organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-(dieth­­oxy­meth­yl)phenyl benzoate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bAsthagiri Herbal Research Foundation, Perungudi, Chennai 600 096, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 17 February 2013; accepted 5 March 2013; online 16 March 2013)

In the title compound, C18H19BrO4, the aromatic rings enclose a dihedral angle of 81.9 (7)°. There are no short directional contacts in the crystal structure.

Related literature

For the biological activity of ester derivatives, see: Bi et al. (2012[Bi, Y., Xu, J., Sun, F., Wu, X., Ye, W., Sun, Y. & Huang, W. (2012). Molecules, 17, 8832-8841.]); Bartzatt et al. (2004[Bartzatt, R., Cirillo, S. L. & Cirillo, J. D. (2004). Physiol. Chem. Phys. Med. NMR, 36, 85-94.]); Anadu et al. (2006[Anadu, N. O., Davisson, V. J. & Cushman, M. (2006). J. Med. Chem. 49, 3897-3905.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19BrO4

  • Mr = 379.24

  • Triclinic, [P \overline 1]

  • a = 8.2662 (8) Å

  • b = 9.6378 (10) Å

  • c = 11.6224 (13) Å

  • α = 99.927 (5)°

  • β = 93.700 (5)°

  • γ = 101.178 (5)°

  • V = 890.16 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.33 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.497, Tmax = 0.594

  • 16152 measured reflections

  • 4493 independent reflections

  • 3037 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.085

  • S = 1.01

  • 4493 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Ester derivatives of many compounds exhibit a variety of pharmacological properties, for example anticancer, antitumor and antimicrobial activities (Anadu et al., 2006; Bi et al., 2012; Bartzatt et al., 2004). In view of their importance, the title compound was synthesized and we report herein on its crystal structure.

In the title molecule (Fig. 1) the two aromatic rings enclose a dihedral angle of 98.1 (7)°. The molecular conformation is stabilized by C-H···O contacts. The crystals packing, on the other hand, shows no short contacts.

A packing diagram of the molecule is shown in Fig. 2.

Related literature top

For the biological activity of ester derivatives, see: Bi et al. (2012); Bartzatt et al. (2004); Anadu et al. (2006).

Experimental top

A solution of 4-Bromo-2-diethoxymethyl-phenol (0.03 mol) in chloroform (100 ml) was cooled and Benzoyl chlorides (0.03 mol) was added dropwise followed by addition of triethyl amine (0.03 mol). Then, the reaction was stirred at room temperature for 3 h. The reaction mixture was quenched with water and the chloroform layer was separated. The combined chloroform layer was washed with 5% NaOH solution followed by water wash and dried with anhydrous sodium sulfate, concentrated under reduced pressure. The obtained solid was crystallized in a mixture of Methanol:Chloroform.

Refinement top

All the H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis. For the sake of clarity, H atoms have been omitted.
4-Bromo-2-(diethoxymethyl)phenyl benzoate top
Crystal data top
C18H19BrO4Z = 2
Mr = 379.24F(000) = 388
Triclinic, P1Dx = 1.415 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2662 (8) ÅCell parameters from 8834 reflections
b = 9.6378 (10) Åθ = 2.1–31.2°
c = 11.6224 (13) ŵ = 2.33 mm1
α = 99.927 (5)°T = 293 K
β = 93.700 (5)°Block, colourless
γ = 101.178 (5)°0.35 × 0.30 × 0.25 mm
V = 890.16 (16) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4493 independent reflections
Radiation source: fine-focus sealed tube3037 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and ϕ scanθmax = 28.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker 2004)
h = 1011
Tmin = 0.497, Tmax = 0.594k = 1212
16152 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.2669P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4493 reflectionsΔρmax = 0.46 e Å3
209 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0293 (17)
Crystal data top
C18H19BrO4γ = 101.178 (5)°
Mr = 379.24V = 890.16 (16) Å3
Triclinic, P1Z = 2
a = 8.2662 (8) ÅMo Kα radiation
b = 9.6378 (10) ŵ = 2.33 mm1
c = 11.6224 (13) ÅT = 293 K
α = 99.927 (5)°0.35 × 0.30 × 0.25 mm
β = 93.700 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4493 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2004)
3037 reflections with I > 2σ(I)
Tmin = 0.497, Tmax = 0.594Rint = 0.035
16152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.01Δρmax = 0.46 e Å3
4493 reflectionsΔρmin = 0.42 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0177 (3)0.1162 (2)0.14518 (19)0.0568 (5)
H11.02760.20240.11790.068*
C21.1551 (3)0.0569 (3)0.1588 (2)0.0668 (6)
H21.25750.10350.14150.080*
C31.1409 (3)0.0706 (3)0.1979 (2)0.0686 (6)
H31.23350.11080.20670.082*
C40.9906 (3)0.1388 (2)0.2238 (2)0.0657 (6)
H40.98140.22570.25000.079*
C50.8522 (3)0.0800 (2)0.21151 (19)0.0560 (5)
H50.75040.12660.22990.067*
C60.8660 (2)0.0487 (2)0.17159 (16)0.0446 (4)
C70.7144 (3)0.1076 (2)0.16072 (17)0.0476 (5)
C80.6138 (2)0.3097 (2)0.12700 (17)0.0454 (4)
C90.4947 (3)0.2747 (2)0.03277 (18)0.0530 (5)
H90.50060.20300.03060.064*
C100.3663 (3)0.3469 (2)0.03332 (19)0.0553 (5)
H100.28480.32490.02980.066*
C110.3603 (2)0.4517 (2)0.12799 (18)0.0495 (5)
C120.4820 (2)0.4902 (2)0.22060 (17)0.0477 (5)
H120.47690.56390.28270.057*
C130.6130 (2)0.4189 (2)0.22129 (17)0.0440 (4)
C140.7505 (2)0.4552 (2)0.32109 (18)0.0487 (5)
H140.85630.47040.28680.058*
C150.8756 (3)0.6431 (3)0.4779 (2)0.0728 (7)
H15A0.97860.63720.44380.087*
H15B0.86750.58760.54020.087*
C160.8736 (4)0.7952 (3)0.5262 (2)0.0831 (8)
H16A0.96570.83440.58500.125*
H16B0.77200.80030.56070.125*
H16C0.88190.84970.46420.125*
C170.5999 (3)0.3033 (3)0.4376 (2)0.0698 (6)
H17A0.50910.26000.37710.084*
H17B0.57230.38750.48430.084*
C180.6251 (4)0.1991 (4)0.5128 (3)0.1005 (10)
H18A0.52600.17170.54940.151*
H18B0.71550.24240.57210.151*
H18C0.65010.11530.46570.151*
O10.57904 (18)0.05021 (16)0.17780 (15)0.0657 (4)
O20.74639 (16)0.23833 (14)0.12732 (12)0.0502 (3)
O30.74890 (16)0.34407 (15)0.38518 (12)0.0535 (3)
O40.73826 (17)0.58602 (15)0.38984 (13)0.0578 (4)
Br10.17952 (3)0.54626 (3)0.13035 (2)0.07463 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0560 (12)0.0532 (12)0.0665 (14)0.0203 (10)0.0098 (10)0.0140 (10)
C20.0549 (13)0.0715 (16)0.0812 (16)0.0235 (12)0.0154 (12)0.0195 (13)
C30.0660 (15)0.0711 (16)0.0759 (16)0.0377 (13)0.0041 (12)0.0085 (13)
C40.0794 (17)0.0487 (12)0.0752 (15)0.0271 (12)0.0037 (12)0.0142 (11)
C50.0601 (13)0.0463 (12)0.0606 (13)0.0147 (10)0.0032 (10)0.0044 (10)
C60.0501 (11)0.0403 (10)0.0418 (10)0.0145 (8)0.0012 (8)0.0010 (8)
C70.0491 (11)0.0401 (10)0.0499 (11)0.0116 (9)0.0018 (9)0.0028 (9)
C80.0437 (10)0.0399 (10)0.0541 (12)0.0137 (8)0.0050 (8)0.0073 (9)
C90.0616 (13)0.0442 (11)0.0495 (12)0.0127 (10)0.0018 (10)0.0005 (9)
C100.0558 (12)0.0502 (12)0.0557 (12)0.0102 (10)0.0116 (10)0.0062 (10)
C110.0440 (10)0.0445 (11)0.0608 (13)0.0146 (8)0.0032 (9)0.0096 (9)
C120.0469 (10)0.0429 (10)0.0517 (11)0.0150 (8)0.0022 (9)0.0007 (9)
C130.0402 (9)0.0417 (10)0.0495 (11)0.0105 (8)0.0001 (8)0.0058 (8)
C140.0423 (10)0.0471 (11)0.0551 (12)0.0118 (8)0.0024 (9)0.0052 (9)
C150.0678 (15)0.0647 (15)0.0731 (16)0.0076 (12)0.0277 (12)0.0026 (12)
C160.0846 (18)0.0742 (17)0.0724 (17)0.0070 (14)0.0140 (14)0.0166 (13)
C170.0651 (15)0.0801 (17)0.0676 (15)0.0161 (13)0.0103 (12)0.0209 (13)
C180.104 (2)0.092 (2)0.116 (2)0.0156 (18)0.0205 (19)0.0523 (19)
O10.0468 (8)0.0520 (9)0.0981 (12)0.0104 (7)0.0066 (8)0.0144 (8)
O20.0469 (7)0.0433 (7)0.0639 (9)0.0181 (6)0.0090 (6)0.0086 (6)
O30.0459 (7)0.0551 (8)0.0607 (8)0.0136 (6)0.0023 (6)0.0135 (7)
O40.0532 (8)0.0498 (8)0.0622 (9)0.0137 (6)0.0156 (7)0.0073 (7)
Br10.05575 (16)0.07410 (19)0.0983 (2)0.03299 (12)0.00794 (12)0.01173 (14)
Geometric parameters (Å, º) top
C1—C61.375 (3)C11—Br11.8944 (19)
C1—C21.380 (3)C12—C131.391 (3)
C1—H10.9300C12—H120.9300
C2—C31.368 (3)C13—C141.515 (3)
C2—H20.9300C14—O41.397 (2)
C3—C41.366 (3)C14—O31.405 (2)
C3—H30.9300C14—H140.9800
C4—C51.382 (3)C15—O41.432 (2)
C4—H40.9300C15—C161.480 (3)
C5—C61.385 (3)C15—H15A0.9700
C5—H50.9300C15—H15B0.9700
C6—C71.480 (3)C16—H16A0.9600
C7—O11.193 (2)C16—H16B0.9600
C7—O21.364 (2)C16—H16C0.9600
C8—C91.374 (3)C17—O31.427 (3)
C8—C131.384 (3)C17—C181.475 (4)
C8—O21.402 (2)C17—H17A0.9700
C9—C101.377 (3)C17—H17B0.9700
C9—H90.9300C18—H18A0.9600
C10—C111.370 (3)C18—H18B0.9600
C10—H100.9300C18—H18C0.9600
C11—C121.374 (3)
C6—C1—C2120.4 (2)C8—C13—C12117.63 (17)
C6—C1—H1119.8C8—C13—C14119.86 (16)
C2—C1—H1119.8C12—C13—C14122.51 (17)
C3—C2—C1120.1 (2)O4—C14—O3113.44 (17)
C3—C2—H2120.0O4—C14—C13107.35 (15)
C1—C2—H2120.0O3—C14—C13112.85 (15)
C4—C3—C2120.0 (2)O4—C14—H14107.6
C4—C3—H3120.0O3—C14—H14107.6
C2—C3—H3120.0C13—C14—H14107.6
C3—C4—C5120.6 (2)O4—C15—C16109.0 (2)
C3—C4—H4119.7O4—C15—H15A109.9
C5—C4—H4119.7C16—C15—H15A109.9
C4—C5—C6119.5 (2)O4—C15—H15B109.9
C4—C5—H5120.2C16—C15—H15B109.9
C6—C5—H5120.2H15A—C15—H15B108.3
C1—C6—C5119.40 (18)C15—C16—H16A109.5
C1—C6—C7123.17 (18)C15—C16—H16B109.5
C5—C6—C7117.43 (19)H16A—C16—H16B109.5
O1—C7—O2122.72 (18)C15—C16—H16C109.5
O1—C7—C6125.59 (19)H16A—C16—H16C109.5
O2—C7—C6111.68 (17)H16B—C16—H16C109.5
C9—C8—C13122.30 (17)O3—C17—C18108.7 (2)
C9—C8—O2120.00 (17)O3—C17—H17A110.0
C13—C8—O2117.64 (16)C18—C17—H17A110.0
C8—C9—C10119.24 (18)O3—C17—H17B110.0
C8—C9—H9120.4C18—C17—H17B110.0
C10—C9—H9120.4H17A—C17—H17B108.3
C11—C10—C9119.18 (18)C17—C18—H18A109.5
C11—C10—H10120.4C17—C18—H18B109.5
C9—C10—H10120.4H18A—C18—H18B109.5
C10—C11—C12121.75 (18)C17—C18—H18C109.5
C10—C11—Br1118.92 (14)H18A—C18—H18C109.5
C12—C11—Br1119.33 (15)H18B—C18—H18C109.5
C11—C12—C13119.83 (18)C7—O2—C8115.71 (15)
C11—C12—H12120.1C14—O3—C17115.33 (16)
C13—C12—H12120.1C14—O4—C15112.95 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.932.422.740 (3)100
C12—H12···O40.932.382.699 (2)100
C17—H17B···O40.972.582.905 (3)100

Experimental details

Crystal data
Chemical formulaC18H19BrO4
Mr379.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2662 (8), 9.6378 (10), 11.6224 (13)
α, β, γ (°)99.927 (5), 93.700 (5), 101.178 (5)
V3)890.16 (16)
Z2
Radiation typeMo Kα
µ (mm1)2.33
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2004)
Tmin, Tmax0.497, 0.594
No. of measured, independent and
observed [I > 2σ(I)] reflections
16152, 4493, 3037
Rint0.035
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.01
No. of reflections4493
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.42

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.932.422.740 (3)100
C12—H12···O40.932.382.699 (2)100
C17—H17B···O40.972.582.905 (3)100
 

Acknowledgements

SA thanks the UGC, India, for financial support

References

First citationAnadu, N. O., Davisson, V. J. & Cushman, M. (2006). J. Med. Chem. 49, 3897–3905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBartzatt, R., Cirillo, S. L. & Cirillo, J. D. (2004). Physiol. Chem. Phys. Med. NMR, 36, 85–94.  PubMed CAS Google Scholar
First citationBi, Y., Xu, J., Sun, F., Wu, X., Ye, W., Sun, Y. & Huang, W. (2012). Molecules, 17, 8832–8841.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds