organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(1-Hy­dr­oxy­naphthalen-2-yl)-3-(2,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

(Received 9 February 2013; accepted 12 March 2013; online 16 March 2013)

In the title mol­ecule, C22H20O5, the C=C bond of the central enone group adopts an E conformation. The dihedral angle formed by the benzene ring and the naphthalene ring system is 12.6 (4)°. The hy­droxy group attached to the naphthalene ring is involved in an intra­molecular O—H⋯O hydrogen bond. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into chains along [010]. In addition, ππ stacking inter­actions are present, with centroid–centroid distances of 3.6648 (15) and 3.8661 (15) Å between the benzene and two naphthalene rings.

Related literature

For the synthesis and biological properties of chalcone deriv­atives, see: Shenvi et al. (2013[Shenvi, S., Kumar, K., Hatti, K. S., Rijesh, K., Diwakar, L. & Reddy, G. C. (2013). Eur. J. Med. Chem. 62, 435-442.]); Hsieh et al. (2012[Hsieh, C.-T., Hsieh, T.-J., El-Shazly, M., Chuang, D.-W., Tsai, Y.-H., Yen, C.-T., Wu, S.-F., Wu, Y.-C. & Chang, F.-R. (2012). Bioorg. Med. Chem. Lett. 22, 3912-3915.]); Sharma et al. (2012[Sharma, V., Singh, G., Kaur, H., Saxena, A. K. & Ishar, M. P. S. (2012). Bioorg. Med. Chem. Lett. 22, 6343-6346.]); Sashidhara et al. (2011[Sashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480-4484.]); Aponte et al. (2010[Aponte, J. C., Castillo, D., Estevez, Y., Gonzalez, G., Arevalo, J., Hammonda, G. B. & Sauvain, M. (2010). Bioorg. Med. Chem. Lett. 20, 100-103.]); Hans et al. (2010[Hans, R. H., Guantai, E. M., Lategan, C., Smith, P. J., Wanc, B., Franzblau, S. G., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 942-944.]) Jo et al. (2012[Jo, G., Sung, S. H., Lee, Y., Kim, B.-G., Yoon, J. W., Lee, H. K., Ji, S. Y., Koh, D., Ahn, J. H. & Lim, Y. (2012). Bull. Korean Chem. Soc. 33, 3841-3844.]). For related structures, see: Park et al. (2013[Park, D. H., Ramkumar, V. & Parthiban, P. (2013). Acta Cryst. E69, o177.]); Fadzillah et al. (2012[Fadzillah, S. M. H., Ngaini, Z., Hussain, H., Razak, I. A. & Asik, S. I. J. (2012). Acta Cryst. E68, o2911-o2912.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20O5

  • Mr = 364.38

  • Monoclinic, P 21 /n

  • a = 9.7919 (12) Å

  • b = 13.7559 (18) Å

  • c = 13.2761 (17) Å

  • β = 96.165 (3)°

  • V = 1777.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.36 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.979

  • 12937 measured reflections

  • 4420 independent reflections

  • 2550 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.187

  • S = 1.10

  • 4420 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1 0.84 1.74 2.490 (2) 147
C21—H21⋯O3i 0.95 2.43 3.362 (3) 166
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Varieties of chalcones have been synthesized and isolated from natural sources, which have been used for evaluation of their pharmaceutical applications. They have showed diverse biological activities including anticancer (Shenvi et al. 2013), antidiabetic (Hsieh et al. 2012), antimicrobial (Sharma et al. 2012), anti-Leishmania (Aponte et al. 2010), anti-inflammatory (Sashidhara et al. 2011) and antitubercular (Hans et al. 2010). In continuation of our research interest to develop benzochalcone derivatives which show broad range of biological activities (Jo et al. 2012), titled compound was synthesized and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. Chalcone is a family of flavonoid class which has a general C6—C3—C6 carbon framework and that of C3 is an α,β-unsaturated carbonyl (enone) group. One of the C6 is substituted with C10 (naphthalene ring) in the benzochalcone, where the titled compound belongs to. The C2C3 bond of the central enone group adopts a trans configuration. The dihedral angle formed by the naphthalene ring system and the benzene ring is 12.6 (4)°. Due to an intramolecular O—H···O hydrogen bond between the hydroxy group of the naphthalene ring and carbonyl (CO) group, the C1O1 bond [1.262 (3) Å] is slightly longer than the standard value (Allen et al. 1987). In the crystal, weak C—H···O hydrogen bonds link the molecules into one-dimensional chains along [010] (Fig. 2). In addition, intermolecular ππ stacking interactions are present with Cg1···Cg2(1-x, 2-y, -z) = 3.6648 (15)Å and Cg1···Cg3(1-x, 2-y, 1-z) = 3.8661 (15)Å, where Cg1, Cg2 and Cg3 are the centroids of the C4/C5/C7/C8/C10/C12, C13/C14/C15/C20/C21/C22 and C15/C16/C17/C18/C19/C20 rings.

Examples of structures of substituted prop-2-en-1-one compounds have been published (Park et al., 2013; Fadzillah et al., 2012).

Related literature top

For the synthesis and biological properties of chalcone derivatives, see: Shenvi et al. (2013); Hsieh et al. (2012); Sharma et al. (2012); Sashidhara et al. (2011); Aponte et al. (2010); Hans et al. (2010) Jo et al. (2012). For related structures, see: Park et al. (2013); Fadzillah et al. (2012). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a solution of 2,4,5-trimethoxybenzaldehyde (196 mg, 1 mmol) in 10 ml of ethanol was added 1-hydroxy-2-acetonaphthone (186 mg, 1 mmol) and the temperature was adjusted to around 275–276 K in an ice-bath. To the cooled reaction mixture 1 ml of 50% aqueous KOH solution was added, and the reaction mixture was stirred at room temperature for 20 h. This mixture was poured into iced water (30 ml) was acidified (pH = 3) with 6 N HCl solution to give a precipitate. Filtration and washing with water afforded crude solid of the title compound (180 mg, 48%). Recrystallization of the solid from ethanol gave yellow colored crystals (mp: 471–472 K).

Refinement top

The H atoms were placed in calculated positions with C—H = 0.95 and 0.98 Å or O—H = 0.84 Å, and refined in a riding-model approximation with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(Cmethyl) and Uiso(H) = 1.5 Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids drawn at the 50% probability level. The dashed line indicates an intramolecular hydrogen bond.
[Figure 2] Fig. 2. Part of the crystal structure with O—H···O and weak intermolecular C—H···O hydrogen bonds shown as dashed lines.
(E)-1-(1-Hydroxynaphthalen-2-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C22H20O5F(000) = 768
Mr = 364.38Dx = 1.361 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3912 reflections
a = 9.7919 (12) Åθ = 2.5–28.2°
b = 13.7559 (18) ŵ = 0.10 mm1
c = 13.2761 (17) ÅT = 200 K
β = 96.165 (3)°Block, red
V = 1777.9 (4) Å30.36 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4420 independent reflections
Radiation source: fine-focus sealed tube2550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1312
Tmin = 0.966, Tmax = 0.979k = 1718
12937 measured reflectionsl = 1217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0702P)2 + 1.1296P]
where P = (Fo2 + 2Fc2)/3
4420 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C22H20O5V = 1777.9 (4) Å3
Mr = 364.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7919 (12) ŵ = 0.10 mm1
b = 13.7559 (18) ÅT = 200 K
c = 13.2761 (17) Å0.36 × 0.26 × 0.22 mm
β = 96.165 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4420 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2550 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.979Rint = 0.032
12937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.10Δρmax = 0.31 e Å3
4420 reflectionsΔρmin = 0.40 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3412 (2)0.91056 (17)0.00657 (18)0.0317 (5)
O10.22475 (17)0.94630 (13)0.02165 (13)0.0404 (4)
C20.4142 (3)0.93980 (17)0.10242 (18)0.0345 (5)
H20.50430.91580.12100.041*
C30.3569 (2)1.00024 (17)0.16584 (18)0.0338 (5)
H30.26621.02120.14390.041*
C40.4152 (2)1.03710 (17)0.26228 (18)0.0320 (5)
C50.3361 (2)1.09604 (17)0.32022 (18)0.0336 (5)
O20.20245 (17)1.11129 (14)0.27987 (14)0.0450 (5)
C60.1146 (3)1.1618 (2)0.3405 (2)0.0518 (7)
H6A0.11321.12820.40540.078*
H6B0.02141.16390.30520.078*
H6C0.14851.22830.35250.078*
C70.3909 (2)1.13575 (18)0.41125 (19)0.0356 (6)
H70.33561.17600.44860.043*
C80.5259 (2)1.11725 (18)0.44823 (18)0.0346 (5)
O30.59060 (18)1.15449 (14)0.53450 (14)0.0454 (5)
C90.5169 (3)1.2224 (2)0.5899 (2)0.0528 (8)
H9A0.48291.27570.54510.079*
H9B0.57821.24850.64670.079*
H9C0.43911.18950.61590.079*
C100.6075 (2)1.05692 (17)0.39235 (19)0.0341 (5)
O40.74055 (18)1.04546 (13)0.43608 (13)0.0437 (5)
C110.8242 (3)0.9805 (2)0.3870 (2)0.0468 (7)
H11A0.78240.91570.38400.070*
H11B0.91560.97730.42500.070*
H11C0.83231.00370.31810.070*
C120.5528 (2)1.01849 (17)0.30251 (18)0.0336 (5)
H120.60840.97800.26570.040*
C130.3995 (2)0.83943 (16)0.05961 (17)0.0286 (5)
C140.3299 (2)0.81550 (16)0.15212 (17)0.0293 (5)
O50.20698 (16)0.85556 (12)0.18480 (13)0.0366 (4)
H50.18580.89660.14220.055*
C150.3832 (2)0.74664 (17)0.21887 (17)0.0306 (5)
C160.3122 (3)0.72114 (18)0.31235 (19)0.0373 (6)
H160.22700.75160.33400.045*
C170.3644 (3)0.65246 (19)0.3731 (2)0.0435 (6)
H170.31510.63510.43610.052*
C180.4906 (3)0.6082 (2)0.3416 (2)0.0441 (6)
H180.52630.56060.38350.053*
C190.5629 (3)0.63260 (19)0.2518 (2)0.0418 (6)
H190.64910.60250.23250.050*
C200.5116 (2)0.70218 (17)0.18647 (18)0.0331 (5)
C210.5822 (3)0.72680 (19)0.0915 (2)0.0389 (6)
H210.66790.69690.07020.047*
C220.5289 (2)0.79279 (18)0.03049 (18)0.0361 (6)
H220.57830.80840.03290.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (13)0.0287 (12)0.0309 (12)0.0018 (10)0.0048 (10)0.0028 (9)
O10.0385 (10)0.0434 (10)0.0383 (10)0.0090 (8)0.0004 (8)0.0037 (8)
C20.0345 (13)0.0341 (13)0.0343 (13)0.0023 (10)0.0006 (10)0.0004 (10)
C30.0358 (12)0.0315 (12)0.0336 (13)0.0068 (10)0.0009 (10)0.0007 (10)
C40.0352 (12)0.0284 (12)0.0326 (12)0.0061 (9)0.0044 (10)0.0005 (9)
C50.0302 (12)0.0354 (13)0.0349 (13)0.0018 (10)0.0022 (10)0.0005 (10)
O20.0339 (9)0.0566 (12)0.0439 (11)0.0061 (8)0.0016 (8)0.0103 (9)
C60.0406 (15)0.067 (2)0.0478 (16)0.0113 (14)0.0061 (13)0.0046 (15)
C70.0331 (12)0.0386 (13)0.0360 (13)0.0004 (10)0.0081 (10)0.0055 (10)
C80.0353 (13)0.0353 (13)0.0332 (13)0.0057 (10)0.0033 (10)0.0069 (10)
O30.0399 (10)0.0559 (12)0.0397 (10)0.0011 (9)0.0007 (8)0.0197 (9)
C90.0534 (17)0.0592 (18)0.0459 (16)0.0023 (14)0.0053 (13)0.0252 (14)
C100.0292 (12)0.0365 (13)0.0361 (13)0.0016 (10)0.0011 (10)0.0015 (10)
O40.0367 (10)0.0513 (11)0.0419 (10)0.0065 (8)0.0013 (8)0.0126 (8)
C110.0413 (14)0.0516 (17)0.0468 (16)0.0090 (13)0.0008 (12)0.0044 (13)
C120.0351 (12)0.0319 (12)0.0339 (13)0.0026 (10)0.0049 (10)0.0021 (10)
C130.0261 (11)0.0303 (11)0.0289 (12)0.0017 (9)0.0006 (9)0.0032 (9)
C140.0266 (11)0.0270 (11)0.0337 (12)0.0021 (9)0.0008 (9)0.0041 (9)
O50.0327 (9)0.0403 (10)0.0361 (9)0.0061 (7)0.0004 (7)0.0037 (7)
C150.0304 (12)0.0290 (12)0.0326 (12)0.0027 (9)0.0036 (9)0.0005 (9)
C160.0351 (13)0.0382 (14)0.0376 (14)0.0025 (10)0.0001 (10)0.0033 (11)
C170.0514 (16)0.0403 (15)0.0387 (14)0.0050 (12)0.0043 (12)0.0099 (11)
C180.0446 (15)0.0415 (15)0.0467 (16)0.0035 (12)0.0083 (12)0.0089 (12)
C190.0380 (14)0.0378 (14)0.0499 (16)0.0058 (11)0.0061 (12)0.0014 (12)
C200.0326 (12)0.0306 (12)0.0363 (13)0.0013 (10)0.0047 (10)0.0019 (10)
C210.0309 (12)0.0419 (14)0.0432 (14)0.0042 (11)0.0000 (11)0.0009 (11)
C220.0341 (13)0.0394 (14)0.0340 (13)0.0008 (10)0.0004 (10)0.0005 (10)
Geometric parameters (Å, º) top
C1—O11.262 (3)O4—C111.417 (3)
C1—C21.448 (3)C11—H11A0.9800
C1—C131.470 (3)C11—H11B0.9800
C2—C31.347 (3)C11—H11C0.9800
C2—H20.9500C12—H120.9500
C3—C41.437 (3)C13—C141.379 (3)
C3—H30.9500C13—C221.436 (3)
C4—C51.406 (3)C14—O51.352 (3)
C4—C121.418 (3)C14—C151.433 (3)
C5—O21.376 (3)O5—H50.8400
C5—C71.381 (3)C15—C161.401 (3)
O2—C61.421 (3)C15—C201.422 (3)
C6—H6A0.9800C16—C171.376 (4)
C6—H6B0.9800C16—H160.9500
C6—H6C0.9800C17—C181.400 (4)
C7—C81.383 (3)C17—H170.9500
C7—H70.9500C18—C191.362 (4)
C8—O31.349 (3)C18—H180.9500
C8—C101.416 (3)C19—C201.419 (3)
O3—C91.432 (3)C19—H190.9500
C9—H9A0.9800C20—C211.412 (3)
C9—H9B0.9800C21—C221.358 (3)
C9—H9C0.9800C21—H210.9500
C10—C121.361 (3)C22—H220.9500
C10—O41.378 (3)
O1—C1—C2119.8 (2)O4—C11—H11B109.5
O1—C1—C13118.6 (2)H11A—C11—H11B109.5
C2—C1—C13121.6 (2)O4—C11—H11C109.5
C3—C2—C1121.5 (2)H11A—C11—H11C109.5
C3—C2—H2119.3H11B—C11—H11C109.5
C1—C2—H2119.3C10—C12—C4121.9 (2)
C2—C3—C4128.5 (2)C10—C12—H12119.1
C2—C3—H3115.8C4—C12—H12119.1
C4—C3—H3115.8C14—C13—C22118.1 (2)
C5—C4—C12117.1 (2)C14—C13—C1120.3 (2)
C5—C4—C3120.1 (2)C22—C13—C1121.6 (2)
C12—C4—C3122.8 (2)O5—C14—C13121.7 (2)
O2—C5—C7123.0 (2)O5—C14—C15116.21 (19)
O2—C5—C4115.6 (2)C13—C14—C15122.0 (2)
C7—C5—C4121.4 (2)C14—O5—H5109.5
C5—O2—C6117.6 (2)C16—C15—C20119.9 (2)
O2—C6—H6A109.5C16—C15—C14122.3 (2)
O2—C6—H6B109.5C20—C15—C14117.8 (2)
H6A—C6—H6B109.5C17—C16—C15120.7 (2)
O2—C6—H6C109.5C17—C16—H16119.6
H6A—C6—H6C109.5C15—C16—H16119.6
H6B—C6—H6C109.5C16—C17—C18119.7 (2)
C5—C7—C8120.3 (2)C16—C17—H17120.1
C5—C7—H7119.9C18—C17—H17120.1
C8—C7—H7119.9C19—C18—C17120.9 (2)
O3—C8—C7125.1 (2)C19—C18—H18119.6
O3—C8—C10115.3 (2)C17—C18—H18119.6
C7—C8—C10119.6 (2)C18—C19—C20121.1 (2)
C8—O3—C9117.9 (2)C18—C19—H19119.4
O3—C9—H9A109.5C20—C19—H19119.4
O3—C9—H9B109.5C21—C20—C19122.4 (2)
H9A—C9—H9B109.5C21—C20—C15119.9 (2)
O3—C9—H9C109.5C19—C20—C15117.7 (2)
H9A—C9—H9C109.5C22—C21—C20120.7 (2)
H9B—C9—H9C109.5C22—C21—H21119.7
C12—C10—O4126.2 (2)C20—C21—H21119.7
C12—C10—C8119.7 (2)C21—C22—C13121.5 (2)
O4—C10—C8114.1 (2)C21—C22—H22119.2
C10—O4—C11116.46 (19)C13—C22—H22119.2
O4—C11—H11A109.5
O1—C1—C2—C34.1 (4)C2—C1—C13—C14177.7 (2)
C13—C1—C2—C3175.7 (2)O1—C1—C13—C22177.4 (2)
C1—C2—C3—C4179.1 (2)C2—C1—C13—C222.5 (3)
C2—C3—C4—C5176.7 (2)C22—C13—C14—O5179.5 (2)
C2—C3—C4—C124.6 (4)C1—C13—C14—O50.3 (3)
C12—C4—C5—O2178.9 (2)C22—C13—C14—C150.3 (3)
C3—C4—C5—O22.3 (3)C1—C13—C14—C15179.9 (2)
C12—C4—C5—C71.4 (3)O5—C14—C15—C160.6 (3)
C3—C4—C5—C7177.4 (2)C13—C14—C15—C16179.2 (2)
C7—C5—O2—C66.7 (4)O5—C14—C15—C20179.3 (2)
C4—C5—O2—C6173.6 (2)C13—C14—C15—C200.5 (3)
O2—C5—C7—C8179.6 (2)C20—C15—C16—C170.8 (4)
C4—C5—C7—C80.7 (4)C14—C15—C16—C17177.9 (2)
C5—C7—C8—O3178.0 (2)C15—C16—C17—C180.6 (4)
C5—C7—C8—C100.3 (4)C16—C17—C18—C190.3 (4)
C7—C8—O3—C93.4 (4)C17—C18—C19—C201.1 (4)
C10—C8—O3—C9174.9 (2)C18—C19—C20—C21178.1 (3)
O3—C8—C10—C12177.8 (2)C18—C19—C20—C151.0 (4)
C7—C8—C10—C120.6 (4)C16—C15—C20—C21179.0 (2)
O3—C8—C10—O40.5 (3)C14—C15—C20—C210.3 (3)
C7—C8—C10—O4178.9 (2)C16—C15—C20—C190.0 (3)
C12—C10—O4—C116.0 (4)C14—C15—C20—C19178.8 (2)
C8—C10—O4—C11175.8 (2)C19—C20—C21—C22179.1 (2)
O4—C10—C12—C4178.0 (2)C15—C20—C21—C220.1 (4)
C8—C10—C12—C40.1 (4)C20—C21—C22—C130.2 (4)
C5—C4—C12—C101.1 (3)C14—C13—C22—C210.1 (4)
C3—C4—C12—C10177.6 (2)C1—C13—C22—C21179.7 (2)
O1—C1—C13—C142.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10.841.742.490 (2)147
C21—H21···O3i0.952.433.362 (3)166
Symmetry code: (i) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H20O5
Mr364.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)9.7919 (12), 13.7559 (18), 13.2761 (17)
β (°) 96.165 (3)
V3)1777.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.36 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.966, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
12937, 4420, 2550
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.187, 1.10
No. of reflections4420
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.40

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10.841.742.490 (2)147
C21—H21···O3i0.952.433.362 (3)166
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The author acknowledges financial support from Dongduk Women's University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAponte, J. C., Castillo, D., Estevez, Y., Gonzalez, G., Arevalo, J., Hammonda, G. B. & Sauvain, M. (2010). Bioorg. Med. Chem. Lett. 20, 100–103.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFadzillah, S. M. H., Ngaini, Z., Hussain, H., Razak, I. A. & Asik, S. I. J. (2012). Acta Cryst. E68, o2911–o2912.  CSD CrossRef IUCr Journals Google Scholar
First citationHans, R. H., Guantai, E. M., Lategan, C., Smith, P. J., Wanc, B., Franzblau, S. G., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 942–944.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHsieh, C.-T., Hsieh, T.-J., El-Shazly, M., Chuang, D.-W., Tsai, Y.-H., Yen, C.-T., Wu, S.-F., Wu, Y.-C. & Chang, F.-R. (2012). Bioorg. Med. Chem. Lett. 22, 3912–3915.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJo, G., Sung, S. H., Lee, Y., Kim, B.-G., Yoon, J. W., Lee, H. K., Ji, S. Y., Koh, D., Ahn, J. H. & Lim, Y. (2012). Bull. Korean Chem. Soc. 33, 3841–3844.  CrossRef CAS Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2013). Acta Cryst. E69, o177.  CSD CrossRef IUCr Journals Google Scholar
First citationSashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480–4484.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSharma, V., Singh, G., Kaur, H., Saxena, A. K. & Ishar, M. P. S. (2012). Bioorg. Med. Chem. Lett. 22, 6343–6346.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShenvi, S., Kumar, K., Hatti, K. S., Rijesh, K., Diwakar, L. & Reddy, G. C. (2013). Eur. J. Med. Chem. 62, 435–442.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds