organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Di­chloro­acetyl-t-3,t-5-di­methyl-r-2,c-6-di­phenyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 1 March 2013; accepted 21 March 2013; online 28 March 2013)

In the title compound, C21H21Cl2NO2, the piperidine ring adopts a distorted boat conformation. The phenyl rings substituted at the 2- and 6-positions of the piperidine ring subtend angles of 87.9 (7) and 70.8 (9)°, respectively, with the best plane through the piperidine ring. In the crystal, mol­ecules are connected by C—H⋯O and C—H⋯Cl inter­actions into layers in the ab plane.

Related literature

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.]); Michael (2001[Michael, J. P. (2001). The Alkaloids. Chemistry and Biology, edited by G. A. Cordell, Vol. 55, pp. 91-258. New York: Academic Press.]); Pinder (1992[Pinder, A. R. (1992). Nat. Prod. Rep. 9, 491-504.]); Rubiralta et al. (1991[Rubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, pp. 225-312. Amsterdam: Elsevier.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hydrogen-bond motifs, see: Bernstein et al.(1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21Cl2NO2

  • Mr = 390.29

  • Monoclinic, P 21

  • a = 8.278 (2) Å

  • b = 9.714 (3) Å

  • c = 11.847 (3) Å

  • β = 90.578 (9)°

  • V = 952.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.944

  • 8874 measured reflections

  • 4241 independent reflections

  • 3962 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.03

  • 4241 reflections

  • 235 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1745 Friedel pairs

  • Flack parameter: 0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.98 2.45 3.379 (2) 159
C20—H20⋯O1i 0.98 2.53 3.273 (2) 132
C21—H21C⋯Cl1ii 0.96 2.81 3.702 (2) 155
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives are the valuable heterocyclic compounds in the field of medicinal chemistry. The compounds possessing an amide bond linkage have a wide range of biological activities such as antimicrobial, anti-inflammatory, antiviral, antimalarial and general anesthetics (Aridoss et al., 2009). Functionalized piperidines are familiar substructures found in biologically active natural products and synthetic pharmaceuticals (Michael, 2001; Pinder, 1992; Rubiralta et al., 1991). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The title compound crystallizes in the monoclinic space group P21. The piperidine ring adopts a distorted boat conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.7556 (2) Å, q3 = -0.010 (2) Å, ϕ2 = 287.05 (1)° and Δs(C3 & C6)= 17.08 (1)°. The sum of the bond angles around N1 (359.1°) is in accordance with sp2 hybridization.

The carbonyl group is oriented syn to C2 [C2—N1—C7—O1=] -6.5 (2)° and anti to C6 [C6—N1—C7—O1=] -176.7 (1)°. The best plane of the piperidine ring and the attached phenyl rings [C7—C12 and C13—C18] enclose dihedral angles of 87.9 (7)° and 70.8 (9)°. The two phenyl rings are oriented to each other with a dihedral angle of 54.01 (1)°.

The crystal packing reveals that the molecules are linked through a network of C—H···O and C—H···Cl intermolecular interactions. Atoms C2 and C20 of the molecule at (x, y, z) donate a proton to bifurcated acceptor atom O1 of the molecule at (1 - x,-1/2 + y,-z), which form two different C(5) and C(8) chains (Bernstein et al., 1995) forming layers in the ab plane as shown in Fig. 2.

Related literature top

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009); Michael (2001); Pinder (1992); Rubiralta et al. (1991). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al.(1995).

Experimental top

t-3,t-5-Dimethyl-r-2,c-6-diphenylpiperidin-4-one (5 mmol) was dissolved in 60 ml of anhydrous benzene. To this solution, dichloroacetylchloride (20 mmol) and triethylamine (20 mmol) were added and the reaction mixture was allowed to stirr for 8 h. The course of the reaction was monitored by TLC. The organic layer was dried over anhydrous Na2SO4 and the resulting pasty mass was purified by recrystallization from ethyl acetate. Yield: 70%, Melting point: 190–92°C

Refinement top

All H atom were found in a difference map but they were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
1-Dichloroacetyl-t-3,t-5-dimethyl-r-2,c-6-diphenylpiperidin-4-one top
Crystal data top
C21H21Cl2NO2F(000) = 408
Mr = 390.29Dx = 1.361 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3962 reflections
a = 8.278 (2) Åθ = 1.7–28.4°
b = 9.714 (3) ŵ = 0.36 mm1
c = 11.847 (3) ÅT = 293 K
β = 90.578 (9)°Block, white crystalline
V = 952.5 (5) Å30.20 × 0.18 × 0.17 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
4241 independent reflections
Radiation source: fine-focus sealed tube3962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.931, Tmax = 0.944k = 1112
8874 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.1557P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4241 reflectionsΔρmax = 0.31 e Å3
235 parametersΔρmin = 0.31 e Å3
1 restraintAbsolute structure: Flack (1983), 1745 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C21H21Cl2NO2V = 952.5 (5) Å3
Mr = 390.29Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.278 (2) ŵ = 0.36 mm1
b = 9.714 (3) ÅT = 293 K
c = 11.847 (3) Å0.20 × 0.18 × 0.17 mm
β = 90.578 (9)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4241 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3962 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.944Rint = 0.025
8874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.31 e Å3
S = 1.03Δρmin = 0.31 e Å3
4241 reflectionsAbsolute structure: Flack (1983), 1745 Friedel pairs
235 parametersAbsolute structure parameter: 0.01 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.41560 (17)0.55485 (16)0.18606 (12)0.0275 (3)
H20.47590.51810.12200.033*
C30.42988 (17)0.71381 (17)0.18432 (12)0.0298 (3)
H30.36220.74930.24520.036*
C40.35940 (19)0.76681 (17)0.07391 (12)0.0321 (3)
C50.19801 (19)0.7045 (2)0.03920 (12)0.0349 (3)
H50.12420.77950.01860.042*
C60.12278 (18)0.62258 (17)0.13576 (13)0.0315 (3)
H60.03010.57350.10300.038*
C70.05790 (17)0.70465 (19)0.23542 (12)0.0332 (3)
C80.0412 (2)0.8464 (2)0.23415 (16)0.0434 (4)
H80.07460.89590.17140.052*
C90.0246 (2)0.9155 (2)0.32501 (19)0.0522 (5)
H90.03571.01070.32260.063*
C100.0736 (2)0.8441 (3)0.41870 (17)0.0537 (5)
H100.11670.89080.48000.064*
C110.0585 (2)0.7033 (3)0.42115 (16)0.0523 (5)
H110.09200.65450.48430.063*
C120.0064 (2)0.6335 (2)0.33014 (15)0.0425 (4)
H120.01550.53810.33260.051*
C130.49049 (18)0.49813 (17)0.29406 (13)0.0328 (3)
C140.4205 (2)0.5223 (2)0.39840 (14)0.0430 (4)
H140.32520.57260.40320.052*
C150.4943 (3)0.4706 (3)0.49568 (18)0.0602 (6)
H150.44700.48520.56550.072*
C160.6365 (3)0.3980 (3)0.4893 (2)0.0650 (7)
H160.68500.36420.55480.078*
C170.7073 (3)0.3752 (3)0.3867 (2)0.0596 (6)
H170.80350.32590.38280.071*
C180.6351 (2)0.4259 (2)0.28862 (17)0.0424 (4)
H180.68380.41150.21920.051*
C190.1845 (2)0.38367 (19)0.17034 (15)0.0373 (3)
C200.3085 (2)0.26688 (18)0.17704 (14)0.0373 (3)
H200.41720.30330.16390.045*
C210.6019 (2)0.7649 (2)0.20659 (16)0.0467 (4)
H21A0.64060.72860.27720.070*
H21B0.60220.86370.20970.070*
H21C0.67090.73460.14690.070*
C220.2237 (3)0.6139 (2)0.06545 (14)0.0496 (5)
H22A0.12260.57370.08830.074*
H22B0.29950.54220.04760.074*
H22C0.26490.66930.12580.074*
N10.24080 (15)0.51501 (14)0.17151 (10)0.0289 (3)
O10.42761 (17)0.84953 (16)0.01538 (11)0.0479 (3)
O20.04081 (17)0.35524 (17)0.16311 (17)0.0645 (4)
Cl10.25867 (8)0.14398 (5)0.07228 (5)0.06394 (16)
Cl20.30062 (9)0.18963 (7)0.31158 (5)0.07162 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0262 (6)0.0266 (8)0.0297 (6)0.0013 (5)0.0018 (5)0.0000 (5)
C30.0304 (7)0.0279 (8)0.0310 (6)0.0042 (6)0.0020 (5)0.0007 (6)
C40.0377 (8)0.0263 (8)0.0324 (7)0.0037 (6)0.0017 (6)0.0005 (6)
C50.0378 (7)0.0354 (9)0.0315 (7)0.0045 (7)0.0055 (6)0.0027 (6)
C60.0287 (7)0.0307 (8)0.0349 (7)0.0009 (6)0.0062 (5)0.0001 (6)
C70.0242 (6)0.0358 (8)0.0395 (7)0.0013 (6)0.0021 (5)0.0009 (7)
C80.0412 (8)0.0362 (10)0.0530 (10)0.0021 (7)0.0023 (7)0.0015 (8)
C90.0440 (10)0.0418 (12)0.0707 (13)0.0046 (8)0.0006 (9)0.0132 (10)
C100.0371 (9)0.0712 (15)0.0527 (11)0.0061 (9)0.0005 (7)0.0208 (10)
C110.0452 (9)0.0680 (14)0.0440 (9)0.0016 (10)0.0077 (7)0.0004 (10)
C120.0377 (8)0.0437 (10)0.0461 (8)0.0023 (7)0.0044 (6)0.0034 (8)
C130.0331 (7)0.0290 (8)0.0360 (7)0.0048 (6)0.0061 (6)0.0041 (6)
C140.0417 (9)0.0524 (12)0.0348 (8)0.0064 (8)0.0040 (6)0.0025 (8)
C150.0681 (13)0.0767 (17)0.0357 (8)0.0239 (12)0.0115 (8)0.0103 (9)
C160.0658 (14)0.0669 (16)0.0615 (13)0.0179 (12)0.0338 (11)0.0273 (12)
C170.0469 (10)0.0527 (13)0.0785 (15)0.0011 (9)0.0264 (10)0.0176 (11)
C180.0376 (8)0.0378 (10)0.0517 (9)0.0007 (7)0.0084 (7)0.0055 (8)
C190.0361 (8)0.0298 (9)0.0458 (8)0.0041 (6)0.0025 (6)0.0042 (7)
C200.0464 (9)0.0239 (8)0.0417 (8)0.0052 (7)0.0032 (7)0.0003 (6)
C210.0419 (9)0.0450 (11)0.0530 (10)0.0171 (8)0.0098 (7)0.0057 (8)
C220.0630 (11)0.0531 (14)0.0325 (8)0.0012 (9)0.0049 (7)0.0057 (8)
N10.0272 (6)0.0259 (7)0.0335 (6)0.0021 (5)0.0038 (4)0.0011 (5)
O10.0553 (7)0.0419 (8)0.0468 (7)0.0025 (6)0.0068 (6)0.0151 (6)
O20.0394 (7)0.0393 (9)0.1147 (14)0.0121 (6)0.0077 (8)0.0083 (9)
Cl10.0835 (4)0.0399 (3)0.0688 (3)0.0167 (3)0.0168 (3)0.0214 (2)
Cl20.0933 (4)0.0638 (4)0.0576 (3)0.0154 (3)0.0061 (3)0.0249 (3)
Geometric parameters (Å, º) top
C2—N11.5060 (19)C12—H120.9300
C2—C131.519 (2)C13—C181.390 (2)
C2—C31.549 (2)C13—C141.390 (2)
C2—H20.9800C14—C151.393 (3)
C3—C41.517 (2)C14—H140.9300
C3—C211.528 (2)C15—C161.375 (4)
C3—H30.9800C15—H150.9300
C4—O11.205 (2)C16—C171.372 (4)
C4—C51.520 (2)C16—H160.9300
C5—C61.531 (2)C17—C181.392 (3)
C5—C221.537 (2)C17—H170.9300
C5—H50.9800C18—H180.9300
C6—N11.489 (2)C19—O21.224 (2)
C6—C71.527 (2)C19—N11.358 (2)
C6—H60.9800C19—C201.531 (3)
C7—C81.384 (3)C20—Cl21.7634 (18)
C7—C121.389 (2)C20—Cl11.7679 (18)
C8—C91.385 (3)C20—H200.9800
C8—H80.9300C21—H21A0.9600
C9—C101.373 (3)C21—H21B0.9600
C9—H90.9300C21—H21C0.9600
C10—C111.373 (4)C22—H22A0.9600
C10—H100.9300C22—H22B0.9600
C11—C121.387 (3)C22—H22C0.9600
C11—H110.9300
N1—C2—C13112.74 (12)C7—C12—H12119.7
N1—C2—C3109.15 (12)C18—C13—C14119.57 (15)
C13—C2—C3110.01 (12)C18—C13—C2119.23 (14)
N1—C2—H2108.3C14—C13—C2121.15 (15)
C13—C2—H2108.3C13—C14—C15119.4 (2)
C3—C2—H2108.3C13—C14—H14120.3
C4—C3—C21112.84 (14)C15—C14—H14120.3
C4—C3—C2108.73 (12)C16—C15—C14120.5 (2)
C21—C3—C2113.12 (14)C16—C15—H15119.7
C4—C3—H3107.3C14—C15—H15119.7
C21—C3—H3107.3C17—C16—C15120.35 (18)
C2—C3—H3107.3C17—C16—H16119.8
O1—C4—C3122.95 (15)C15—C16—H16119.8
O1—C4—C5121.70 (15)C16—C17—C18119.9 (2)
C3—C4—C5115.32 (13)C16—C17—H17120.1
C4—C5—C6111.58 (12)C18—C17—H17120.1
C4—C5—C22108.55 (14)C13—C18—C17120.20 (19)
C6—C5—C22111.46 (16)C13—C18—H18119.9
C4—C5—H5108.4C17—C18—H18119.9
C6—C5—H5108.4O2—C19—N1123.08 (17)
C22—C5—H5108.4O2—C19—C20119.15 (17)
N1—C6—C7112.41 (12)N1—C19—C20117.76 (14)
N1—C6—C5107.86 (12)C19—C20—Cl2109.33 (12)
C7—C6—C5117.09 (14)C19—C20—Cl1108.19 (12)
N1—C6—H6106.3Cl2—C20—Cl1109.67 (10)
C7—C6—H6106.3C19—C20—H20109.9
C5—C6—H6106.3Cl2—C20—H20109.9
C8—C7—C12118.20 (17)Cl1—C20—H20109.9
C8—C7—C6123.16 (15)C3—C21—H21A109.5
C12—C7—C6118.58 (17)C3—C21—H21B109.5
C7—C8—C9120.92 (18)H21A—C21—H21B109.5
C7—C8—H8119.5C3—C21—H21C109.5
C9—C8—H8119.5H21A—C21—H21C109.5
C10—C9—C8120.4 (2)H21B—C21—H21C109.5
C10—C9—H9119.8C5—C22—H22A109.5
C8—C9—H9119.8C5—C22—H22B109.5
C9—C10—C11119.47 (19)H22A—C22—H22B109.5
C9—C10—H10120.3C5—C22—H22C109.5
C11—C10—H10120.3H22A—C22—H22C109.5
C10—C11—C12120.4 (2)H22B—C22—H22C109.5
C10—C11—H11119.8C19—N1—C6115.62 (13)
C12—C11—H11119.8C19—N1—C2124.85 (13)
C11—C12—C7120.6 (2)C6—N1—C2118.62 (12)
C11—C12—H12119.7
N1—C2—C3—C457.74 (15)N1—C2—C13—C18128.73 (16)
C13—C2—C3—C4178.07 (11)C3—C2—C13—C18109.19 (17)
N1—C2—C3—C21176.08 (12)N1—C2—C13—C1454.1 (2)
C13—C2—C3—C2151.89 (17)C3—C2—C13—C1468.04 (19)
C21—C3—C4—O15.9 (2)C18—C13—C14—C151.7 (3)
C2—C3—C4—O1132.20 (17)C2—C13—C14—C15178.90 (18)
C21—C3—C4—C5172.05 (15)C13—C14—C15—C161.0 (3)
C2—C3—C4—C545.70 (17)C14—C15—C16—C170.2 (4)
O1—C4—C5—C6170.08 (16)C15—C16—C17—C180.1 (4)
C3—C4—C5—C612.0 (2)C14—C13—C18—C171.6 (3)
O1—C4—C5—C2266.7 (2)C2—C13—C18—C17178.85 (18)
C3—C4—C5—C22111.23 (16)C16—C17—C18—C130.8 (3)
C4—C5—C6—N156.95 (17)O2—C19—C20—Cl273.1 (2)
C22—C5—C6—N164.59 (16)N1—C19—C20—Cl2107.58 (16)
C4—C5—C6—C770.99 (17)O2—C19—C20—Cl146.2 (2)
C22—C5—C6—C7167.47 (14)N1—C19—C20—Cl1133.03 (14)
N1—C6—C7—C8136.15 (16)O2—C19—N1—C614.3 (3)
C5—C6—C7—C810.4 (2)C20—C19—N1—C6164.98 (13)
N1—C6—C7—C1246.81 (19)O2—C19—N1—C2176.81 (17)
C5—C6—C7—C12172.51 (14)C20—C19—N1—C23.9 (2)
C12—C7—C8—C90.2 (3)C7—C6—N1—C19104.61 (16)
C6—C7—C8—C9177.28 (16)C5—C6—N1—C19124.81 (15)
C7—C8—C9—C100.4 (3)C7—C6—N1—C285.74 (16)
C8—C9—C10—C110.7 (3)C5—C6—N1—C244.84 (17)
C9—C10—C11—C120.3 (3)C13—C2—N1—C1956.66 (19)
C10—C11—C12—C70.4 (3)C3—C2—N1—C19179.22 (14)
C8—C7—C12—C110.6 (3)C13—C2—N1—C6134.73 (14)
C6—C7—C12—C11177.81 (15)C3—C2—N1—C612.16 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.453.379 (2)159
C20—H20···O1i0.982.533.273 (2)132
C21—H21C···Cl1ii0.962.813.702 (2)155
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC21H21Cl2NO2
Mr390.29
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.278 (2), 9.714 (3), 11.847 (3)
β (°) 90.578 (9)
V3)952.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.931, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
8874, 4241, 3962
Rint0.025
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.03
No. of reflections4241
No. of parameters235
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.31
Absolute structureFlack (1983), 1745 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.453.379 (2)158.6
C20—H20···O1i0.982.533.273 (2)132.2
C21—H21C···Cl1ii0.962.813.702 (2)155.2
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y+1/2, z.
 

Acknowledgements

PS thanks the UGC, New Delhi, for financial support in the form of a Research Fellowship in Science for Meritorious Students. SP thanks UGC, New Delhi, for financial assistance in the form of a major research project.

References

First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMichael, J. P. (2001). The Alkaloids. Chemistry and Biology, edited by G. A. Cordell, Vol. 55, pp. 91–258. New York: Academic Press.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPinder, A. R. (1992). Nat. Prod. Rep. 9, 491–504.  CrossRef CAS Web of Science Google Scholar
First citationRubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, pp. 225–312. Amsterdam: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds