organic compounds
rac-3,3,3-Trifluorolactic acid
aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za
The title compound (systematic name: rac-3,3,3-trifluoro-2-hydroxypropanoic acid), C3H3F3O3, is a fluorinated derivative of lactic acid. The O=C—C—O(H) torsion angle is 13.26 (15)°. In the crystal, O—H⋯O hydrogen bonds and C—H⋯O contacts connect the molecules into sheets perpendicular to the c axis.
Related literature
For the et al. (2007). For background to chelate ligands, see: Gade (1998). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).
of 2-hydroxy-2-(trifluoromethyl)proprionic acid, see: SoloshonokExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813003097/zl2532sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: 10.1107/S1600536813003097/zl2532Isup2.cdx
Structure factors: contains datablock I. DOI: 10.1107/S1600536813003097/zl2532Isup3.hkl
Supporting information file. DOI: 10.1107/S1600536813003097/zl2532Isup4.cml
The compound was obtained from Alfa Aesar. Crystals suitable for the diffraction study were taken directly from the provided product.
The carbon-bound H atom of the methine group was placed in a calculated position (C–H 1.00 Å) and was included in the
in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the hydroxyl groups were allowed to rotate with a fixed angle around the C–O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(O).Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C3H3F3O3 | F(000) = 576 |
Mr = 144.05 | Dx = 1.806 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 4117 reflections |
a = 10.586 (3) Å | θ = 3.5–28.2° |
b = 9.248 (3) Å | µ = 0.22 mm−1 |
c = 10.826 (3) Å | T = 200 K |
V = 1059.9 (5) Å3 | Platelet, colourless |
Z = 8 | 0.40 × 0.30 × 0.25 mm |
Bruker APEXII CCD diffractometer | 1309 independent reflections |
Radiation source: fine-focus sealed tube | 1133 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ϕ and ω scans | θmax = 28.3°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −14→10 |
Tmin = 0.892, Tmax = 1.000 | k = −12→12 |
9450 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0349P)2 + 0.3452P] where P = (Fo2 + 2Fc2)/3 |
1309 reflections | (Δ/σ)max < 0.001 |
82 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C3H3F3O3 | V = 1059.9 (5) Å3 |
Mr = 144.05 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 10.586 (3) Å | µ = 0.22 mm−1 |
b = 9.248 (3) Å | T = 200 K |
c = 10.826 (3) Å | 0.40 × 0.30 × 0.25 mm |
Bruker APEXII CCD diffractometer | 1309 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1133 reflections with I > 2σ(I) |
Tmin = 0.892, Tmax = 1.000 | Rint = 0.017 |
9450 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.31 e Å−3 |
1309 reflections | Δρmin = −0.19 e Å−3 |
82 parameters |
x | y | z | Uiso*/Ueq | ||
F1 | 0.07491 (11) | 0.07334 (11) | 0.26362 (9) | 0.0698 (3) | |
F2 | 0.24046 (9) | 0.20543 (13) | 0.26938 (9) | 0.0670 (3) | |
F3 | 0.06121 (11) | 0.29936 (12) | 0.22550 (8) | 0.0661 (3) | |
O3 | 0.16058 (7) | 0.35907 (8) | 0.46617 (9) | 0.0346 (2) | |
H12 | 0.1084 | 0.4270 | 0.4731 | 0.052* | |
O1 | −0.10270 (7) | 0.12077 (8) | 0.45966 (9) | 0.0361 (2) | |
H111 | −0.1790 | 0.1327 | 0.4782 | 0.054* | |
O2 | −0.09203 (7) | 0.35985 (8) | 0.48706 (9) | 0.0348 (2) | |
C1 | −0.04410 (10) | 0.24515 (11) | 0.46318 (10) | 0.0256 (2) | |
C2 | 0.09691 (10) | 0.23181 (11) | 0.43390 (10) | 0.0260 (2) | |
H12A | 0.1328 | 0.1499 | 0.4829 | 0.031* | |
C3 | 0.11835 (13) | 0.20173 (15) | 0.29671 (12) | 0.0398 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0956 (8) | 0.0594 (6) | 0.0543 (6) | −0.0146 (5) | 0.0143 (5) | −0.0292 (5) |
F2 | 0.0451 (5) | 0.1003 (8) | 0.0556 (5) | 0.0055 (5) | 0.0226 (4) | −0.0110 (5) |
F3 | 0.0827 (7) | 0.0809 (7) | 0.0348 (5) | 0.0224 (6) | 0.0003 (4) | 0.0123 (4) |
O3 | 0.0212 (4) | 0.0258 (4) | 0.0568 (5) | 0.0024 (3) | −0.0003 (3) | −0.0067 (4) |
O1 | 0.0232 (4) | 0.0251 (4) | 0.0600 (6) | 0.0008 (3) | 0.0000 (4) | −0.0019 (4) |
O2 | 0.0271 (4) | 0.0252 (4) | 0.0523 (5) | 0.0034 (3) | 0.0029 (4) | −0.0034 (3) |
C1 | 0.0227 (5) | 0.0257 (5) | 0.0285 (5) | 0.0020 (4) | −0.0023 (4) | 0.0008 (4) |
C2 | 0.0229 (5) | 0.0237 (5) | 0.0315 (5) | 0.0026 (4) | −0.0003 (4) | −0.0006 (4) |
C3 | 0.0393 (7) | 0.0437 (7) | 0.0362 (6) | 0.0038 (5) | 0.0053 (5) | −0.0030 (5) |
F1—C3 | 1.3227 (17) | O1—H111 | 0.8399 |
F2—C3 | 1.3265 (17) | O2—C1 | 1.2040 (13) |
F3—C3 | 1.3325 (17) | C1—C2 | 1.5310 (15) |
O3—C2 | 1.4005 (13) | C2—C3 | 1.5280 (17) |
O3—H12 | 0.8400 | C2—H12A | 1.0000 |
O1—C1 | 1.3074 (13) | ||
C2—O3—H12 | 109.5 | C3—C2—H12A | 108.8 |
C1—O1—H111 | 109.5 | C1—C2—H12A | 108.8 |
O2—C1—O1 | 125.56 (10) | F1—C3—F2 | 107.55 (12) |
O2—C1—C2 | 121.76 (10) | F1—C3—F3 | 107.08 (12) |
O1—C1—C2 | 112.68 (9) | F2—C3—F3 | 107.21 (12) |
O3—C2—C3 | 108.91 (10) | F1—C3—C2 | 112.03 (11) |
O3—C2—C1 | 110.48 (8) | F2—C3—C2 | 110.91 (11) |
C3—C2—C1 | 111.15 (9) | F3—C3—C2 | 111.81 (11) |
O3—C2—H12A | 108.8 | ||
O2—C1—C2—O3 | 13.26 (15) | C1—C2—C3—F1 | −66.42 (14) |
O1—C1—C2—O3 | −166.37 (9) | O3—C2—C3—F2 | 51.46 (14) |
O2—C1—C2—C3 | −107.76 (12) | C1—C2—C3—F2 | 173.40 (11) |
O1—C1—C2—C3 | 72.61 (12) | O3—C2—C3—F3 | −68.14 (13) |
O3—C2—C3—F1 | 171.65 (10) | C1—C2—C3—F3 | 53.80 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H12···O2i | 0.84 | 2.03 | 2.7459 (13) | 143 |
O1—H111···O3ii | 0.84 | 1.80 | 2.6381 (13) | 172 |
C2—H12A···O1iii | 1.00 | 2.60 | 3.4588 (16) | 144 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1/2, −y+1/2, −z+1; (iii) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C3H3F3O3 |
Mr | 144.05 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 200 |
a, b, c (Å) | 10.586 (3), 9.248 (3), 10.826 (3) |
V (Å3) | 1059.9 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.40 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.892, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9450, 1309, 1133 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.081, 1.06 |
No. of reflections | 1309 |
No. of parameters | 82 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.19 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H12···O2i | 0.84 | 2.03 | 2.7459 (13) | 143.4 |
O1—H111···O3ii | 0.84 | 1.80 | 2.6381 (13) | 172.4 |
C2—H12A···O1iii | 1.00 | 2.60 | 3.4588 (16) | 144.1 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1/2, −y+1/2, −z+1; (iii) −x, −y, −z+1. |
Acknowledgements
The authors thank Mr Ulf Breddemann of McMaster University, Canada, for helpful discussions.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gade, L. H. (1998). Koordinationschemie, 1. Auflage, Weinheim: Wiley-VCH. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soloshonok, V. A., Ueki, H., Yasumoto, M., Mekala, S., Hirschi, J. S. & Singleton, D. A. (2007). J. Am. Chem. Soc. 129, 12112–12113. Web of Science CSD CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chelate ligands have found widespread use in coordination chemistry due to the increased stability of coordination compounds they can form in comparison to monodentate ligands (Gade, 1998). Hydroxycarboxylic acids are particularily interesting in this aspect as they offer two hydroxyl groups of markedly different acidity as potential bonding partners. Upon varying the substitution pattern on the hydrocarbon backbone, the acidity of the respective hydroxyl groups can be finetuned over a wide range and they may, thus, serve as probes for establishing the rules in which pKa range coordination to various central atoms can be observed. To allow for comparisons of metrical parameters of the carboxylic-acid-derived ligand in envisioned coordination compounds, the crystal and molecular structure of 3,3,3-trifluorolactic acid as the free ligand was determined. The crystal structure of a related compound, 2-hydroxy-2-(trifluoromethyl)proprionic acid, is apparent in the literature (Soloshonok et al., 2007).
The carboxyl group is nearly in plane with the C–OH moiety. The respective O═C–C–O(H) dihedral angle was found at 13.26 (15) ° only (Fig. 1).
In the crystal, intra- as well as intermolecular hydrogen bonds are apparent. The former ones appear between the alcoholic hydroxyl group as donor and the ketonic oxygen atom as acceptor and, therefore, might be the cause for the small dihedral angle discussed above. The intermolecular hydrogen bonds are supported by the carboxyl group as donor and the alcoholic hydroxyl group as acceptor. In addition, C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the corresponding atoms can be observed. These stem from the hydrogen atom of the methine group and apply the oxygen atom of the carboxylic hydroxyl group as acceptor. Metrical parameters as well as information about the symmetry of these hydrogen bonds is summarized in Table 1. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptors for the hydrogen bonds are C11(5) and R22(10) on the unary level while the C–H···O contacts necessitate a R22(8) descriptor on the same level. In total, the intermolecular interactions connect the molecules to planes perpendicular to the crystallographic c axis (Fig. 2).
The packing of the title compound in the crystal structure is shown in Figure 3.