organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o506-o507

Ethyl 2,6-bis­­(4-chloro­phen­yl)-4-(4-fluoro­anilino)-1-(4-fluoro­phen­yl)-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bLaboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati University, Santiniketan 731 235, West Bengal, India
*Correspondence e-mail: brahmg2001@yahoo.co.in, vivek_gupta2k2@hotmail.com

(Received 15 February 2013; accepted 4 March 2013; online 9 March 2013)

In the title compound, C32H26Cl2F2N2O2, the tetra­hydro­pyridine ring adopts a distorted boat conformation. The chlorophenyl rings are inclined to one another by 55.2 (1)°, while for the fluorophenyl rings the dihedral angle is 80.7 (1)°. The amino group and carbonyl O atom are involved in an intra­molecular N—H⋯O hydrogen bond. In the crystal, weak C—H⋯O, C—H⋯F and C—H⋯Cl inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For the biological activity of functionalized piperidine derivatives, see: Zhou et al. (2007[Zhou, Y., Gregor, V. E., Ayida, B. K., Winters, G. C., Sun, Z., Murphy, D., Haley, G., Bailey, D., Froelich, J. M., Fish, S., Webber, S. E., Hermann, T. & Wall, D. (2007). Bioorg. Med. Chem. Lett. 17, 1206-1210.]); Misra et al. (2009[Misra, M., Pandey, S. K., Pandey, V. P., Pandey, J., Tripathi, R. & Tripathi, R. P. (2009). Bioorg. Med. Chem. 17, 625-633.]); Bin et al. (2001[Bin, H., Crider, A. M. & Stables, J. P. (2001). Eur. J. Med. Chem. 36, 265-286.]); Agrawal & Somani (2009[Agrawal, A. G. & Somani, R. R. (2009). Mini Rev. Med. Chem. 9, 638-52.]); Dekus et al. (2007[Dekus, J. A., Epperson, J. R., Charles, P. S., Joseph, A. C., Deextraze, P., Qian- Cutrone, J., Gao, Q., Ma, B., Beno, B. R., Mattson, G. K., Molski, T. F., Krause, R. G., Taber, M. T., Lodge, N. J. & Mattson, R. (2007). Bioorg. Med. Chem. Lett. 17, 3099-3104.]). For general applications of densely functionalized piperidines, see: Targum et al. (1995[Targum, S., Zboroaski, J., Henry, M., Schmitz, P., Sebree, T. & Wallin, B. (1995). Eur. Neuropsychopharmacol. 5, 4-71.]); Schotte et al. (1996[Schotte, A., Janssen, P. F. M., Gommeren, W., Luyten, W. H. M. L., van Gompel, P., Lasage, A. S., De Loore, K. & Leysen, J. E. (1996). Psychopharmacology, 124, 57-73.]). For general background to functionalized piperidiones, see: Desai et al. (1992[Desai, M. C., Lefkowitz, S. L., Thadeio, P. F., Longo, K. P. & Srider, R. M. (1992). J. Med. Chem. 35, 4911-4913.]); Pinder (1992[Pinder, A. R. (1992). Nat. Prod. Rep. 9, 491-504.]); Watson et al. (2000[Watson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679-3681.]); Breman et al. (2001[Breman, J. G., Egan, A. & Keusch, G. T. (2001). Am. J. Trop. Med. Hyg. 64, iv-vii.]); Kamei et al. (2005[Kamei, K., Maeda, N., Katswagi-Ogino, R., Koyamaa, M., Nakajima, M., Tatsuoka, T., Ohno, T. & Inoue, T. (2005). Bioorg. Med. Chem. Lett. 15, 2990-2993.]). For related structures, see: Sambyal et al. (2011[Sambyal, A., Bamezai, R. K., Razdan, T. K. & Gupta, V. K. (2011). J. Chem. Crystallogr. 41, 868-873.]); Brahmachari & Das (2012[Brahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479-1484.]); Anthal et al. (2013[Anthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013). Acta Cryst. E69, o299-o300.]). For asymmetry parameters, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C32H26Cl2F2N2O2

  • Mr = 579.45

  • Triclinic, [P \overline 1]

  • a = 10.3074 (7) Å

  • b = 10.7942 (5) Å

  • c = 13.9432 (10) Å

  • α = 103.554 (5)°

  • β = 106.487 (6)°

  • γ = 96.846 (5)°

  • V = 1417.12 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.881, Tmax = 1.000

  • 10718 measured reflections

  • 5248 independent reflections

  • 2169 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.133

  • S = 0.93

  • 5248 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.01 2.674 (4) 134
C9—H9C⋯Cl1i 0.96 2.67 3.523 (5) 148
C11—H11⋯O1ii 0.93 2.52 3.250 (5) 135
C18—H18⋯F1iii 0.93 2.52 3.259 (5) 137
C20—H20⋯F2iv 0.93 2.48 3.411 (4) 179
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+1; (iii) x-1, y-1, z; (iv) -x-1, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Functionalized piperidines are found to constitute a very important core in numerous natural products (Desai et al., 1992; Pinder, 1992), synthetic pharmaceuticals (Breman et al., 2001; Watson et al., 2000), and a wide variety of biologically active compounds. In particular, 1,4-disubstituted piperidine scaffolds find useful applications as established drugs (Targum et al., 1995; Schotte et al.,1996), and they exhibit a wide range of pharmacological activities including antibacterial (Zhou et al., 2007), antimalarial (Misra et al., 2009), anticonvulsant, anti-inflammatory (Bin et al., 2001), and enzyme inhibitory activity (Agrawal & Somani, 2009; Dekus et al., 2007). Moreover a large number of compounds bearing piperidine scaffold have entered into preclinical and clinical trials over the last few years (Kamei et al., 2005). Hence, investigation of the structural features of biologically relevant piperidine derivatives is demanding. In continuation of our structural studies of densely functionalized piperidines (Sambyal et al., 2011; Brahmachari & Das,2012; Anthal et al., 2013), we present the crystal structure of ethyl 2,6-bis(4-chlorophenyl)-1-(4-fluorophenyl)-4-((4-fluorophenyl)amino)-1,2,5,6- tetrahydropyridine-3-carboxylate, determined by X-ray diffraction. In the title compound (Fig.1), the tetrahydropyridine ring adopts a distorted boat conformation with asymmetry parameters [ΔCs(C2)=15.9] and [ΔCs(C3—C4)=21.8] (Duax et al., 1975). The dihedral angle between chloro-substituted phenyl rings and fluoro-substituted phenyl rings are 55.2 (1)° and 80.7 (1)°. An intramolecular hydrogen bond N2—H2···O1 is found. This interaction leads to the formation of a pseudo-six membered ring comprising atoms O1, C7, C3, C4, N2 and H2.Weak intermolecular C—H···O, C—H···F and C—H···Cl interactions join molecules into a three-dimensional network (Table 1). A packing view down the a axis is shown in Fig.2.

Related literature top

For the biological activity of functionalized piperidine derivatives, see: Zhou et al. (2007); Misra et al. (2009); Bin et al. (2001); Agrawal & Somani (2009); Dekus et al. (2007). For general applications of densely functionalized piperidines, see: Targum et al. (1995); Schotte et al. (1996). For general background to functionalized piperidiones, see: Desai et al. (1992); Pinder (1992); Watson et al. (2000); Breman et al. (2001); Kamei et al. (2005). For related structures, see: Sambyal et al. (2011); Brahmachari & Das (2012); Anthal et al. (2013). For asymmetry parameters, see: Duax & Norton (1975).

Experimental top

An oven-dried screw cap reaction tube was charged with a magnetic stir bar, 4-fluoroaniline (2 mmol), ethyl acetoacetate (1 mmol) and Bi(NO3)3.5H2O (10 mol%) in 4 ml e thanol; the mixture was stirred at room temperature for 20 min, and afterthen 4-chlorobenzaldehyde (2 mmol) was added to the reaction mixture and stirring was continued up to 18 h to complete the reaction (monitored by TLC). On completion of the reaction, a thick white precipitate was obtained. The solid residue was filtered off and washed with cold ethanol-water. The solid mass was dissolved in hot ethyl acetate-ethanol mixture and filtered off when bismuth salt separated out; the filtrate on standing afforded white crystals of the title compound, characterized by elemental analyses and spectral studies including FT—IR, 1H-NMR, and 13C-NMR. For X-ray study, white single crystals of title compound (mp 219–222 °C) were prepared by further recrystallization by slow evaporation from ethanol-ethyl acetate-water solution.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with C—H distances of 0.93–0.98 Å and N—H distance of 0.86 Å; and with Uiso(H) = 1.2Ueq(C/N), except for the methyl groups where Uiso(H) = 1.5Ueq(C),. The poor diffraction quality of the crystals prevented the obtention of a better data set with a larger Nobs/Ntotal reflection ratio.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis.
Ethyl 2,6-bis(4-chlorophenyl)-4-(4-fluoroanilino)-1-(4-fluorophenyl)-1,2,5,6-tetrahydropyridine-3-carboxylate top
Crystal data top
C32H26Cl2F2N2O2Z = 2
Mr = 579.45F(000) = 600
Triclinic, P1Dx = 1.358 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3074 (7) ÅCell parameters from 3771 reflections
b = 10.7942 (5) Åθ = 3.5–29.0°
c = 13.9432 (10) ŵ = 0.28 mm1
α = 103.554 (5)°T = 293 K
β = 106.487 (6)°Plate, white
γ = 96.846 (5)°0.30 × 0.20 × 0.15 mm
V = 1417.12 (15) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5248 independent reflections
Radiation source: fine-focus sealed tube2169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 16.1049 pixels mm-1θmax = 25.5°, θmin = 3.5°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1312
Tmin = 0.881, Tmax = 1.000l = 1616
10718 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.029P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
5248 reflectionsΔρmax = 0.28 e Å3
363 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0046 (8)
Crystal data top
C32H26Cl2F2N2O2γ = 96.846 (5)°
Mr = 579.45V = 1417.12 (15) Å3
Triclinic, P1Z = 2
a = 10.3074 (7) ÅMo Kα radiation
b = 10.7942 (5) ŵ = 0.28 mm1
c = 13.9432 (10) ÅT = 293 K
α = 103.554 (5)°0.30 × 0.20 × 0.15 mm
β = 106.487 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5248 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2169 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 1.000Rint = 0.057
10718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 0.93Δρmax = 0.28 e Å3
5248 reflectionsΔρmin = 0.26 e Å3
363 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.08233 (15)0.65481 (11)0.39945 (11)0.1144 (6)
Cl20.37360 (13)0.49679 (12)0.06250 (10)0.0983 (5)
F10.7899 (3)0.5548 (3)0.2179 (2)0.1196 (11)
F20.4881 (2)0.1674 (2)0.0483 (2)0.0936 (9)
O10.4233 (3)0.1728 (3)0.5195 (2)0.0778 (9)
O20.2475 (3)0.0078 (3)0.4821 (2)0.0726 (9)
N10.0762 (3)0.0160 (2)0.1940 (2)0.0424 (7)
N20.4685 (3)0.2445 (3)0.3589 (2)0.0608 (9)
H20.49060.25990.42550.073*
C20.1699 (3)0.0372 (3)0.2673 (2)0.0421 (9)
H2A0.11790.06840.30880.051*
C30.2907 (4)0.0690 (3)0.3426 (3)0.0466 (10)
C40.3580 (4)0.1479 (3)0.3018 (3)0.0436 (9)
C50.2907 (4)0.1349 (3)0.1887 (3)0.0517 (10)
H5A0.30690.05700.14640.062*
H5B0.32970.20920.17080.062*
C60.1341 (4)0.1273 (3)0.1672 (3)0.0451 (10)
H60.09100.11360.09220.054*
C70.3280 (4)0.0887 (4)0.4538 (3)0.0576 (11)
C80.2793 (6)0.0239 (5)0.5942 (3)0.117 (2)
H8A0.37240.01070.62290.141*
H8B0.27520.11170.62880.141*
C90.1875 (6)0.0635 (5)0.6127 (4)0.133 (2)
H9A0.09650.04530.59010.200*
H9B0.21430.05590.68600.200*
H9C0.18740.15020.57500.200*
C100.2196 (3)0.1527 (3)0.2129 (3)0.0431 (9)
C110.3258 (4)0.1993 (3)0.2690 (3)0.0543 (11)
H110.36610.15890.34000.065*
C120.3748 (4)0.3026 (4)0.2244 (3)0.0618 (12)
H120.44730.33110.26450.074*
C130.3155 (4)0.3634 (3)0.1200 (3)0.0593 (11)
C140.2075 (4)0.3228 (4)0.0607 (3)0.0593 (11)
H140.16650.36510.00990.071*
C150.1605 (4)0.2175 (3)0.1079 (3)0.0501 (10)
H150.08730.18960.06790.060*
C160.0649 (4)0.0309 (3)0.1574 (2)0.0378 (9)
C170.1231 (4)0.1478 (3)0.1688 (3)0.0465 (10)
H170.06550.19670.20090.056*
C180.2644 (4)0.1928 (3)0.1334 (3)0.0536 (10)
H180.30170.26960.14360.064*
C190.3481 (4)0.1232 (4)0.0837 (3)0.0565 (11)
C200.2965 (4)0.0084 (4)0.0697 (3)0.0510 (10)
H200.35570.03840.03650.061*
C210.1567 (4)0.0368 (3)0.1052 (2)0.0414 (9)
H210.12150.11400.09450.050*
C220.1100 (4)0.2574 (3)0.2241 (3)0.0455 (9)
C230.0850 (4)0.2775 (4)0.3179 (3)0.0568 (11)
H230.07460.20770.34530.068*
C240.0751 (4)0.3986 (4)0.3724 (3)0.0686 (13)
H240.06040.41090.43650.082*
C250.0871 (4)0.4993 (4)0.3305 (4)0.0681 (13)
C260.1069 (4)0.4825 (4)0.2349 (4)0.0714 (13)
H260.11260.55180.20620.086*
C270.1183 (4)0.3608 (3)0.1825 (3)0.0593 (11)
H270.13170.34840.11800.071*
C280.5515 (4)0.3228 (4)0.3226 (3)0.0526 (10)
C290.5940 (4)0.4541 (4)0.3719 (3)0.0732 (13)
H290.56650.49090.42830.088*
C300.6777 (5)0.5317 (4)0.3375 (4)0.0826 (16)
H300.70900.62000.37150.099*
C310.7127 (5)0.4760 (5)0.2533 (5)0.0763 (14)
C320.6739 (4)0.3486 (5)0.2043 (4)0.0796 (14)
H320.70080.31330.14720.095*
C330.5942 (4)0.2713 (4)0.2393 (3)0.0679 (12)
H330.56830.18240.20640.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1493 (13)0.0584 (8)0.1198 (12)0.0113 (8)0.0527 (10)0.0108 (7)
Cl20.1033 (10)0.0923 (9)0.1124 (10)0.0470 (8)0.0568 (8)0.0128 (7)
F10.094 (2)0.123 (2)0.158 (3)0.0029 (18)0.0331 (19)0.092 (2)
F20.0473 (16)0.0999 (19)0.126 (2)0.0009 (14)0.0046 (15)0.0539 (16)
O10.080 (2)0.082 (2)0.0453 (17)0.0184 (17)0.0000 (16)0.0110 (15)
O20.094 (2)0.0760 (19)0.0384 (16)0.0104 (17)0.0182 (16)0.0153 (14)
N10.0394 (19)0.0418 (17)0.0472 (19)0.0047 (15)0.0096 (15)0.0216 (14)
N20.059 (2)0.068 (2)0.0428 (19)0.0132 (19)0.0114 (17)0.0100 (16)
C20.041 (2)0.050 (2)0.038 (2)0.0097 (18)0.0127 (17)0.0156 (16)
C30.048 (2)0.056 (2)0.034 (2)0.008 (2)0.0128 (18)0.0104 (17)
C40.042 (2)0.056 (2)0.033 (2)0.0074 (19)0.0128 (18)0.0122 (17)
C50.054 (3)0.060 (2)0.045 (2)0.010 (2)0.0209 (19)0.0164 (18)
C60.048 (2)0.051 (2)0.036 (2)0.0056 (19)0.0142 (18)0.0134 (17)
C70.066 (3)0.061 (3)0.049 (3)0.010 (2)0.019 (2)0.019 (2)
C80.174 (6)0.116 (4)0.035 (3)0.050 (4)0.028 (3)0.017 (3)
C90.223 (7)0.105 (4)0.069 (4)0.015 (4)0.070 (4)0.014 (3)
C100.039 (2)0.047 (2)0.041 (2)0.0086 (18)0.0096 (18)0.0126 (17)
C110.055 (3)0.051 (2)0.051 (2)0.021 (2)0.008 (2)0.0102 (19)
C120.047 (3)0.065 (3)0.071 (3)0.022 (2)0.010 (2)0.020 (2)
C130.060 (3)0.059 (3)0.072 (3)0.023 (2)0.038 (2)0.015 (2)
C140.061 (3)0.069 (3)0.047 (2)0.012 (2)0.024 (2)0.007 (2)
C150.047 (2)0.058 (2)0.050 (2)0.014 (2)0.0183 (19)0.0178 (19)
C160.045 (2)0.0358 (19)0.0293 (19)0.0044 (18)0.0107 (17)0.0060 (15)
C170.043 (2)0.043 (2)0.051 (2)0.0158 (19)0.0120 (19)0.0102 (17)
C180.058 (3)0.048 (2)0.053 (2)0.004 (2)0.012 (2)0.0206 (18)
C190.038 (3)0.066 (3)0.056 (3)0.003 (2)0.005 (2)0.015 (2)
C200.047 (3)0.059 (3)0.046 (2)0.014 (2)0.007 (2)0.0209 (19)
C210.045 (2)0.039 (2)0.041 (2)0.0075 (18)0.0148 (18)0.0139 (16)
C220.048 (2)0.044 (2)0.048 (2)0.0048 (18)0.0212 (19)0.0164 (18)
C230.064 (3)0.059 (3)0.055 (3)0.010 (2)0.024 (2)0.024 (2)
C240.092 (4)0.066 (3)0.049 (3)0.019 (3)0.028 (2)0.010 (2)
C250.077 (3)0.048 (3)0.071 (3)0.003 (2)0.025 (3)0.003 (2)
C260.076 (3)0.052 (3)0.092 (4)0.003 (2)0.035 (3)0.026 (2)
C270.071 (3)0.048 (2)0.061 (3)0.001 (2)0.029 (2)0.016 (2)
C280.043 (2)0.054 (3)0.061 (3)0.007 (2)0.015 (2)0.019 (2)
C290.068 (3)0.059 (3)0.084 (3)0.008 (3)0.024 (3)0.007 (2)
C300.074 (4)0.052 (3)0.104 (4)0.004 (3)0.014 (3)0.017 (3)
C310.058 (3)0.075 (4)0.108 (4)0.005 (3)0.022 (3)0.058 (3)
C320.068 (3)0.075 (3)0.101 (4)0.005 (3)0.038 (3)0.026 (3)
C330.065 (3)0.057 (3)0.092 (4)0.004 (2)0.043 (3)0.022 (2)
Geometric parameters (Å, º) top
Cl1—C251.742 (4)C12—H120.9300
Cl2—C131.735 (3)C13—C141.371 (5)
F1—C311.364 (5)C14—C151.386 (4)
F2—C191.369 (4)C14—H140.9300
O1—C71.230 (4)C15—H150.9300
O2—C71.335 (5)C16—C171.395 (4)
O2—C81.466 (5)C16—C211.407 (4)
N1—C161.384 (4)C17—C181.383 (4)
N1—C61.450 (4)C17—H170.9300
N1—C21.468 (4)C18—C191.359 (4)
N2—C41.353 (4)C18—H180.9300
N2—C281.406 (5)C19—C201.368 (5)
N2—H20.8600C20—C211.369 (4)
C2—C31.523 (4)C20—H200.9300
C2—C101.524 (4)C21—H210.9300
C2—H2A0.9800C22—C231.377 (5)
C3—C41.356 (5)C22—C271.377 (5)
C3—C71.444 (5)C23—C241.381 (4)
C4—C51.497 (4)C23—H230.9300
C5—C61.545 (4)C24—C251.358 (5)
C5—H5A0.9700C24—H240.9300
C5—H5B0.9700C25—C261.379 (5)
C6—C221.529 (4)C26—C271.382 (4)
C6—H60.9800C26—H260.9300
C8—C91.376 (6)C27—H270.9300
C8—H8A0.9700C28—C291.377 (5)
C8—H8B0.9700C28—C331.378 (5)
C9—H9A0.9600C29—C301.388 (6)
C9—H9B0.9600C29—H290.9300
C9—H9C0.9600C30—C311.353 (6)
C10—C111.376 (4)C30—H300.9300
C10—C151.385 (4)C31—C321.338 (5)
C11—C121.368 (4)C32—C331.366 (5)
C11—H110.9300C32—H320.9300
C12—C131.369 (5)C33—H330.9300
C7—O2—C8116.7 (3)C13—C14—H14120.6
C16—N1—C6120.2 (3)C15—C14—H14120.6
C16—N1—C2121.6 (3)C10—C15—C14121.7 (3)
C6—N1—C2118.1 (3)C10—C15—H15119.1
C4—N2—C28127.9 (3)C14—C15—H15119.1
C4—N2—H2116.0N1—C16—C17121.9 (3)
C28—N2—H2116.0N1—C16—C21121.3 (3)
N1—C2—C3110.7 (3)C17—C16—C21116.8 (3)
N1—C2—C10112.9 (3)C18—C17—C16121.5 (3)
C3—C2—C10111.4 (3)C18—C17—H17119.3
N1—C2—H2A107.2C16—C17—H17119.3
C3—C2—H2A107.2C19—C18—C17119.1 (4)
C10—C2—H2A107.2C19—C18—H18120.5
C4—C3—C7121.2 (3)C17—C18—H18120.5
C4—C3—C2117.7 (3)C18—C19—C20121.8 (4)
C7—C3—C2121.1 (4)C18—C19—F2119.4 (4)
N2—C4—C3124.2 (3)C20—C19—F2118.8 (3)
N2—C4—C5119.8 (3)C19—C20—C21119.2 (3)
C3—C4—C5115.5 (3)C19—C20—H20120.4
C4—C5—C6108.9 (3)C21—C20—H20120.4
C4—C5—H5A109.9C20—C21—C16121.6 (3)
C6—C5—H5A109.9C20—C21—H21119.2
C4—C5—H5B109.9C16—C21—H21119.2
C6—C5—H5B109.9C23—C22—C27118.1 (3)
H5A—C5—H5B108.3C23—C22—C6122.6 (3)
N1—C6—C22114.4 (3)C27—C22—C6119.2 (3)
N1—C6—C5109.7 (3)C22—C23—C24121.8 (4)
C22—C6—C5109.1 (3)C22—C23—H23119.1
N1—C6—H6107.8C24—C23—H23119.1
C22—C6—H6107.8C25—C24—C23118.7 (4)
C5—C6—H6107.8C25—C24—H24120.7
O1—C7—O2121.0 (4)C23—C24—H24120.7
O1—C7—C3124.9 (4)C24—C25—C26121.5 (4)
O2—C7—C3114.1 (4)C24—C25—Cl1120.0 (4)
C9—C8—O2110.8 (4)C26—C25—Cl1118.5 (4)
C9—C8—H8A109.5C25—C26—C27118.7 (4)
O2—C8—H8A109.5C25—C26—H26120.7
C9—C8—H8B109.5C27—C26—H26120.7
O2—C8—H8B109.5C22—C27—C26121.2 (4)
H8A—C8—H8B108.1C22—C27—H27119.4
C8—C9—H9A109.5C26—C27—H27119.4
C8—C9—H9B109.5C29—C28—C33118.5 (4)
H9A—C9—H9B109.5C29—C28—N2119.9 (4)
C8—C9—H9C109.5C33—C28—N2121.6 (4)
H9A—C9—H9C109.5C28—C29—C30120.2 (4)
H9B—C9—H9C109.5C28—C29—H29119.9
C11—C10—C15116.8 (3)C30—C29—H29119.9
C11—C10—C2120.1 (3)C31—C30—C29118.5 (4)
C15—C10—C2123.1 (3)C31—C30—H30120.8
C12—C11—C10122.7 (3)C29—C30—H30120.8
C12—C11—H11118.7C32—C31—C30122.7 (5)
C10—C11—H11118.7C32—C31—F1119.7 (5)
C11—C12—C13119.1 (3)C30—C31—F1117.6 (5)
C11—C12—H12120.4C31—C32—C33119.1 (5)
C13—C12—H12120.4C31—C32—H32120.5
C12—C13—C14120.7 (3)C33—C32—H32120.5
C12—C13—Cl2119.9 (3)C32—C33—C28121.0 (4)
C14—C13—Cl2119.4 (3)C32—C33—H33119.5
C13—C14—C15118.9 (3)C28—C33—H33119.5
C16—N1—C2—C3145.8 (3)C13—C14—C15—C100.0 (6)
C6—N1—C2—C329.1 (4)C6—N1—C16—C17170.8 (3)
C16—N1—C2—C1088.6 (4)C2—N1—C16—C1714.4 (5)
C6—N1—C2—C1096.4 (3)C6—N1—C16—C218.2 (5)
N1—C2—C3—C448.0 (4)C2—N1—C16—C21166.6 (3)
C10—C2—C3—C478.4 (4)N1—C16—C17—C18178.9 (3)
N1—C2—C3—C7129.1 (3)C21—C16—C17—C182.1 (5)
C10—C2—C3—C7104.5 (4)C16—C17—C18—C192.0 (5)
C28—N2—C4—C3173.8 (3)C17—C18—C19—C201.6 (6)
C28—N2—C4—C514.8 (5)C17—C18—C19—F2179.9 (3)
C7—C3—C4—N24.2 (5)C18—C19—C20—C211.1 (6)
C2—C3—C4—N2178.7 (3)F2—C19—C20—C21179.7 (3)
C7—C3—C4—C5167.5 (3)C19—C20—C21—C161.2 (5)
C2—C3—C4—C59.6 (4)N1—C16—C21—C20179.3 (3)
N2—C4—C5—C6128.3 (3)C17—C16—C21—C201.7 (5)
C3—C4—C5—C643.7 (4)N1—C6—C22—C2323.6 (5)
C16—N1—C6—C2273.7 (4)C5—C6—C22—C2399.8 (4)
C2—N1—C6—C22101.3 (3)N1—C6—C22—C27158.9 (3)
C16—N1—C6—C5163.3 (3)C5—C6—C22—C2777.8 (4)
C2—N1—C6—C521.7 (4)C27—C22—C23—C243.2 (6)
C4—C5—C6—N159.6 (4)C6—C22—C23—C24174.4 (3)
C4—C5—C6—C2266.5 (4)C22—C23—C24—C251.6 (6)
C8—O2—C7—O10.5 (6)C23—C24—C25—C260.9 (7)
C8—O2—C7—C3179.5 (4)C23—C24—C25—Cl1177.3 (3)
C4—C3—C7—O12.5 (6)C24—C25—C26—C271.7 (7)
C2—C3—C7—O1179.5 (3)Cl1—C25—C26—C27176.6 (3)
C4—C3—C7—O2176.5 (3)C23—C22—C27—C262.3 (6)
C2—C3—C7—O20.5 (5)C6—C22—C27—C26175.4 (3)
C7—O2—C8—C9178.9 (4)C25—C26—C27—C220.1 (6)
N1—C2—C10—C11168.6 (3)C4—N2—C28—C29138.4 (4)
C3—C2—C10—C1143.4 (5)C4—N2—C28—C3342.7 (6)
N1—C2—C10—C1512.9 (5)C33—C28—C29—C300.1 (6)
C3—C2—C10—C15138.2 (4)N2—C28—C29—C30179.0 (4)
C15—C10—C11—C121.4 (6)C28—C29—C30—C311.9 (7)
C2—C10—C11—C12180.0 (4)C29—C30—C31—C322.4 (7)
C10—C11—C12—C130.5 (6)C29—C30—C31—F1177.2 (4)
C11—C12—C13—C140.7 (6)C30—C31—C32—C330.9 (7)
C11—C12—C13—Cl2178.7 (3)F1—C31—C32—C33178.7 (4)
C12—C13—C14—C151.0 (6)C31—C32—C33—C281.2 (7)
Cl2—C13—C14—C15179.0 (3)C29—C28—C33—C321.7 (6)
C11—C10—C15—C141.1 (6)N2—C28—C33—C32179.4 (4)
C2—C10—C15—C14179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.012.674 (4)134
C9—H9C···Cl1i0.962.673.523 (5)148
C11—H11···O1ii0.932.523.250 (5)135
C18—H18···F1iii0.932.523.259 (5)137
C20—H20···F2iv0.932.483.411 (4)179
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x1, y1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC32H26Cl2F2N2O2
Mr579.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.3074 (7), 10.7942 (5), 13.9432 (10)
α, β, γ (°)103.554 (5), 106.487 (6), 96.846 (5)
V3)1417.12 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.881, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10718, 5248, 2169
Rint0.057
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.133, 0.93
No. of reflections5248
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.012.674 (4)134
C9—H9C···Cl1i0.962.673.523 (5)148
C11—H11···O1ii0.932.523.250 (5)135
C18—H18···F1iii0.932.523.259 (5)137
C20—H20···F2iv0.932.483.411 (4)179
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x1, y1, z; (iv) x1, y, z.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. GB is thankful to the CSIR, New Delhi, for financial support [grant No. 02 (110)/12/EMR-II]. VKG is thankful to the University of Jammu, Jammu for financial support.

References

First citationAgrawal, A. G. & Somani, R. R. (2009). Mini Rev. Med. Chem. 9, 638–52.  CrossRef PubMed CAS Google Scholar
First citationAnthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013). Acta Cryst. E69, o299–o300.  CSD CrossRef IUCr Journals Google Scholar
First citationBin, H., Crider, A. M. & Stables, J. P. (2001). Eur. J. Med. Chem. 36, 265–286.  Web of Science PubMed Google Scholar
First citationBrahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479–1484.  Web of Science CSD CrossRef CAS Google Scholar
First citationBreman, J. G., Egan, A. & Keusch, G. T. (2001). Am. J. Trop. Med. Hyg. 64, iv–vii.  Web of Science PubMed CAS Google Scholar
First citationDekus, J. A., Epperson, J. R., Charles, P. S., Joseph, A. C., Deextraze, P., Qian- Cutrone, J., Gao, Q., Ma, B., Beno, B. R., Mattson, G. K., Molski, T. F., Krause, R. G., Taber, M. T., Lodge, N. J. & Mattson, R. (2007). Bioorg. Med. Chem. Lett. 17, 3099–3104.  Web of Science PubMed Google Scholar
First citationDesai, M. C., Lefkowitz, S. L., Thadeio, P. F., Longo, K. P. & Srider, R. M. (1992). J. Med. Chem. 35, 4911–4913.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKamei, K., Maeda, N., Katswagi-Ogino, R., Koyamaa, M., Nakajima, M., Tatsuoka, T., Ohno, T. & Inoue, T. (2005). Bioorg. Med. Chem. Lett. 15, 2990–2993.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMisra, M., Pandey, S. K., Pandey, V. P., Pandey, J., Tripathi, R. & Tripathi, R. P. (2009). Bioorg. Med. Chem. 17, 625–633.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPinder, A. R. (1992). Nat. Prod. Rep. 9, 491–504.  CrossRef CAS Web of Science Google Scholar
First citationSambyal, A., Bamezai, R. K., Razdan, T. K. & Gupta, V. K. (2011). J. Chem. Crystallogr. 41, 868–873.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchotte, A., Janssen, P. F. M., Gommeren, W., Luyten, W. H. M. L., van Gompel, P., Lasage, A. S., De Loore, K. & Leysen, J. E. (1996). Psychopharmacology, 124, 57–73.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTargum, S., Zboroaski, J., Henry, M., Schmitz, P., Sebree, T. & Wallin, B. (1995). Eur. Neuropsychopharmacol. 5, 4–71.  CrossRef Google Scholar
First citationWatson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679–3681.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, Y., Gregor, V. E., Ayida, B. K., Winters, G. C., Sun, Z., Murphy, D., Haley, G., Bailey, D., Froelich, J. M., Fish, S., Webber, S. E., Hermann, T. & Wall, D. (2007). Bioorg. Med. Chem. Lett. 17, 1206–1210.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o506-o507
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds