organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-2-vinyl­pyridinium phosphate

aDepartment of Inorganic Chemistry, University of Madras, Chennai 600 025, India, and bDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 1 February 2013; accepted 27 February 2013; online 6 March 2013)

In the title salt, C8H10N+·H2PO4, the cation is essentially planar (r.m.s. deviation = 0.063 Å). In the crystal, the phosphate anions form inversion R22(8) dimers via pairs of O—H⋯O hydrogen bonds. These dimers are further linked by pairs of O—H⋯O hydrogen bonds, also enclosing R22(8) loops, forming chains running along [001]. The cations are bonded to the anions via N—H⋯O hydrogen bonds and C—H⋯O contacts.

Related literature

For the biological activity of 4-amino­pyridine, see: Judge & Bever (2006[Judge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224-259.]); Schwid et al. (1997[Schwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817-821.]); Strupp et al. (2004[Strupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623-1625.]). For related structures, see: Anderson et al. (2005[Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350-o1353.]); Fun et al. (2009[Fun, H.-K., John, J., Jebas, S. R. & Balasubramanian, T. (2009). Acta Cryst. E65, o765-o766.]); Sabari et al. (2012[Sabari, V., Kalaiselvi, G., Balasubramanian, S. & Aravindhan, S. (2012). Acta Cryst. E68, o2937.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N+·H2PO4

  • Mr = 217.16

  • Monoclinic, P 21 /c

  • a = 7.7089 (6) Å

  • b = 16.3668 (13) Å

  • c = 8.0649 (6) Å

  • β = 109.689 (4)°

  • V = 958.06 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.947

  • 8970 measured reflections

  • 2362 independent reflections

  • 2052 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.114

  • S = 1.08

  • 2362 reflections

  • 136 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.83 2.6558 (18) 160
O3—H3A⋯O1i 0.89 (1) 1.72 (1) 2.5995 (18) 173 (3)
O4—H4A⋯O2ii 0.89 (1) 1.72 (1) 2.6002 (17) 170 (3)
C1—H1A⋯O1iii 0.93 2.48 3.172 (2) 131
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4-Aminopyridine (Fampridine) is used clinically in Lambert-Eaton myastheni syndrome and multiple sclerosis because by blocking potassium channels it prolongs action potentials thereby increasing transmitter release at the neuromuscular junction (Judge & Bever et al., 2006; Schwid et al., 1997; Strupp et al., 2004).

In the title compound (Fig. 1), the bond lengths and angles have normal values. The asymmetric unit is composed of one 3-methyl 2-vinyl pyridinium cation and one phosphate anion. The C1—N1—C5 angle in the pyridinium ring is widened to 123.35 (2) °, compared to 115.25 (13)° in 4-aminopyridine (Anderson et al., 2005), 121.20 (15) in 1-(2-carboxyethyl)-5-ethyl-2-methylpyridinium (Sabari et al., 2012) and 120.7 (2)° in Aminopyridinium (Fun et al., 2009). The 3-methyl 2-vinyl pyridinium ring is essentially planar with the maximum deviation from planarity being 0.008 (2) Å for atom C5. The sum of the bond angles around the N1 atom (359.89°) indicates sp2 hybridization.

The phosphate anions form centrosymmetric R22(8) dimers via O—H···O hydrogen bonds. These dimers are further linked to chains running along the c axis. The cations are boned to the anions via N—H···O hydrogen bonds and C—H···O contacts.

Related literature top

For the biological activity of 4-aminopyridine, see: Judge & Bever (2006); Schwid et al. (1997); Strupp et al. (2004). For related structures, see: Anderson et al. (2005); Fun et al. (2009); Sabari et al. (2012).

Experimental top

1 g (0.0084 mol) of freshly distilled 3-methyl 2-vinyl pyridine was dissolved in 15 ml of diethyl ether at -10°C under nitrogen atmosphere. To the above solution, 0.5 ml of H3PO4 and 10 ml of diethyl ether mixture was added in drops with continuous stirring. The product obtained as a white solid was filtered, washed with diethyl ether and dried under vacuum, the product was recrystallized from methanol. Yield: 100% (1.82 g).

Refinement top

All H atoms were found in a difference Fourier map and those bonded to O were refined with a distance restraint of 0.90 (1)Å. The other H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H ranging from 0.93 to 0.96 Å, and with Uiso = 1.2–1.5Ueq (C,N). The methyl group was allowed to rotate but not to tip.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of one molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view of the crystal packing. Hydrogen bonds are drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
3-Methyl-2-vinylpyridinium phosphate top
Crystal data top
C8H10N+·H2O4PF(000) = 456
Mr = 217.16Dx = 1.506 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8834 reflections
a = 7.7089 (6) Åθ = 2.1–31.2°
b = 16.3668 (13) ŵ = 0.28 mm1
c = 8.0649 (6) ÅT = 293 K
β = 109.689 (4)°Block, colourless
V = 958.06 (13) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2362 independent reflections
Radiation source: fine-focus sealed tube2052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scanθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker 2008)
h = 1010
Tmin = 0.922, Tmax = 0.947k = 2117
8970 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.2803P]
where P = (Fo2 + 2Fc2)/3
2362 reflections(Δ/σ)max = 0.003
136 parametersΔρmax = 0.28 e Å3
3 restraintsΔρmin = 0.33 e Å3
Crystal data top
C8H10N+·H2O4PV = 958.06 (13) Å3
Mr = 217.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7089 (6) ŵ = 0.28 mm1
b = 16.3668 (13) ÅT = 293 K
c = 8.0649 (6) Å0.30 × 0.30 × 0.20 mm
β = 109.689 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2362 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2008)
2052 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.947Rint = 0.026
8970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.28 e Å3
2362 reflectionsΔρmin = 0.33 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5293 (2)0.35216 (10)0.9141 (2)0.0394 (4)
H1A0.53180.40890.92250.047*
C20.6707 (3)0.30687 (12)1.0253 (3)0.0446 (4)
H20.77060.33221.10820.054*
C30.6608 (2)0.22259 (11)1.0112 (3)0.0420 (4)
H30.75460.19111.08700.050*
C40.5138 (2)0.18417 (10)0.8859 (2)0.0349 (4)
C50.3751 (2)0.23315 (9)0.7738 (2)0.0304 (3)
C60.2165 (2)0.19908 (11)0.6336 (2)0.0404 (4)
H60.19730.14320.63820.048*
C70.1003 (3)0.23843 (13)0.5042 (3)0.0514 (5)
H7A0.11310.29450.49340.062*
H7B0.00400.21060.42210.062*
C80.5063 (3)0.09263 (11)0.8732 (3)0.0545 (5)
H8A0.39810.07320.89440.082*
H8B0.61390.06990.95940.082*
H8C0.50200.07620.75760.082*
N10.38850 (18)0.31502 (8)0.79424 (17)0.0319 (3)
H10.30150.34480.72630.038*
O10.20750 (17)0.49478 (7)0.95492 (15)0.0374 (3)
O20.12761 (18)0.42554 (7)0.65535 (15)0.0414 (3)
O30.11397 (18)0.44558 (8)0.78857 (17)0.0460 (3)
O40.0217 (2)0.56754 (7)0.68547 (16)0.0446 (3)
P10.06935 (6)0.48168 (2)0.77599 (5)0.03024 (15)
H3A0.143 (4)0.4698 (16)0.875 (3)0.082 (9)*
H4A0.032 (4)0.5639 (19)0.5694 (14)0.093 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0427 (9)0.0273 (8)0.0485 (10)0.0054 (6)0.0156 (8)0.0067 (7)
C20.0361 (9)0.0435 (10)0.0475 (10)0.0078 (7)0.0052 (8)0.0079 (8)
C30.0358 (9)0.0410 (10)0.0443 (10)0.0033 (7)0.0070 (8)0.0046 (8)
C40.0373 (8)0.0276 (8)0.0396 (9)0.0001 (6)0.0127 (7)0.0030 (6)
C50.0335 (8)0.0259 (7)0.0333 (8)0.0020 (6)0.0132 (6)0.0008 (6)
C60.0433 (9)0.0311 (8)0.0416 (9)0.0076 (7)0.0075 (8)0.0013 (7)
C70.0503 (11)0.0437 (10)0.0529 (11)0.0008 (8)0.0077 (9)0.0073 (9)
C80.0614 (12)0.0271 (9)0.0652 (13)0.0024 (8)0.0085 (10)0.0084 (9)
N10.0333 (7)0.0259 (7)0.0360 (7)0.0012 (5)0.0113 (6)0.0007 (5)
O10.0367 (6)0.0395 (6)0.0296 (6)0.0004 (5)0.0028 (5)0.0013 (5)
O20.0573 (8)0.0318 (6)0.0308 (6)0.0166 (5)0.0092 (5)0.0004 (5)
O30.0444 (7)0.0518 (8)0.0377 (7)0.0129 (6)0.0083 (6)0.0120 (6)
O40.0703 (9)0.0243 (6)0.0330 (6)0.0110 (5)0.0093 (6)0.0008 (5)
P10.0375 (2)0.0230 (2)0.0260 (2)0.00340 (14)0.00509 (17)0.00119 (14)
Geometric parameters (Å, º) top
C1—N11.333 (2)C7—H7A0.9300
C1—C21.372 (3)C7—H7B0.9300
C1—H1A0.9300C8—H8A0.9600
C2—C31.384 (3)C8—H8B0.9600
C2—H20.9300C8—H8C0.9600
C3—C41.389 (2)N1—H10.8600
C3—H30.9300O1—P11.4923 (12)
C4—C51.397 (2)O2—P11.5122 (12)
C4—C81.502 (2)O3—P11.5663 (13)
C5—N11.350 (2)O3—H3A0.889 (10)
C5—C61.467 (2)O4—P11.5691 (12)
C6—C71.295 (3)O4—H4A0.889 (10)
C6—H60.9300
N1—C1—C2120.08 (16)C6—C7—H7B120.0
N1—C1—H1A120.0H7A—C7—H7B120.0
C2—C1—H1A120.0C4—C8—H8A109.5
C1—C2—C3118.37 (17)C4—C8—H8B109.5
C1—C2—H2120.8H8A—C8—H8B109.5
C3—C2—H2120.8C4—C8—H8C109.5
C2—C3—C4121.31 (17)H8A—C8—H8C109.5
C2—C3—H3119.3H8B—C8—H8C109.5
C4—C3—H3119.3C1—N1—C5123.48 (14)
C3—C4—C5118.04 (15)C1—N1—H1118.3
C3—C4—C8120.31 (16)C5—N1—H1118.3
C5—C4—C8121.65 (16)P1—O3—H3A110.5 (19)
N1—C5—C4118.69 (14)P1—O4—H4A113 (2)
N1—C5—C6118.75 (14)O1—P1—O2116.08 (7)
C4—C5—C6122.55 (15)O1—P1—O3110.92 (7)
C7—C6—C5127.06 (17)O2—P1—O3106.41 (8)
C7—C6—H6116.5O1—P1—O4107.46 (7)
C5—C6—H6116.5O2—P1—O4108.58 (7)
C6—C7—H7A120.0O3—P1—O4107.04 (8)
N1—C1—C2—C31.1 (3)C8—C4—C5—C61.8 (2)
C1—C2—C3—C41.1 (3)N1—C5—C6—C713.1 (3)
C2—C3—C4—C50.1 (3)C4—C5—C6—C7166.36 (19)
C2—C3—C4—C8179.99 (18)C2—C1—N1—C50.2 (2)
C3—C4—C5—N11.3 (2)C4—C5—N1—C11.3 (2)
C8—C4—C5—N1178.81 (16)C6—C5—N1—C1178.12 (15)
C3—C4—C5—C6178.18 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.832.6558 (18)160
O3—H3A···O1i0.89 (1)1.72 (1)2.5995 (18)173 (3)
O4—H4A···O2ii0.89 (1)1.72 (1)2.6002 (17)170 (3)
C1—H1A···O1iii0.932.483.172 (2)131
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC8H10N+·H2O4P
Mr217.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.7089 (6), 16.3668 (13), 8.0649 (6)
β (°) 109.689 (4)
V3)958.06 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2008)
Tmin, Tmax0.922, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
8970, 2362, 2052
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.114, 1.08
No. of reflections2362
No. of parameters136
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.33

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.832.6558 (18)159.9
O3—H3A···O1i0.889 (10)1.715 (11)2.5995 (18)173 (3)
O4—H4A···O2ii0.889 (10)1.720 (11)2.6002 (17)170 (3)
C1—H1A···O1iii0.932.483.172 (2)131.1
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+2.
 

Acknowledgements

SA and VS thank the UGC, India, for financial support. The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationAnderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., John, J., Jebas, S. R. & Balasubramanian, T. (2009). Acta Cryst. E65, o765–o766.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJudge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSabari, V., Kalaiselvi, G., Balasubramanian, S. & Aravindhan, S. (2012). Acta Cryst. E68, o2937.  CSD CrossRef IUCr Journals Google Scholar
First citationSchwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–821.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623–1625.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds