinement top

Hydrogen atoms were identified in difference syntheses, and then refined at idealized positions riding on the carbon or nitrogen atoms with C—H = 0.95 Å and N—H = 0.88 Å and isotropic displacement parameters Uiso(H) = 1.2U(C/Neq).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with anisotropic displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) -x+1, y, -z+3/2.
[Figure 2] Fig. 2. Crystal packing viewd along b axis with hydrogen bonds as dotted lines. H-atoms not involved are omitted.
N,N'-Bis(4-bromophenyl)pyridine-2,6-dicarboxamide top
Crystal data top
C19H13Br2N3O2F(000) = 936
Mr = 475.14Dx = 1.745 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1650 reflections
a = 9.550 (2) Åθ = 2.9–23.6°
b = 22.698 (5) ŵ = 4.50 mm1
c = 8.748 (2) ÅT = 130 K
β = 107.511 (5)°Prism, colourless
V = 1808.5 (7) Å30.21 × 0.12 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2159 independent reflections
Radiation source: sealed tube1695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.452, Tmax = 0.637k = 2929
8520 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.105H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.9564P]
where P = (Fo2 + 2Fc2)/3
2159 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C19H13Br2N3O2V = 1808.5 (7) Å3
Mr = 475.14Z = 4
Monoclinic, C2/cMo Kα radiation
a = 9.550 (2) ŵ = 4.50 mm1
b = 22.698 (5) ÅT = 130 K
c = 8.748 (2) Å0.21 × 0.12 × 0.11 mm
β = 107.511 (5)°
Data collection top
Bruker SMART APEX
diffractometer
2159 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1695 reflections with I > 2σ(I)
Tmin = 0.452, Tmax = 0.637Rint = 0.044
8520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.94 e Å3
2159 reflectionsΔρmin = 0.52 e Å3
119 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.04692 (4)0.721218 (15)1.02697 (4)0.03818 (15)
O10.2856 (2)0.44490 (9)1.0115 (3)0.0268 (5)
N10.3088 (3)0.52384 (11)0.8566 (3)0.0225 (5)
H1A0.34970.53390.78280.027*
N20.50000.46292 (15)0.75000.0199 (7)
C10.3308 (3)0.46760 (13)0.9081 (4)0.0214 (6)
C20.4206 (3)0.43212 (13)0.8256 (4)0.0210 (6)
C30.4179 (3)0.37121 (13)0.8303 (4)0.0243 (6)
H3A0.36150.35100.88670.029*
C40.50000.34048 (19)0.75000.0273 (9)
H4A0.50000.29860.75000.033*
C50.2290 (3)0.56882 (13)0.9052 (4)0.0218 (6)
C60.2466 (3)0.62624 (14)0.8597 (4)0.0259 (7)
H6A0.31340.63420.80080.031*
C70.1690 (4)0.67177 (14)0.8988 (4)0.0278 (7)
H7A0.18270.71100.86850.033*
C80.0705 (3)0.65961 (15)0.9830 (4)0.0261 (7)
C90.0511 (3)0.60299 (15)1.0301 (4)0.0269 (7)
H9A0.01680.59541.08790.032*
C100.1312 (3)0.55712 (14)0.9927 (4)0.0252 (7)
H10A0.11980.51811.02630.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0469 (3)0.0388 (2)0.0340 (2)0.01775 (15)0.01988 (18)0.00280 (15)
O10.0261 (12)0.0298 (12)0.0281 (12)0.0035 (9)0.0136 (10)0.0022 (9)
N10.0198 (13)0.0268 (13)0.0233 (13)0.0011 (10)0.0100 (11)0.0006 (10)
N20.0142 (17)0.0228 (17)0.0212 (18)0.0000.0029 (14)0.000
C10.0129 (14)0.0262 (15)0.0232 (15)0.0029 (11)0.0024 (11)0.0021 (12)
C20.0136 (14)0.0262 (15)0.0220 (15)0.0010 (11)0.0037 (12)0.0003 (12)
C30.0201 (15)0.0281 (15)0.0246 (15)0.0032 (12)0.0068 (12)0.0011 (13)
C40.028 (2)0.022 (2)0.029 (2)0.0000.0058 (19)0.000
C50.0159 (14)0.0280 (15)0.0206 (15)0.0010 (11)0.0041 (12)0.0008 (12)
C60.0253 (16)0.0305 (16)0.0245 (16)0.0020 (13)0.0115 (13)0.0039 (13)
C70.0332 (18)0.0262 (15)0.0250 (16)0.0058 (13)0.0100 (14)0.0054 (13)
C80.0198 (15)0.0341 (17)0.0219 (16)0.0094 (12)0.0027 (12)0.0007 (12)
C90.0186 (15)0.0367 (17)0.0267 (16)0.0026 (12)0.0087 (13)0.0006 (14)
C100.0192 (15)0.0283 (15)0.0291 (17)0.0016 (12)0.0087 (13)0.0003 (13)
Geometric parameters (Å, º) top
Br1—C81.903 (3)C4—H4A0.9500
O1—C11.227 (4)C5—C61.387 (4)
N1—C11.349 (4)C5—C101.400 (4)
N1—C51.414 (4)C6—C71.373 (4)
N1—H1A0.8800C6—H6A0.9500
N2—C2i1.343 (3)C7—C81.387 (4)
N2—C21.343 (3)C7—H7A0.9500
C1—C21.509 (4)C8—C91.379 (5)
C2—C31.384 (4)C9—C101.388 (4)
C3—C41.388 (4)C9—H9A0.9500
C3—H3A0.9500C10—H10A0.9500
C4—C3i1.388 (4)
C1—N1—C5128.9 (3)C6—C5—N1118.0 (3)
C1—N1—H1A115.6C10—C5—N1122.4 (3)
C5—N1—H1A115.6C7—C6—C5121.0 (3)
C2i—N2—C2117.3 (3)C7—C6—H6A119.5
O1—C1—N1126.1 (3)C5—C6—H6A119.5
O1—C1—C2120.3 (3)C6—C7—C8119.1 (3)
N1—C1—C2113.5 (3)C6—C7—H7A120.5
N2—C2—C3123.5 (3)C8—C7—H7A120.5
N2—C2—C1116.4 (3)C9—C8—C7121.2 (3)
C3—C2—C1120.1 (3)C9—C8—Br1119.0 (2)
C2—C3—C4118.0 (3)C7—C8—Br1119.8 (2)
C2—C3—H3A121.0C8—C9—C10119.7 (3)
C4—C3—H3A121.0C8—C9—H9A120.2
C3—C4—C3i119.7 (4)C10—C9—H9A120.2
C3—C4—H4A120.2C9—C10—C5119.5 (3)
C3i—C4—H4A120.2C9—C10—H10A120.3
C6—C5—C10119.6 (3)C5—C10—H10A120.3
C5—N1—C1—O11.1 (5)C1—N1—C5—C1014.8 (5)
C5—N1—C1—C2179.0 (3)C10—C5—C6—C70.3 (5)
C2i—N2—C2—C30.6 (2)N1—C5—C6—C7178.0 (3)
C2i—N2—C2—C1179.3 (3)C5—C6—C7—C80.8 (5)
O1—C1—C2—N2161.6 (2)C6—C7—C8—C91.0 (5)
N1—C1—C2—N218.3 (4)C6—C7—C8—Br1176.2 (2)
O1—C1—C2—C318.5 (4)C7—C8—C9—C100.1 (5)
N1—C1—C2—C3161.6 (3)Br1—C8—C9—C10177.1 (2)
N2—C2—C3—C41.1 (4)C8—C9—C10—C51.1 (5)
C1—C2—C3—C4178.8 (2)C6—C5—C10—C91.3 (5)
C2—C3—C4—C3i0.5 (2)N1—C5—C10—C9177.0 (3)
C1—N1—C5—C6166.9 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.882.232.673 (3)111
N1—H1A···O1ii0.882.323.044 (3)140
Symmetry code: (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC19H13Br2N3O2
Mr475.14
Crystal system, space groupMonoclinic, C2/c
Temperature (K)130
a, b, c (Å)9.550 (2), 22.698 (5), 8.748 (2)
β (°) 107.511 (5)
V3)1808.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.50
Crystal size (mm)0.21 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.452, 0.637
No. of measured, independent and
observed [I > 2σ(I)] reflections
8520, 2159, 1695
Rint0.044
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.02
No. of reflections2159
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.52

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.882.232.673 (3)110.6
N1—H1A···O1i0.882.323.044 (3)140.2
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

Financial assistance for this project by the Higher Education Commission of Pakistan through the Inter­national Research Support Initiative Programe (IRSIP) is acknowledged by the authors.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiakoumakos, C. D. & Mikroyannidis, J. A. (1994). Polymer, 35, 1986–1990.  CrossRef CAS Web of Science Google Scholar
First citationHamciuc, E., Hamciuc, C., Sava, I. & Bruma, M. (2001). Eur. Polym. J. 37, 287–293.  Web of Science CrossRef CAS Google Scholar
First citationMalone, J. F., Murray, C. M., Dolan, G. M., Docherty, R. & Lavery, A. J. (1997). Chem. Mater. 9, 2983–2989.  Web of Science CSD CrossRef CAS Google Scholar
First citationQi, J. Y., Yang, Q. Y., Lam, K. H., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o415–o416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, S., Li, C., Zhang, L., Du, H. L. & Burnell-Gray, J. S. (2006). Eur. Polym. J. 42, 1643–1652.  Web of Science CrossRef CAS Google Scholar
First citationZhong, S., Li, C. & Xiao, X. (2002). J. Membr. Sci. 199, 53–58.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds