organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o337-o338

N,N,N′,N′-Tetra­methyl-N′′-[3-(tri­methyl­aza­nium­yl)prop­yl]guanidinium bis­­(tetra­phenyl­borate) acetone disolvate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: Ioannis.Tiritiris@htw-aalen.de

(Received 29 January 2013; accepted 29 January 2013; online 2 February 2013)

In the title solvated salt, C11H28N42+·2C24H20B·2C3H6O, the C—N bond lengths in the central CN3 unit of the guanidinium ion are 1.3331 (16), 1.3407 (16) and 1.3454 (16) Å, indicating partial double-bond character in each. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry [N—C—N angles = 118.96 (11), 120.51 (12) and 120.53 (11)°] and the positive charge is delocalized in the CN3 plane. The bonds between the N atoms and the terminal C-methyl groups of the guanidinium moiety all have values close to a typical single bond [1.4601 (16)–1.4649 (16) Å]. In the crystal, the guanidinium ion is connected by N—H⋯O and C—H⋯O hydrogen bonds with the acetone mol­ecules. C—H⋯π inter­actions are present between the guanidinium H atoms and the phenyl rings of both tetra­phenyl­borate ions. The phenyl rings form aromatic pockets, in which the guanidinium ions are embedded.

Related literature

For the crystal structure of ammonium tetra­phenyl­borate, see: Steiner & Mason (2000[Steiner, T. & Mason, S. A. (2000). Acta Cryst. B56, 254-260.]). For the crystal structures of choline tetra­phenyl­borate, triethano­lammonium tetra­phenyl­borate dihydrate and 6-ammonio-n-hexa­noic acid tetra­phenyl­borate monohydrate, see: Steiner et al. (2001[Steiner, T., Schreurs, A. M. M., Lutz, M. & Kroon, J. (2001). New J. Chem. 25, 174-178.]). For the synthesis of N′′-[3-(dimethyl­amino)­prop­yl]-N,N,N′,N′-tetra­methyl­guan­id­inium chloride, see: Tiritiris & Kantlehner (2012[Tiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B, 67, 685-698.]). For the crystal structures of alkali metal tetra­phenyl­borates, see: Behrens et al. (2012[Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913.]). For the crystal structure of N,N,N′,N′,N′′-penta­methyl-N′′-[3-(trimethyl­aza­nium­yl)prop­yl]guanidinium bis­(tetra­phenyl­borate), see: Tiritiris (2013[Tiritiris, I. (2013). Acta Cryst. E69, o292.]).

[Scheme 1]

Experimental

Crystal data
  • C11H28N42+·2C24H20B·2C3H6O

  • Mr = 970.95

  • Monoclinic, P 21 /c

  • a = 19.8630 (5) Å

  • b = 18.3212 (4) Å

  • c = 16.5349 (3) Å

  • β = 110.763 (1)°

  • V = 5626.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.23 × 0.16 × 0.12 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • 25784 measured reflections

  • 13908 independent reflections

  • 10017 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.113

  • S = 1.02

  • 13908 reflections

  • 674 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C42–C47, C48–C53, C18–C23, C36–C41 and C54–C59 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.87 (2) 2.18 (2) 2.914 (2) 142 (2)
C11—H11A⋯O2ii 0.98 2.48 3.368 (2) 151
C10—H10CCg1 0.98 2.82 3.693 (1) 150
C8—H8BCg2 0.99 2.82 3.510 (2) 127
C3—H3ACg3iii 0.98 2.79 3.359 (1) 118
C2—H2CCg4iv 0.98 2.61 3.453 (1) 144
C2—H2ACg5iv 0.98 2.59 3.393 (1) 140
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

X–H···Ph hydrogen bonds are found in structural chemistry and structural biology, when donor groups like O–H, N–H or C–H interact with electrons in aromatic π bonds. Tetraphenylborate salts are of great interest, because the (BPh4)- ion consists of eight aromatic faces as potential hydrogen bond acceptors. The most prominent model system examined, is ammonium tetraphenylborate [(NH4)(BPh4)], in which very short aromatic hydrogen bonds (N···Cg = 3.023 Å) have been determined in its crystal structure (Steiner & Mason, 2000). Structurally different tetraphenylborate salts with various cations have also been studied, to understand accurately the properties of aromatic hydrogen bonding (Steiner et al., 2001). Guanidinium tetraphenylborates in this context can be similarly interesting systems, but no attention was given to the analysis of the aromatic hydrogen bonding system in those compounds. A peralkylated dicationic guanidinium tetraphenylborate with an additional quarternary ammonium group (Tiritiris, 2013), showed in its crystal structure C–H···π interactions between cationic hydrogen atoms and the aromatic rings of the anions. To examine this type of interactions in similar systems, we synthesized the here presented title compound by N-methylation of the corresponding aminoguanidinium chloride (Tiritiris & Kantlehner, 2012) and subsequent anion exchange with NaBPh4. According to the structure analysis, the C1–N1 bond of the the CN3 unit is 1.3331 (16) Å, C1–N2 = 1.3454 (16) Å and C1–N3 = 1.3407 (16) Å, showing partial double-bond character. The N–C1–N angles are: 120.53 (11)° (N1–C1–N2), 118.96 (11)° (N1–C1–N3) and 120.51 (12)° (N2–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane (Fig. 1). The bonds between the N atoms and the terminal C-methyl groups of the guanidinium moiety all have values close to a typical single bond [1.4601 (16)–1.4649 (16) Å]. The C–N bond lengths in the terminal trimethylammonium group are slightly elongated [1.4930 (17)–1.5161 (16) Å]. The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). In the crystal, the guanidinium ion is connected by N–H···O and C–H···O hydrogen bonds (Fig. 2) with the acetone molecules [d(H···O1) = 2.18 (2) Å and d(H···O2) = 2.48 Å] (Tab. 1). In contrast, N–H···Ph interactions with the (BPh4)- ions were not detected. Similar to the permethylated compound N,N,N',N',N''-pentamethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) (Tiritiris, 2013), C–H···π interactions between hydrogen atoms of –N(CH3)2, –CH2 and –N+(CH3)3 groups of the guanidinium ion and phenyl rings (centroids) of both tetraphenylborate ions are present (Fig. 3), ranging from 2.59 to 2.82 Å (Tab. 1). The phenyl rings form aromatic pockets, in which the guanidinium ions are embedded.

Related literature top

For the crystal structure of ammonium tetraphenylborate, see: Steiner & Mason (2000). For the crystal structures of choline tetraphenylborate, triethanolammonium tetraphenylborate dihydrate and 6-ammonio-n-hexanoic acid tetraphenylborate monohydrate, see: Steiner et al. (2001). For the synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidinium chloride, see: Tiritiris & Kantlehner (2012). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the crystal structure of N,N,N',N',N''-pentamethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate), see: Tiritiris (2013).

Experimental top

The title compound was obtained by reaction of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidinium chloride (Tiritiris & Kantlehner, 2012) with one equivalent dimethyl sulfate in acetonitrile at room temperature. After evaporation of the solvent the crude N,N,N',N'-tetramethyl-N''-[3-(trimethylammonio)propyl]guanidinium chloride methylsulfate (I) was washed with diethylether and dried in vacuo. 1.0 g (2.76 mmol) of (I) was dissolved in 20 ml acetonitrile and 1.89 g (5.52 mmol) of sodium tetraphenylborate in 20 ml acetonitrile was added. After stirring for one hour at room temperature, the precipitated sodium chloride and sodium methylsulfate were filtered off. The title compound crystallized from a saturated acetone solution after several days at 273 K, forming colorless single crystals. Yield: 1.97 g (85.4%). 1H NMR (500 MHz, CD3CN/TMS): δ = 2.19–2.23 (m, 2 H, –CH2), 2.98 [s, 12 H, –N(CH3)2], 3.18 [s, 9 H, –N+(CH3)3], 3.35–3.39 (t, 2 H, –CH2), 3.43–3.46 (m, 2 H, –CH2), 6.86–6.92 (t, 8 H, –C6H5), 6.97–7.04 (t, 16 H,–C6H5), 7.25–7.31 (m, 16 H, –C6H5). The hydrogen atom of the –NH group was not observed. 13C NMR (125 MHz, CD3CN/TMS): δ = 26.3 (–CH2), 41.5 [–N(CH3)2], 44.6 (–CH2), 55.5–55.8 [–N+(CH3)3], 66.1 (–CH2), 122.5 (–C6H5), 126.2–126.6 (–C6H5), 136.3 (–C6H5), 162.8–163.9 (–C6H5), 164.4 (N3C+).

Refinement top

The N-bound H atom was located in a difference Fourier map and was refined freely [N—H = 0.87 (2) Å]. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with U(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings). They were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All carbon bonded hydrogen atoms were omitted for the sake of clarity.
[Figure 2] Fig. 2. N–H···O and C–H···O hydrogen bonds (dashed lines) between the guanidinium ion and the acetone molecules. The carbon bonded hydrogen atoms (except of H11A) were omitted for the sake of clarity.
[Figure 3] Fig. 3. C–H···π interactions (brown dashed lines) between the hydrogen atoms of the guanidinium ion and the phenyl rings (centroids) of the tetraphenylborate ions.
N,N,N',N'-Tetramethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone disolvate top
Crystal data top
C11H28N42+·2C24H20B·2C3H6OF(000) = 2096
Mr = 970.95Dx = 1.146 Mg m3
Monoclinic, P21/cMelting point: 460 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 19.8630 (5) ÅCell parameters from 13788 reflections
b = 18.3212 (4) Åθ = 0.4–28.3°
c = 16.5349 (3) ŵ = 0.07 mm1
β = 110.763 (1)°T = 100 K
V = 5626.5 (2) Å3Block, colorless
Z = 40.23 × 0.16 × 0.12 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
10017 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.030
Graphite monochromatorθmax = 28.3°, θmin = 1.1°
ϕ scans, and ω scansh = 2625
25784 measured reflectionsk = 2424
13908 independent reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0447P)2 + 2.1681P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
13908 reflectionsΔρmax = 0.31 e Å3
674 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (4)
Crystal data top
C11H28N42+·2C24H20B·2C3H6OV = 5626.5 (2) Å3
Mr = 970.95Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.8630 (5) ŵ = 0.07 mm1
b = 18.3212 (4) ÅT = 100 K
c = 16.5349 (3) Å0.23 × 0.16 × 0.12 mm
β = 110.763 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
10017 reflections with I > 2σ(I)
25784 measured reflectionsRint = 0.030
13908 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.31 e Å3
13908 reflectionsΔρmin = 0.23 e Å3
674 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.17578 (6)0.65595 (6)0.32134 (7)0.0173 (2)
N20.09127 (6)0.60442 (6)0.37204 (7)0.0180 (2)
N30.20209 (6)0.54792 (6)0.39738 (7)0.0180 (2)
H30.2306 (9)0.5369 (9)0.3700 (10)0.029 (4)*
N40.35625 (6)0.38934 (6)0.63758 (7)0.0184 (2)
C10.15612 (7)0.60282 (7)0.36344 (8)0.0160 (3)
C20.12438 (7)0.69359 (8)0.24677 (8)0.0216 (3)
H2A0.07790.66830.22880.032*
H2B0.14260.69360.19890.032*
H2C0.11830.74400.26270.032*
C30.25152 (7)0.67090 (8)0.33660 (9)0.0218 (3)
H3A0.28100.65530.39520.033*
H3B0.25810.72340.33050.033*
H3C0.26630.64410.29440.033*
C40.05412 (7)0.67235 (7)0.37603 (9)0.0215 (3)
H4A0.08790.71320.38630.032*
H4B0.03530.66960.42330.032*
H4C0.01420.67980.32120.032*
C50.05098 (7)0.53799 (8)0.37313 (9)0.0220 (3)
H5A0.07300.49660.35430.033*
H5B0.00100.54370.33390.033*
H5C0.05190.52910.43200.033*
C60.20631 (7)0.50449 (7)0.47324 (8)0.0172 (3)
H6A0.17310.46240.45530.021*
H6B0.19150.53460.51380.021*
C70.28311 (7)0.47731 (7)0.51828 (8)0.0173 (3)
H7A0.30050.45290.47600.021*
H7B0.31540.51900.54380.021*
C80.28381 (7)0.42392 (7)0.58888 (8)0.0189 (3)
H8A0.26720.44980.63090.023*
H8B0.24870.38460.56250.023*
C90.34691 (8)0.33815 (9)0.70388 (9)0.0296 (3)
H9A0.31140.30060.67480.044*
H9B0.33010.36560.74400.044*
H9C0.39310.31490.73610.044*
C100.38358 (9)0.34703 (9)0.57841 (9)0.0327 (4)
H10A0.42770.32110.61250.049*
H10B0.39400.38050.53810.049*
H10C0.34700.31170.54580.049*
C110.41050 (7)0.44586 (8)0.68342 (9)0.0269 (3)
H11A0.39200.47510.72060.040*
H11B0.41980.47760.64090.040*
H11C0.45540.42190.71890.040*
B10.56358 (7)0.28698 (8)0.40853 (9)0.0154 (3)
C120.54091 (7)0.20041 (7)0.40905 (7)0.0154 (2)
C130.57336 (7)0.14377 (7)0.37889 (7)0.0177 (3)
H130.61080.15560.35790.021*
C140.55300 (7)0.07087 (7)0.37838 (8)0.0211 (3)
H140.57670.03430.35770.025*
C150.49840 (8)0.05170 (8)0.40795 (8)0.0237 (3)
H150.48490.00200.40870.028*
C160.46369 (7)0.10602 (8)0.43636 (8)0.0219 (3)
H160.42550.09380.45580.026*
C170.48465 (7)0.17872 (7)0.43652 (8)0.0187 (3)
H170.45980.21510.45600.022*
C180.56509 (6)0.33145 (7)0.49559 (8)0.0156 (2)
C190.56606 (7)0.40807 (7)0.49564 (8)0.0202 (3)
H190.56040.43250.44290.024*
C200.57492 (7)0.45017 (8)0.56874 (9)0.0231 (3)
H200.57560.50190.56530.028*
C210.58272 (7)0.41651 (8)0.64645 (9)0.0230 (3)
H210.58870.44460.69680.028*
C220.58167 (7)0.34116 (8)0.64932 (8)0.0228 (3)
H220.58680.31730.70220.027*
C230.57314 (7)0.29968 (7)0.57563 (8)0.0188 (3)
H230.57280.24800.57980.023*
C240.64650 (7)0.29383 (7)0.40887 (8)0.0167 (3)
C250.70171 (7)0.24886 (8)0.46238 (8)0.0208 (3)
H250.69000.21330.49710.025*
C260.77284 (7)0.25417 (8)0.46677 (9)0.0255 (3)
H260.80830.22240.50370.031*
C270.79208 (8)0.30560 (9)0.41747 (9)0.0288 (3)
H270.84030.30880.41940.035*
C280.73966 (8)0.35227 (9)0.36533 (9)0.0269 (3)
H280.75210.38840.33190.032*
C290.66869 (7)0.34620 (8)0.36189 (8)0.0211 (3)
H290.63380.37910.32610.025*
C300.50346 (7)0.32212 (7)0.32071 (8)0.0165 (3)
C310.50802 (7)0.31281 (7)0.23840 (8)0.0201 (3)
H310.54890.28850.23430.024*
C320.45556 (8)0.33743 (8)0.16284 (8)0.0241 (3)
H320.46120.32990.10870.029*
C330.39510 (8)0.37287 (8)0.16626 (9)0.0247 (3)
H330.35880.38960.11480.030*
C340.38843 (7)0.38355 (8)0.24620 (9)0.0242 (3)
H340.34750.40810.24970.029*
C350.44161 (7)0.35837 (7)0.32122 (8)0.0198 (3)
H350.43560.36610.37510.024*
B20.08764 (8)0.27647 (8)0.42323 (9)0.0149 (3)
C360.02556 (7)0.32161 (7)0.34595 (8)0.0152 (2)
C370.03449 (7)0.35343 (7)0.35830 (8)0.0187 (3)
H370.03760.35140.41430.022*
C380.08963 (7)0.38772 (7)0.29243 (9)0.0242 (3)
H380.12900.40870.30400.029*
C390.08706 (8)0.39127 (8)0.20972 (9)0.0275 (3)
H390.12400.41530.16450.033*
C400.02972 (8)0.35927 (8)0.19430 (9)0.0256 (3)
H400.02760.36070.13780.031*
C410.02485 (7)0.32498 (7)0.26076 (8)0.0195 (3)
H410.06320.30290.24810.023*
C420.16525 (7)0.27497 (7)0.40739 (7)0.0165 (3)
C430.18861 (7)0.33241 (7)0.36759 (8)0.0187 (3)
H430.15890.37440.34990.022*
C440.25350 (7)0.33058 (8)0.35282 (8)0.0219 (3)
H440.26700.37080.32560.026*
C450.29839 (7)0.27037 (8)0.37758 (8)0.0235 (3)
H450.34170.26800.36560.028*
C460.27873 (7)0.21369 (8)0.42028 (9)0.0245 (3)
H460.30950.17260.43940.029*
C470.21397 (7)0.21661 (8)0.43538 (8)0.0215 (3)
H470.20230.17750.46580.026*
C480.10502 (6)0.31329 (7)0.51928 (8)0.0149 (2)
C490.13811 (7)0.27347 (8)0.59563 (8)0.0207 (3)
H490.14630.22280.59130.025*
C500.15947 (7)0.30496 (8)0.67742 (8)0.0244 (3)
H500.18120.27570.72730.029*
C510.14920 (7)0.37886 (8)0.68645 (8)0.0246 (3)
H510.16450.40080.74210.030*
C520.11626 (7)0.42011 (8)0.61288 (9)0.0218 (3)
H520.10860.47090.61780.026*
C530.09428 (7)0.38738 (7)0.53158 (8)0.0166 (3)
H530.07090.41670.48220.020*
C540.05455 (7)0.19386 (7)0.41917 (7)0.0154 (2)
C550.00955 (7)0.17420 (7)0.46455 (8)0.0205 (3)
H550.00060.20900.50210.025*
C560.02262 (8)0.10575 (8)0.45674 (9)0.0261 (3)
H560.05310.09490.48830.031*
C570.01037 (8)0.05343 (8)0.40317 (9)0.0290 (3)
H570.03170.00650.39830.035*
C580.03344 (8)0.07060 (8)0.35682 (9)0.0257 (3)
H580.04230.03530.31970.031*
C590.06449 (7)0.13953 (7)0.36446 (8)0.0195 (3)
H590.09370.15030.33120.023*
O10.23007 (7)0.00483 (6)0.74263 (7)0.0386 (3)
C600.21438 (8)0.00046 (9)0.66531 (10)0.0293 (3)
C610.17938 (11)0.06610 (11)0.61653 (13)0.0542 (5)
H61A0.21480.09420.60070.081*
H61B0.16060.09610.65280.081*
H61C0.13970.05170.56400.081*
C620.23176 (13)0.06106 (12)0.61583 (13)0.0585 (6)
H62A0.18950.07200.56450.088*
H62B0.24540.10460.65250.088*
H62C0.27180.04640.59790.088*
O20.69897 (6)0.00149 (7)0.71163 (7)0.0386 (3)
C630.68968 (8)0.03359 (8)0.64648 (9)0.0259 (3)
C640.64764 (10)0.10294 (9)0.62856 (10)0.0374 (4)
H64A0.62090.10730.66810.056*
H64B0.61370.10270.56870.056*
H64C0.68060.14440.63710.056*
C650.71994 (9)0.00907 (11)0.58003 (11)0.0425 (4)
H65A0.75130.03320.60200.064*
H65B0.74780.04890.56770.064*
H65C0.68050.00450.52690.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0148 (5)0.0175 (5)0.0178 (5)0.0002 (4)0.0033 (4)0.0029 (4)
N20.0163 (5)0.0171 (5)0.0203 (5)0.0025 (4)0.0060 (4)0.0039 (4)
N30.0178 (5)0.0200 (6)0.0175 (5)0.0054 (4)0.0079 (4)0.0049 (4)
N40.0159 (5)0.0216 (6)0.0144 (5)0.0030 (4)0.0013 (4)0.0013 (4)
C10.0156 (6)0.0169 (6)0.0134 (5)0.0009 (5)0.0026 (5)0.0004 (5)
C20.0220 (7)0.0214 (7)0.0187 (6)0.0021 (5)0.0039 (5)0.0068 (5)
C30.0176 (6)0.0220 (7)0.0245 (7)0.0035 (5)0.0060 (5)0.0005 (5)
C40.0200 (6)0.0210 (7)0.0241 (7)0.0058 (5)0.0084 (5)0.0033 (5)
C50.0166 (6)0.0224 (7)0.0259 (7)0.0005 (5)0.0060 (5)0.0067 (6)
C60.0158 (6)0.0189 (6)0.0162 (6)0.0030 (5)0.0049 (5)0.0039 (5)
C70.0142 (6)0.0182 (6)0.0176 (6)0.0010 (5)0.0031 (5)0.0019 (5)
C80.0126 (6)0.0219 (7)0.0187 (6)0.0018 (5)0.0013 (5)0.0034 (5)
C90.0273 (7)0.0311 (8)0.0264 (7)0.0046 (6)0.0047 (6)0.0139 (6)
C100.0358 (8)0.0373 (9)0.0206 (7)0.0198 (7)0.0048 (6)0.0005 (6)
C110.0183 (7)0.0327 (8)0.0223 (7)0.0036 (6)0.0019 (5)0.0015 (6)
B10.0161 (7)0.0149 (7)0.0154 (6)0.0006 (5)0.0057 (5)0.0012 (5)
C120.0160 (6)0.0172 (6)0.0099 (5)0.0009 (5)0.0008 (5)0.0009 (5)
C130.0194 (6)0.0204 (6)0.0112 (5)0.0004 (5)0.0027 (5)0.0003 (5)
C140.0269 (7)0.0179 (7)0.0140 (6)0.0008 (5)0.0016 (5)0.0011 (5)
C150.0310 (7)0.0181 (7)0.0154 (6)0.0083 (6)0.0001 (5)0.0012 (5)
C160.0214 (7)0.0251 (7)0.0167 (6)0.0077 (5)0.0037 (5)0.0015 (5)
C170.0172 (6)0.0219 (7)0.0148 (6)0.0009 (5)0.0029 (5)0.0001 (5)
C180.0113 (6)0.0184 (6)0.0170 (6)0.0016 (5)0.0049 (5)0.0012 (5)
C190.0207 (6)0.0200 (7)0.0187 (6)0.0006 (5)0.0055 (5)0.0016 (5)
C200.0217 (7)0.0172 (7)0.0288 (7)0.0005 (5)0.0069 (6)0.0048 (6)
C210.0194 (7)0.0288 (8)0.0227 (7)0.0042 (6)0.0098 (5)0.0100 (6)
C220.0244 (7)0.0291 (8)0.0168 (6)0.0071 (6)0.0096 (5)0.0022 (5)
C230.0186 (6)0.0194 (6)0.0186 (6)0.0038 (5)0.0069 (5)0.0008 (5)
C240.0186 (6)0.0175 (6)0.0149 (6)0.0026 (5)0.0069 (5)0.0049 (5)
C250.0193 (6)0.0229 (7)0.0191 (6)0.0028 (5)0.0053 (5)0.0023 (5)
C260.0197 (7)0.0281 (8)0.0250 (7)0.0009 (6)0.0033 (6)0.0053 (6)
C270.0189 (7)0.0392 (9)0.0302 (8)0.0065 (6)0.0112 (6)0.0094 (7)
C280.0272 (7)0.0311 (8)0.0265 (7)0.0087 (6)0.0145 (6)0.0023 (6)
C290.0221 (7)0.0208 (7)0.0214 (6)0.0017 (5)0.0087 (5)0.0013 (5)
C300.0191 (6)0.0134 (6)0.0166 (6)0.0032 (5)0.0059 (5)0.0002 (5)
C310.0231 (7)0.0188 (7)0.0196 (6)0.0020 (5)0.0088 (5)0.0001 (5)
C320.0329 (8)0.0242 (7)0.0156 (6)0.0009 (6)0.0092 (6)0.0007 (5)
C330.0249 (7)0.0255 (7)0.0190 (6)0.0002 (6)0.0021 (5)0.0066 (6)
C340.0186 (7)0.0276 (8)0.0260 (7)0.0024 (6)0.0076 (6)0.0040 (6)
C350.0196 (6)0.0230 (7)0.0177 (6)0.0019 (5)0.0078 (5)0.0011 (5)
B20.0176 (7)0.0137 (6)0.0136 (6)0.0001 (5)0.0061 (5)0.0001 (5)
C360.0177 (6)0.0114 (6)0.0153 (6)0.0029 (5)0.0044 (5)0.0006 (5)
C370.0183 (6)0.0174 (6)0.0190 (6)0.0030 (5)0.0048 (5)0.0020 (5)
C380.0176 (6)0.0172 (7)0.0329 (7)0.0010 (5)0.0030 (6)0.0039 (6)
C390.0243 (7)0.0202 (7)0.0270 (7)0.0011 (6)0.0046 (6)0.0067 (6)
C400.0302 (8)0.0260 (7)0.0158 (6)0.0061 (6)0.0021 (6)0.0045 (5)
C410.0223 (7)0.0182 (6)0.0171 (6)0.0023 (5)0.0060 (5)0.0003 (5)
C420.0176 (6)0.0194 (6)0.0110 (5)0.0013 (5)0.0034 (5)0.0033 (5)
C430.0209 (6)0.0184 (6)0.0167 (6)0.0024 (5)0.0066 (5)0.0039 (5)
C440.0231 (7)0.0256 (7)0.0183 (6)0.0079 (6)0.0089 (5)0.0033 (5)
C450.0159 (6)0.0360 (8)0.0188 (6)0.0032 (6)0.0063 (5)0.0045 (6)
C460.0179 (7)0.0290 (8)0.0239 (7)0.0048 (6)0.0039 (5)0.0003 (6)
C470.0197 (6)0.0253 (7)0.0188 (6)0.0004 (5)0.0059 (5)0.0025 (5)
C480.0136 (6)0.0165 (6)0.0150 (6)0.0025 (5)0.0057 (5)0.0003 (5)
C490.0216 (6)0.0194 (7)0.0186 (6)0.0011 (5)0.0041 (5)0.0023 (5)
C500.0233 (7)0.0332 (8)0.0144 (6)0.0061 (6)0.0039 (5)0.0039 (6)
C510.0232 (7)0.0365 (8)0.0162 (6)0.0118 (6)0.0097 (5)0.0087 (6)
C520.0213 (7)0.0217 (7)0.0255 (7)0.0057 (5)0.0123 (6)0.0086 (5)
C530.0153 (6)0.0174 (6)0.0177 (6)0.0022 (5)0.0065 (5)0.0004 (5)
C540.0173 (6)0.0152 (6)0.0118 (5)0.0012 (5)0.0026 (5)0.0011 (5)
C550.0244 (7)0.0209 (7)0.0152 (6)0.0032 (5)0.0058 (5)0.0008 (5)
C560.0317 (8)0.0277 (8)0.0184 (6)0.0112 (6)0.0081 (6)0.0029 (6)
C570.0395 (9)0.0177 (7)0.0232 (7)0.0089 (6)0.0029 (6)0.0020 (6)
C580.0338 (8)0.0166 (7)0.0212 (7)0.0025 (6)0.0031 (6)0.0018 (5)
C590.0219 (7)0.0188 (7)0.0163 (6)0.0026 (5)0.0050 (5)0.0000 (5)
O10.0546 (7)0.0352 (7)0.0290 (6)0.0035 (6)0.0184 (5)0.0070 (5)
C600.0272 (8)0.0311 (8)0.0306 (8)0.0071 (6)0.0117 (6)0.0056 (6)
C610.0546 (12)0.0446 (11)0.0506 (11)0.0038 (9)0.0031 (9)0.0232 (9)
C620.0759 (15)0.0629 (14)0.0487 (11)0.0020 (12)0.0367 (11)0.0056 (10)
O20.0477 (7)0.0387 (7)0.0286 (6)0.0024 (5)0.0125 (5)0.0134 (5)
C630.0231 (7)0.0303 (8)0.0204 (7)0.0076 (6)0.0027 (6)0.0012 (6)
C640.0495 (10)0.0333 (9)0.0229 (7)0.0029 (8)0.0047 (7)0.0037 (6)
C650.0362 (9)0.0604 (12)0.0316 (8)0.0019 (8)0.0129 (7)0.0047 (8)
Geometric parameters (Å, º) top
N1—C11.3331 (16)C29—H290.9500
N1—C31.4604 (16)C30—C351.3992 (18)
N1—C21.4649 (16)C30—C311.4062 (17)
N2—C11.3454 (16)C31—C321.3882 (19)
N2—C41.4601 (16)C31—H310.9500
N2—C51.4603 (17)C32—C331.384 (2)
N3—C11.3407 (16)C32—H320.9500
N3—C61.4626 (16)C33—C341.3882 (19)
N3—H30.87 (2)C33—H330.9500
N4—C111.4930 (17)C34—C351.3922 (18)
N4—C101.4932 (18)C34—H340.9500
N4—C91.5033 (17)C35—H350.9500
N4—C81.5161 (16)B2—C541.6421 (19)
C2—H2A0.9800B2—C481.6456 (18)
C2—H2B0.9800B2—C361.6493 (18)
C2—H2C0.9800B2—C421.6529 (19)
C3—H3A0.9800C36—C411.4050 (17)
C3—H3B0.9800C36—C371.4061 (18)
C3—H3C0.9800C37—C381.3909 (18)
C4—H4A0.9800C37—H370.9500
C4—H4B0.9800C38—C391.388 (2)
C4—H4C0.9800C38—H380.9500
C5—H5A0.9800C39—C401.383 (2)
C5—H5B0.9800C39—H390.9500
C5—H5C0.9800C40—C411.3902 (19)
C6—C71.5245 (17)C40—H400.9500
C6—H6A0.9900C41—H410.9500
C6—H6B0.9900C42—C431.4044 (18)
C7—C81.5193 (18)C42—C471.4059 (18)
C7—H7A0.9900C43—C441.3948 (18)
C7—H7B0.9900C43—H430.9500
C8—H8A0.9900C44—C451.386 (2)
C8—H8B0.9900C44—H440.9500
C9—H9A0.9800C45—C461.388 (2)
C9—H9B0.9800C45—H450.9500
C9—H9C0.9800C46—C471.3954 (19)
C10—H10A0.9800C46—H460.9500
C10—H10B0.9800C47—H470.9500
C10—H10C0.9800C48—C531.4000 (18)
C11—H11A0.9800C48—C491.4034 (17)
C11—H11B0.9800C49—C501.3911 (18)
C11—H11C0.9800C49—H490.9500
B1—C181.6451 (18)C50—C511.385 (2)
B1—C301.6491 (18)C50—H500.9500
B1—C121.6496 (19)C51—C521.384 (2)
B1—C241.6499 (18)C51—H510.9500
C12—C131.4030 (18)C52—C531.3932 (18)
C12—C171.4047 (18)C52—H520.9500
C13—C141.3947 (18)C53—H530.9500
C13—H130.9500C54—C551.4025 (18)
C14—C151.384 (2)C54—C591.4052 (18)
C14—H140.9500C55—C561.3926 (19)
C15—C161.384 (2)C55—H550.9500
C15—H150.9500C56—C571.384 (2)
C16—C171.3953 (19)C56—H560.9500
C16—H160.9500C57—C581.384 (2)
C17—H170.9500C57—H570.9500
C18—C231.4020 (17)C58—C591.3914 (19)
C18—C191.4039 (18)C58—H580.9500
C19—C201.3913 (19)C59—H590.9500
C19—H190.9500O1—C601.2065 (18)
C20—C211.384 (2)C60—C621.490 (3)
C20—H200.9500C60—C611.491 (2)
C21—C221.382 (2)C61—H61A0.9800
C21—H210.9500C61—H61B0.9800
C22—C231.3946 (18)C61—H61C0.9800
C22—H220.9500C62—H62A0.9800
C23—H230.9500C62—H62B0.9800
C24—C291.4005 (18)C62—H62C0.9800
C24—C251.4058 (18)O2—C631.2109 (17)
C25—C261.3923 (19)C63—C641.491 (2)
C25—H250.9500C63—C651.496 (2)
C26—C271.385 (2)C64—H64A0.9800
C26—H260.9500C64—H64B0.9800
C27—C281.386 (2)C64—H64C0.9800
C27—H270.9500C65—H65A0.9800
C28—C291.3950 (19)C65—H65B0.9800
C28—H280.9500C65—H65C0.9800
C1—N1—C3121.42 (11)C27—C28—C29120.09 (14)
C1—N1—C2122.51 (11)C27—C28—H28120.0
C3—N1—C2115.15 (10)C29—C28—H28120.0
C1—N2—C4122.78 (11)C28—C29—C24122.98 (13)
C1—N2—C5122.18 (11)C28—C29—H29118.5
C4—N2—C5114.95 (10)C24—C29—H29118.5
C1—N3—C6126.20 (11)C35—C30—C31114.92 (11)
C1—N3—H3115.5 (11)C35—C30—B1122.90 (11)
C6—N3—H3118.2 (11)C31—C30—B1122.00 (11)
C11—N4—C10109.15 (11)C32—C31—C30123.11 (13)
C11—N4—C9108.42 (10)C32—C31—H31118.4
C10—N4—C9108.75 (12)C30—C31—H31118.4
C11—N4—C8110.98 (11)C33—C32—C31120.08 (12)
C10—N4—C8111.47 (10)C33—C32—H32120.0
C9—N4—C8107.99 (10)C31—C32—H32120.0
N1—C1—N3118.96 (11)C32—C33—C34118.83 (12)
N1—C1—N2120.53 (11)C32—C33—H33120.6
N3—C1—N2120.51 (12)C34—C33—H33120.6
N1—C2—H2A109.5C33—C34—C35120.22 (13)
N1—C2—H2B109.5C33—C34—H34119.9
H2A—C2—H2B109.5C35—C34—H34119.9
N1—C2—H2C109.5C34—C35—C30122.85 (12)
H2A—C2—H2C109.5C34—C35—H35118.6
H2B—C2—H2C109.5C30—C35—H35118.6
N1—C3—H3A109.5C54—B2—C48111.18 (10)
N1—C3—H3B109.5C54—B2—C36104.60 (10)
H3A—C3—H3B109.5C48—B2—C36112.69 (10)
N1—C3—H3C109.5C54—B2—C42111.13 (10)
H3A—C3—H3C109.5C48—B2—C42105.75 (10)
H3B—C3—H3C109.5C36—B2—C42111.63 (10)
N2—C4—H4A109.5C41—C36—C37114.83 (11)
N2—C4—H4B109.5C41—C36—B2122.53 (11)
H4A—C4—H4B109.5C37—C36—B2122.35 (11)
N2—C4—H4C109.5C38—C37—C36123.12 (12)
H4A—C4—H4C109.5C38—C37—H37118.4
H4B—C4—H4C109.5C36—C37—H37118.4
N2—C5—H5A109.5C39—C38—C37119.94 (13)
N2—C5—H5B109.5C39—C38—H38120.0
H5A—C5—H5B109.5C37—C38—H38120.0
N2—C5—H5C109.5C40—C39—C38118.82 (12)
H5A—C5—H5C109.5C40—C39—H39120.6
H5B—C5—H5C109.5C38—C39—H39120.6
N3—C6—C7109.86 (10)C39—C40—C41120.55 (13)
N3—C6—H6A109.7C39—C40—H40119.7
C7—C6—H6A109.7C41—C40—H40119.7
N3—C6—H6B109.7C40—C41—C36122.70 (13)
C7—C6—H6B109.7C40—C41—H41118.7
H6A—C6—H6B108.2C36—C41—H41118.7
C8—C7—C6108.70 (10)C43—C42—C47114.90 (12)
C8—C7—H7A109.9C43—C42—B2122.91 (11)
C6—C7—H7A109.9C47—C42—B2122.16 (11)
C8—C7—H7B109.9C44—C43—C42122.91 (13)
C6—C7—H7B110.0C44—C43—H43118.5
H7A—C7—H7B108.3C42—C43—H43118.5
N4—C8—C7115.19 (10)C45—C44—C43120.34 (13)
N4—C8—H8A108.5C45—C44—H44119.8
C7—C8—H8A108.5C43—C44—H44119.8
N4—C8—H8B108.5C44—C45—C46118.58 (12)
C7—C8—H8B108.5C44—C45—H45120.7
H8A—C8—H8B107.5C46—C45—H45120.7
N4—C9—H9A109.5C45—C46—C47120.39 (13)
N4—C9—H9B109.5C45—C46—H46119.8
H9A—C9—H9B109.5C47—C46—H46119.8
N4—C9—H9C109.5C46—C47—C42122.74 (13)
H9A—C9—H9C109.5C46—C47—H47118.6
H9B—C9—H9C109.5C42—C47—H47118.6
N4—C10—H10A109.5C53—C48—C49114.85 (11)
N4—C10—H10B109.5C53—C48—B2123.16 (11)
H10A—C10—H10B109.5C49—C48—B2121.75 (11)
N4—C10—H10C109.5C50—C49—C48122.89 (13)
H10A—C10—H10C109.5C50—C49—H49118.6
H10B—C10—H10C109.5C48—C49—H49118.6
N4—C11—H11A109.5C51—C50—C49120.29 (13)
N4—C11—H11B109.5C51—C50—H50119.9
H11A—C11—H11B109.5C49—C50—H50119.9
N4—C11—H11C109.5C52—C51—C50118.75 (12)
H11A—C11—H11C109.5C52—C51—H51120.6
H11B—C11—H11C109.5C50—C51—H51120.6
C18—B1—C30111.11 (10)C51—C52—C53120.12 (13)
C18—B1—C12113.08 (10)C51—C52—H52119.9
C30—B1—C12105.44 (10)C53—C52—H52119.9
C18—B1—C24104.53 (10)C52—C53—C48123.08 (12)
C30—B1—C24112.57 (10)C52—C53—H53118.5
C12—B1—C24110.30 (10)C48—C53—H53118.5
C13—C12—C17115.10 (12)C55—C54—C59115.10 (12)
C13—C12—B1123.28 (11)C55—C54—B2122.45 (11)
C17—C12—B1121.56 (11)C59—C54—B2122.25 (11)
C14—C13—C12122.80 (12)C56—C55—C54122.69 (13)
C14—C13—H13118.6C56—C55—H55118.7
C12—C13—H13118.6C54—C55—H55118.7
C15—C14—C13120.18 (13)C57—C56—C55120.27 (13)
C15—C14—H14119.9C57—C56—H56119.9
C13—C14—H14119.9C55—C56—H56119.9
C14—C15—C16118.98 (13)C56—C57—C58118.98 (13)
C14—C15—H15120.5C56—C57—H57120.5
C16—C15—H15120.5C58—C57—H57120.5
C15—C16—C17120.19 (13)C57—C58—C59120.10 (13)
C15—C16—H16119.9C57—C58—H58120.0
C17—C16—H16119.9C59—C58—H58120.0
C16—C17—C12122.71 (13)C58—C59—C54122.84 (13)
C16—C17—H17118.6C58—C59—H59118.6
C12—C17—H17118.6C54—C59—H59118.6
C23—C18—C19114.69 (12)O1—C60—C62120.61 (16)
C23—C18—B1125.51 (11)O1—C60—C61121.55 (16)
C19—C18—B1119.45 (11)C62—C60—C61117.81 (16)
C20—C19—C18123.52 (12)C60—C61—H61A109.5
C20—C19—H19118.2C60—C61—H61B109.5
C18—C19—H19118.2H61A—C61—H61B109.5
C21—C20—C19119.85 (13)C60—C61—H61C109.5
C21—C20—H20120.1H61A—C61—H61C109.5
C19—C20—H20120.1H61B—C61—H61C109.5
C22—C21—C20118.63 (12)C60—C62—H62A109.5
C22—C21—H21120.7C60—C62—H62B109.5
C20—C21—H21120.7H62A—C62—H62B109.5
C21—C22—C23120.87 (13)C60—C62—H62C109.5
C21—C22—H22119.6H62A—C62—H62C109.5
C23—C22—H22119.6H62B—C62—H62C109.5
C22—C23—C18122.43 (13)O2—C63—C64121.79 (14)
C22—C23—H23118.8O2—C63—C65121.31 (15)
C18—C23—H23118.8C64—C63—C65116.89 (14)
C29—C24—C25114.95 (12)C63—C64—H64A109.5
C29—C24—B1124.08 (11)C63—C64—H64B109.5
C25—C24—B1120.85 (11)H64A—C64—H64B109.5
C26—C25—C24122.87 (13)C63—C64—H64C109.5
C26—C25—H25118.6H64A—C64—H64C109.5
C24—C25—H25118.6H64B—C64—H64C109.5
C27—C26—C25120.22 (13)C63—C65—H65A109.5
C27—C26—H26119.9C63—C65—H65B109.5
C25—C26—H26119.9H65A—C65—H65B109.5
C26—C27—C28118.85 (13)C63—C65—H65C109.5
C26—C27—H27120.6H65A—C65—H65C109.5
C28—C27—H27120.6H65B—C65—H65C109.5
C3—N1—C1—N322.25 (18)C35—C30—C31—C320.01 (19)
C2—N1—C1—N3146.25 (12)B1—C30—C31—C32175.37 (12)
C3—N1—C1—N2157.48 (12)C30—C31—C32—C330.2 (2)
C2—N1—C1—N234.03 (18)C31—C32—C33—C340.4 (2)
C6—N3—C1—N1151.54 (12)C32—C33—C34—C350.5 (2)
C6—N3—C1—N228.19 (19)C33—C34—C35—C300.3 (2)
C4—N2—C1—N129.95 (18)C31—C30—C35—C340.07 (19)
C5—N2—C1—N1146.47 (12)B1—C30—C35—C34175.41 (12)
C4—N2—C1—N3149.77 (12)C54—B2—C36—C4190.16 (14)
C5—N2—C1—N333.80 (18)C48—B2—C36—C41148.93 (12)
C1—N3—C6—C7151.03 (12)C42—B2—C36—C4130.10 (16)
N3—C6—C7—C8172.13 (11)C54—B2—C36—C3783.36 (14)
C11—N4—C8—C761.70 (14)C48—B2—C36—C3737.55 (16)
C10—N4—C8—C760.19 (15)C42—B2—C36—C37156.38 (11)
C9—N4—C8—C7179.59 (11)C41—C36—C37—C381.87 (18)
C6—C7—C8—N4177.55 (11)B2—C36—C37—C38175.85 (12)
C18—B1—C12—C13140.56 (11)C36—C37—C38—C390.4 (2)
C30—B1—C12—C1397.85 (13)C37—C38—C39—C401.0 (2)
C24—B1—C12—C1323.93 (16)C38—C39—C40—C410.8 (2)
C18—B1—C12—C1742.46 (15)C39—C40—C41—C360.8 (2)
C30—B1—C12—C1779.12 (13)C37—C36—C41—C402.09 (19)
C24—B1—C12—C17159.10 (11)B2—C36—C41—C40176.06 (12)
C17—C12—C13—C141.82 (17)C54—B2—C42—C43148.78 (11)
B1—C12—C13—C14178.97 (11)C48—B2—C42—C4390.46 (13)
C12—C13—C14—C150.39 (19)C36—B2—C42—C4332.43 (16)
C13—C14—C15—C161.18 (19)C54—B2—C42—C4733.21 (15)
C14—C15—C16—C171.20 (19)C48—B2—C42—C4787.55 (14)
C15—C16—C17—C120.35 (19)C36—B2—C42—C47149.56 (11)
C13—C12—C17—C161.80 (17)C47—C42—C43—C443.05 (18)
B1—C12—C17—C16179.00 (11)B2—C42—C43—C44178.81 (11)
C30—B1—C18—C23140.83 (12)C42—C43—C44—C450.00 (19)
C12—B1—C18—C2322.49 (17)C43—C44—C45—C462.59 (19)
C24—B1—C18—C2397.51 (13)C44—C45—C46—C472.0 (2)
C30—B1—C18—C1946.28 (15)C45—C46—C47—C421.3 (2)
C12—B1—C18—C19164.62 (11)C43—C42—C47—C463.69 (18)
C24—B1—C18—C1975.38 (14)B2—C42—C47—C46178.15 (12)
C23—C18—C19—C200.58 (19)C54—B2—C48—C53142.90 (12)
B1—C18—C19—C20173.05 (12)C36—B2—C48—C5325.84 (16)
C18—C19—C20—C210.6 (2)C42—B2—C48—C5396.38 (13)
C19—C20—C21—C220.2 (2)C54—B2—C48—C4943.04 (16)
C20—C21—C22—C230.2 (2)C36—B2—C48—C49160.10 (11)
C21—C22—C23—C180.2 (2)C42—B2—C48—C4977.69 (14)
C19—C18—C23—C220.21 (18)C53—C48—C49—C500.69 (19)
B1—C18—C23—C22172.97 (12)B2—C48—C49—C50173.84 (12)
C18—B1—C24—C2996.72 (13)C48—C49—C50—C510.7 (2)
C30—B1—C24—C2923.98 (17)C49—C50—C51—C521.1 (2)
C12—B1—C24—C29141.44 (12)C50—C51—C52—C530.2 (2)
C18—B1—C24—C2579.09 (14)C51—C52—C53—C481.3 (2)
C30—B1—C24—C25160.21 (11)C49—C48—C53—C521.68 (18)
C12—B1—C24—C2542.75 (15)B2—C48—C53—C52172.76 (12)
C29—C24—C25—C261.84 (19)C48—B2—C54—C5534.37 (16)
B1—C24—C25—C26178.01 (12)C36—B2—C54—C5587.52 (13)
C24—C25—C26—C270.3 (2)C42—B2—C54—C55151.87 (11)
C25—C26—C27—C281.2 (2)C48—B2—C54—C59150.98 (11)
C26—C27—C28—C291.1 (2)C36—B2—C54—C5987.12 (13)
C27—C28—C29—C240.5 (2)C42—B2—C54—C5933.48 (16)
C25—C24—C29—C281.95 (19)C59—C54—C55—C560.49 (18)
B1—C24—C29—C28177.98 (12)B2—C54—C55—C56175.49 (12)
C18—B1—C30—C3527.89 (16)C54—C55—C56—C570.6 (2)
C12—B1—C30—C3594.97 (14)C55—C56—C57—C580.9 (2)
C24—B1—C30—C35144.73 (12)C56—C57—C58—C590.1 (2)
C18—B1—C30—C31157.09 (11)C57—C58—C59—C541.1 (2)
C12—B1—C30—C3180.05 (14)C55—C54—C59—C581.32 (18)
C24—B1—C30—C3140.25 (16)B2—C54—C59—C58176.33 (12)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C42–C47, C48–C53, C18–C23, C36–C41 and C54–C59 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.87 (2)2.18 (2)2.914 (2)142 (2)
C11—H11A···O2ii0.982.483.368 (2)151
C10—H10C···Cg10.982.823.693 (1)150
C8—H8B···Cg20.992.823.510 (2)127
C3—H3A···Cg3iii0.982.793.359 (1)118
C2—H2C···Cg4iv0.982.613.453 (1)144
C2—H2A···Cg5iv0.982.593.393 (1)140
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H28N42+·2C24H20B·2C3H6O
Mr970.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)19.8630 (5), 18.3212 (4), 16.5349 (3)
β (°) 110.763 (1)
V3)5626.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.23 × 0.16 × 0.12
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25784, 13908, 10017
Rint0.030
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.02
No. of reflections13908
No. of parameters674
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C42–C47, C48–C53, C18–C23, C36–C41 and C54–C59 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.87 (2)2.18 (2)2.914 (2)142 (2)
C11—H11A···O2ii0.982.483.368 (2)151
C10—H10C···Cg10.982.823.693 (1)150
C8—H8B···Cg20.992.823.510 (2)127
C3—H3A···Cg3iii0.982.793.359 (1)118
C2—H2C···Cg4iv0.982.613.453 (1)144
C2—H2A···Cg5iv0.982.593.393 (1)140
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

The author thanks Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for the data collection.

References

First citationBehrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. & Mason, S. A. (2000). Acta Cryst. B56, 254–260.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T., Schreurs, A. M. M., Lutz, M. & Kroon, J. (2001). New J. Chem. 25, 174–178.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiritiris, I. (2013). Acta Cryst. E69, o292.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B, 67, 685–698.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o337-o338
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds