metal-organic compounds
cis-Chlorido(methylamine)bis(propane-1,3-diamine)cobalt(III) dichloride monohydrate
aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: mnpsy2004@yahoo.com
In the title compound, [CoCl(CH5N)(C3H10N2)2]Cl2·H2O, the CoIII ion has an octahedral coordination environment and is surrounded by four N atoms of two propane-1,3-diamine ligands in the equatorial plane, with another N atom of the methylamine ligand and a Cl atom occupying the axial positions. The crystal packing is stabilized by intermolecular N—H⋯O, N—H⋯Cl, and O—H⋯Cl interactions, generating a three-dimensional network.
Related literature
For the linear solvation energy relationship (LSER) method, see: Anbalagan (2011); Anbalagan et al. (2003, 2011). For the biological properties of cobalt(III) complexes, see: Chang et al. (2010). For related structures, see: Anbalagan et al. (2009); Lee et al. (2007); Ramesh et al. (2008); Ravichandran et al. (2009). For the preparation of (1,3-diaminopropane)cobalt(III), see: Bailar & Work (1946).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536813006442/bt6894sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813006442/bt6894Isup2.hkl
Two grams of trans-[CoIII(tn)2Cl2]Cl solid was made in to paste using 3–4 drops of water. To the solid mass, about 0.12M methyl amine (MeNH2) was added in drops for 20 min and mixed by grinding (Bailar & Work 1946). The grinding of the resulting dull green paste was continued to obtain red mass. The reaction mixture was set aside until no further change occurred and the product was allowed to stand overnight. Finally, the solid was washed and recrystallized using acidified water pre-heated to 70°C. The pure crystals were filtered, washed with ethanol and dried over vacuum. The microcrystalline solid obtained was pink colored and the yield was estimated to be 0.85 g (85%). X-ray quality crystals were grown after repeated recrystallization and using hot acidified water.
N and C-bound H atoms were positioned geometrically (N–H =0.90 Å, C–H =0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for all other H atoms. The water H atoms were freely refined.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level. | |
Fig. 2. The packing of the molecules viewed down a axis. |
[CoCl(CH5N)(C3H10N2)2]Cl2·H2O | Z = 2 |
Mr = 362.62 | F(000) = 380 |
Triclinic, P1 | Dx = 1.534 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4752 (6) Å | Cell parameters from 2764 reflections |
b = 7.9065 (6) Å | θ = 2.8–25.0° |
c = 14.4663 (13) Å | µ = 1.60 mm−1 |
α = 76.022 (6)° | T = 292 K |
β = 76.907 (7)° | Block, violet |
γ = 73.779 (4)° | 0.35 × 0.35 × 0.35 mm |
V = 784.96 (11) Å3 |
Oxford Diffraction Xcalibur Eos diffractometer | 2764 independent reflections |
Radiation source: Enhance(Mo)X-ray Source | 2071 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 25.0°, θmin = 2.7° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −8→8 |
Tmin = 0.798, Tmax = 1.000 | k = −6→9 |
5020 measured reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0217P)2] where P = (Fo2 + 2Fc2)/3 |
2764 reflections | (Δ/σ)max = 0.001 |
162 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
[CoCl(CH5N)(C3H10N2)2]Cl2·H2O | γ = 73.779 (4)° |
Mr = 362.62 | V = 784.96 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.4752 (6) Å | Mo Kα radiation |
b = 7.9065 (6) Å | µ = 1.60 mm−1 |
c = 14.4663 (13) Å | T = 292 K |
α = 76.022 (6)° | 0.35 × 0.35 × 0.35 mm |
β = 76.907 (7)° |
Oxford Diffraction Xcalibur Eos diffractometer | 2764 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 2071 reflections with I > 2σ(I) |
Tmin = 0.798, Tmax = 1.000 | Rint = 0.027 |
5020 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | Δρmax = 0.32 e Å−3 |
2764 reflections | Δρmin = −0.28 e Å−3 |
162 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3821 (4) | 0.4046 (4) | 0.7738 (2) | 0.0358 (7) | |
H1A | 0.4513 | 0.4943 | 0.7385 | 0.043* | |
H1B | 0.3086 | 0.4444 | 0.8324 | 0.043* | |
C2 | 0.2490 (4) | 0.3907 (4) | 0.7126 (2) | 0.0367 (7) | |
H2A | 0.1912 | 0.2912 | 0.7441 | 0.044* | |
H2B | 0.1490 | 0.4997 | 0.7074 | 0.044* | |
C3 | 0.3492 (4) | 0.3631 (4) | 0.61316 (19) | 0.0346 (7) | |
H3A | 0.2561 | 0.3784 | 0.5729 | 0.042* | |
H3B | 0.4205 | 0.4540 | 0.5850 | 0.042* | |
C4 | 0.8945 (4) | −0.1858 (4) | 0.8474 (2) | 0.0381 (7) | |
H4A | 0.9755 | −0.1910 | 0.8922 | 0.046* | |
H4B | 0.9572 | −0.2780 | 0.8092 | 0.046* | |
C5 | 0.7081 (4) | −0.2246 (4) | 0.90423 (19) | 0.0368 (7) | |
H5A | 0.7331 | −0.3273 | 0.9561 | 0.044* | |
H5B | 0.6347 | −0.1223 | 0.9331 | 0.044* | |
C6 | 0.5945 (4) | −0.2629 (4) | 0.84015 (19) | 0.0328 (7) | |
H6A | 0.6729 | −0.3573 | 0.8064 | 0.039* | |
H6B | 0.4873 | −0.3057 | 0.8804 | 0.039* | |
C7 | 0.8086 (4) | −0.2353 (4) | 0.5976 (2) | 0.0394 (8) | |
H7A | 0.9010 | −0.2769 | 0.5449 | 0.059* | |
H7B | 0.6842 | −0.2259 | 0.5863 | 0.059* | |
H7C | 0.8299 | −0.3188 | 0.6567 | 0.059* | |
N1 | 0.5177 (3) | 0.2334 (3) | 0.80003 (14) | 0.0256 (5) | |
H1C | 0.4534 | 0.1636 | 0.8464 | 0.031* | |
H1D | 0.6020 | 0.2573 | 0.8277 | 0.031* | |
N2 | 0.4793 (3) | 0.1835 (3) | 0.61329 (15) | 0.0243 (5) | |
H2C | 0.5452 | 0.1837 | 0.5529 | 0.029* | |
H2D | 0.4070 | 0.1045 | 0.6240 | 0.029* | |
N3 | 0.5246 (3) | −0.1013 (3) | 0.76779 (14) | 0.0226 (5) | |
H3C | 0.4124 | −0.0437 | 0.7971 | 0.027* | |
H3D | 0.4999 | −0.1426 | 0.7204 | 0.027* | |
N4 | 0.8692 (3) | −0.0082 (3) | 0.78236 (15) | 0.0273 (5) | |
H4C | 0.9792 | −0.0075 | 0.7412 | 0.033* | |
H4D | 0.8549 | 0.0732 | 0.8191 | 0.033* | |
N5 | 0.8253 (3) | −0.0572 (3) | 0.60532 (14) | 0.0251 (5) | |
H5C | 0.8120 | 0.0139 | 0.5473 | 0.030* | |
H5D | 0.9456 | −0.0715 | 0.6121 | 0.030* | |
O1 | 0.2225 (3) | 0.0443 (4) | 0.91094 (19) | 0.0487 (6) | |
Cl1 | 0.81500 (9) | 0.30498 (10) | 0.62727 (5) | 0.03471 (19) | |
Cl2 | 0.81288 (10) | 0.28479 (10) | 0.92550 (5) | 0.0405 (2) | |
Cl3 | 0.27376 (8) | −0.14018 (9) | 0.61638 (5) | 0.02962 (18) | |
Co1 | 0.66519 (4) | 0.08437 (5) | 0.70286 (3) | 0.01944 (10) | |
H1E | 0.208 (5) | −0.031 (5) | 0.960 (3) | 0.085 (16)* | |
H1F | 0.112 (5) | 0.118 (5) | 0.915 (2) | 0.074 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0395 (17) | 0.0269 (19) | 0.038 (2) | 0.0020 (14) | −0.0084 (14) | −0.0098 (15) |
C2 | 0.0274 (15) | 0.035 (2) | 0.0400 (19) | 0.0078 (13) | −0.0095 (13) | −0.0063 (15) |
C3 | 0.0406 (17) | 0.0266 (19) | 0.0338 (19) | −0.0012 (14) | −0.0166 (14) | 0.0013 (15) |
C4 | 0.0400 (17) | 0.036 (2) | 0.039 (2) | −0.0008 (14) | −0.0218 (14) | −0.0033 (16) |
C5 | 0.0546 (19) | 0.030 (2) | 0.0233 (17) | −0.0063 (15) | −0.0166 (14) | 0.0051 (14) |
C6 | 0.0447 (17) | 0.0234 (18) | 0.0310 (18) | −0.0128 (14) | −0.0097 (13) | 0.0023 (14) |
C7 | 0.0360 (16) | 0.039 (2) | 0.047 (2) | −0.0105 (15) | 0.0020 (14) | −0.0226 (16) |
N1 | 0.0262 (12) | 0.0290 (15) | 0.0244 (13) | −0.0090 (11) | −0.0051 (10) | −0.0071 (11) |
N2 | 0.0257 (11) | 0.0249 (15) | 0.0224 (13) | −0.0057 (10) | −0.0058 (9) | −0.0036 (11) |
N3 | 0.0265 (11) | 0.0235 (14) | 0.0193 (13) | −0.0077 (10) | −0.0049 (9) | −0.0040 (11) |
N4 | 0.0233 (11) | 0.0304 (16) | 0.0291 (14) | −0.0042 (10) | −0.0070 (10) | −0.0077 (12) |
N5 | 0.0210 (11) | 0.0279 (15) | 0.0254 (13) | −0.0042 (10) | −0.0043 (9) | −0.0047 (11) |
O1 | 0.0358 (14) | 0.0492 (18) | 0.0457 (16) | −0.0074 (12) | 0.0087 (11) | 0.0023 (13) |
Cl1 | 0.0364 (4) | 0.0318 (5) | 0.0377 (5) | −0.0194 (3) | −0.0022 (3) | −0.0007 (4) |
Cl2 | 0.0464 (4) | 0.0318 (5) | 0.0444 (5) | −0.0038 (4) | −0.0175 (4) | −0.0069 (4) |
Cl3 | 0.0260 (4) | 0.0332 (5) | 0.0315 (4) | −0.0087 (3) | −0.0089 (3) | −0.0039 (3) |
Co1 | 0.01893 (18) | 0.0188 (2) | 0.0209 (2) | −0.00540 (15) | −0.00410 (14) | −0.00248 (16) |
C1—N1 | 1.471 (3) | C7—H7A | 0.9600 |
C1—C2 | 1.514 (3) | C7—H7B | 0.9600 |
C1—H1A | 0.9700 | C7—H7C | 0.9600 |
C1—H1B | 0.9700 | N1—Co1 | 1.988 (2) |
C2—C3 | 1.500 (4) | N1—H1C | 0.9000 |
C2—H2A | 0.9700 | N1—H1D | 0.9000 |
C2—H2B | 0.9700 | N2—Co1 | 1.9854 (19) |
C3—N2 | 1.480 (3) | N2—H2C | 0.9000 |
C3—H3A | 0.9700 | N2—H2D | 0.9000 |
C3—H3B | 0.9700 | N3—Co1 | 1.9722 (18) |
C4—N4 | 1.478 (3) | N3—H3C | 0.9000 |
C4—C5 | 1.520 (4) | N3—H3D | 0.9000 |
C4—H4A | 0.9700 | N4—Co1 | 1.987 (2) |
C4—H4B | 0.9700 | N4—H4C | 0.9000 |
C5—C6 | 1.519 (3) | N4—H4D | 0.9000 |
C5—H5A | 0.9700 | N5—Co1 | 1.9815 (19) |
C5—H5B | 0.9700 | N5—H5C | 0.9000 |
C6—N3 | 1.493 (3) | N5—H5D | 0.9000 |
C6—H6A | 0.9700 | O1—H1E | 0.82 (4) |
C6—H6B | 0.9700 | O1—H1F | 0.87 (4) |
C7—N5 | 1.480 (3) | Cl1—Co1 | 2.2599 (7) |
N1—C1—C2 | 112.7 (2) | Co1—N1—H1C | 106.8 |
N1—C1—H1A | 109.0 | C1—N1—H1D | 106.8 |
C2—C1—H1A | 109.0 | Co1—N1—H1D | 106.8 |
N1—C1—H1B | 109.0 | H1C—N1—H1D | 106.7 |
C2—C1—H1B | 109.0 | C3—N2—Co1 | 121.69 (15) |
H1A—C1—H1B | 107.8 | C3—N2—H2C | 106.9 |
C3—C2—C1 | 111.9 (2) | Co1—N2—H2C | 106.9 |
C3—C2—H2A | 109.2 | C3—N2—H2D | 106.9 |
C1—C2—H2A | 109.2 | Co1—N2—H2D | 106.9 |
C3—C2—H2B | 109.2 | H2C—N2—H2D | 106.7 |
C1—C2—H2B | 109.2 | C6—N3—Co1 | 124.59 (14) |
H2A—C2—H2B | 107.9 | C6—N3—H3C | 106.2 |
N2—C3—C2 | 112.7 (2) | Co1—N3—H3C | 106.2 |
N2—C3—H3A | 109.1 | C6—N3—H3D | 106.2 |
C2—C3—H3A | 109.1 | Co1—N3—H3D | 106.2 |
N2—C3—H3B | 109.1 | H3C—N3—H3D | 106.4 |
C2—C3—H3B | 109.1 | C4—N4—Co1 | 122.49 (15) |
H3A—C3—H3B | 107.8 | C4—N4—H4C | 106.7 |
N4—C4—C5 | 112.6 (2) | Co1—N4—H4C | 106.7 |
N4—C4—H4A | 109.1 | C4—N4—H4D | 106.7 |
C5—C4—H4A | 109.1 | Co1—N4—H4D | 106.7 |
N4—C4—H4B | 109.1 | H4C—N4—H4D | 106.6 |
C5—C4—H4B | 109.1 | C7—N5—Co1 | 124.77 (16) |
H4A—C4—H4B | 107.8 | C7—N5—H5C | 106.1 |
C6—C5—C4 | 111.5 (2) | Co1—N5—H5C | 106.1 |
C6—C5—H5A | 109.3 | C7—N5—H5D | 106.1 |
C4—C5—H5A | 109.3 | Co1—N5—H5D | 106.1 |
C6—C5—H5B | 109.3 | H5C—N5—H5D | 106.3 |
C4—C5—H5B | 109.3 | H1E—O1—H1F | 102 (3) |
H5A—C5—H5B | 108.0 | N3—Co1—N5 | 93.88 (8) |
N3—C6—C5 | 112.6 (2) | N3—Co1—N2 | 88.79 (8) |
N3—C6—H6A | 109.1 | N5—Co1—N2 | 87.65 (8) |
C5—C6—H6A | 109.1 | N3—Co1—N4 | 95.58 (8) |
N3—C6—H6B | 109.1 | N5—Co1—N4 | 89.08 (9) |
C5—C6—H6B | 109.1 | N2—Co1—N4 | 174.72 (8) |
H6A—C6—H6B | 107.8 | N3—Co1—N1 | 89.21 (8) |
N5—C7—H7A | 109.5 | N5—Co1—N1 | 176.46 (7) |
N5—C7—H7B | 109.5 | N2—Co1—N1 | 94.16 (8) |
H7A—C7—H7B | 109.5 | N4—Co1—N1 | 88.88 (8) |
N5—C7—H7C | 109.5 | N3—Co1—Cl1 | 177.67 (7) |
H7A—C7—H7C | 109.5 | N5—Co1—Cl1 | 87.31 (6) |
H7B—C7—H7C | 109.5 | N2—Co1—Cl1 | 89.26 (6) |
C1—N1—Co1 | 122.04 (16) | N4—Co1—Cl1 | 86.43 (6) |
C1—N1—H1C | 106.8 | N1—Co1—Cl1 | 89.67 (6) |
N1—C1—C2—C3 | −69.3 (3) | C7—N5—Co1—N4 | 97.9 (2) |
C1—C2—C3—N2 | 69.8 (3) | C7—N5—Co1—Cl1 | −175.7 (2) |
N4—C4—C5—C6 | 72.5 (3) | C3—N2—Co1—N3 | 113.74 (19) |
C4—C5—C6—N3 | −67.9 (3) | C3—N2—Co1—N5 | −152.33 (19) |
C2—C1—N1—Co1 | 48.1 (3) | C3—N2—Co1—N1 | 24.62 (19) |
C2—C3—N2—Co1 | −49.0 (3) | C3—N2—Co1—Cl1 | −64.99 (18) |
C5—C6—N3—Co1 | 35.5 (3) | C4—N4—Co1—N3 | 11.6 (2) |
C5—C4—N4—Co1 | −42.6 (3) | C4—N4—Co1—N5 | −82.2 (2) |
C6—N3—Co1—N5 | 81.2 (2) | C4—N4—Co1—N1 | 100.7 (2) |
C6—N3—Co1—N2 | 168.8 (2) | C4—N4—Co1—Cl1 | −169.5 (2) |
C6—N3—Co1—N4 | −8.2 (2) | C1—N1—Co1—N3 | −113.12 (18) |
C6—N3—Co1—N1 | −97.0 (2) | C1—N1—Co1—N2 | −24.39 (19) |
C7—N5—Co1—N3 | 2.3 (2) | C1—N1—Co1—N4 | 151.28 (19) |
C7—N5—Co1—N2 | −86.3 (2) | C1—N1—Co1—Cl1 | 64.84 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O1 | 0.90 | 2.12 | 2.960 (3) | 155 |
N1—H1D···Cl2 | 0.90 | 2.43 | 3.317 (2) | 170 |
N2—H2C···Cl3i | 0.90 | 2.57 | 3.462 (2) | 172 |
N2—H2D···Cl3 | 0.90 | 2.44 | 3.3196 (19) | 164 |
N3—H3C···O1 | 0.90 | 2.04 | 2.880 (3) | 155 |
N3—H3D···Cl3 | 0.90 | 2.50 | 3.3041 (18) | 149 |
N4—H4C···Cl3ii | 0.90 | 2.65 | 3.486 (2) | 155 |
N4—H4D···Cl2 | 0.90 | 2.45 | 3.348 (2) | 177 |
N5—H5C···Cl3i | 0.90 | 2.49 | 3.359 (2) | 162 |
N5—H5D···Cl3ii | 0.90 | 2.37 | 3.2649 (19) | 172 |
O1—H1E···Cl2iii | 0.82 (4) | 2.29 (4) | 3.093 (3) | 168 (4) |
O1—H1F···Cl2iv | 0.87 (4) | 2.25 (4) | 3.112 (3) | 174 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, y, z; (iii) −x+1, −y, −z+2; (iv) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [CoCl(CH5N)(C3H10N2)2]Cl2·H2O |
Mr | 362.62 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 292 |
a, b, c (Å) | 7.4752 (6), 7.9065 (6), 14.4663 (13) |
α, β, γ (°) | 76.022 (6), 76.907 (7), 73.779 (4) |
V (Å3) | 784.96 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.60 |
Crystal size (mm) | 0.35 × 0.35 × 0.35 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.798, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5020, 2764, 2071 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.055, 0.92 |
No. of reflections | 2764 |
No. of parameters | 162 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.28 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O1 | 0.9000 | 2.1200 | 2.960 (3) | 155.00 |
N1—H1D···Cl2 | 0.9000 | 2.4300 | 3.317 (2) | 170.00 |
N2—H2C···Cl3i | 0.90 | 2.57 | 3.462 (2) | 172.0 |
N2—H2D···Cl3 | 0.90 | 2.44 | 3.3196 (19) | 164.3 |
N3—H3C···O1 | 0.9000 | 2.0400 | 2.880 (3) | 155.00 |
N3—H3D···Cl3 | 0.90 | 2.50 | 3.3041 (18) | 149.2 |
N4—H4C···Cl3ii | 0.90 | 2.65 | 3.486 (2) | 154.7 |
N4—H4D···Cl2 | 0.9000 | 2.4500 | 3.348 (2) | 177.00 |
N5—H5C···Cl3i | 0.90 | 2.49 | 3.359 (2) | 162.4 |
N5—H5D···Cl3ii | 0.90 | 2.37 | 3.2649 (19) | 171.9 |
O1—H1E···Cl2iii | 0.82 (4) | 2.29 (4) | 3.093 (3) | 168 (4) |
O1—H1F···Cl2iv | 0.87 (4) | 2.25 (4) | 3.112 (3) | 174 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, y, z; (iii) −x+1, −y, −z+2; (iv) x−1, y, z. |
Acknowledgements
KA is thankful to the CSIR, New Delhi (Lr. No. 01 (2570)/12/EMR-II/3.4.2012) for financial support through a major research project. The authors are thankful to Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.
References
Anbalagan, K. (2011). J. Phys. Chem. C115, 3821–3832. Google Scholar
Anbalagan, K., Geethalakshmi, T. & Poonkodi, S. P. R. (2003). J. Phys. Chem. A, 107, 1918–1927. Web of Science CrossRef CAS Google Scholar
Anbalagan, K., Maharaja Mahalakshmi, C. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45–52. Web of Science CSD CrossRef CAS Google Scholar
Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bailar, J. C. & Work, J. B. (1946). J. Am. Chem. Soc. 68, 232–235. CrossRef CAS Web of Science Google Scholar
Chang, E. L., Simmers, C. & Andrew Knight, D. (2010). Pharmaceuticals, 3, 1711–1728. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ravichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174–m1175. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The interest in understanding the outer-sphere electron-transfer (OSET) reactions of transition metal complexes in mixed solvents has increased significantly in recent years. It was established that the method of linear solvation energy relationship (LSER) is a generalized treatment of solvation effects and can very well be used to understand the influence of solvent on reaction rates (Anbalagan et al., 2003). The present research is the design and synthesis of cobalt(III) complexes with an objective to understand the structure-reactivity correlation. Substituting an amino ligand for the MeNH2 moiety can yield complexes of similar structure, but with differing electron transfer rate (Anbalagan, 2011; Anbalagan et al., 2011).
Such complexes can offer a clear correlation between structure and spectral characteristics, reactions in particular. The optical properties and mechanism of electron transfer reaction can be understood through the structure of these complexes.
In addition cobalt(III) complexes have received a sustained high level of attention due to their relevance in various redox processes in biological systems and act as promising agents for antitumor, anthelmintic, antiparasitic, antibiotics and antimicrobial activities, as well as their multiple applications in fields such as medicine and drug delivery (Chang et al.,2010). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.
The ORTEP plot of the molecule is shown in Fig. 1. The molecular structure is symmetric with respect to cobalt, the CoIII ion has an octahedral coordination environment and is surrounded by four N atoms in an equatorial plane, with the other N and Cl atoms occupying the axial positions. The bond lengths [Co—N] and [Co—Cl] are comparable with the values reported in the literature (Lee et al., 2007; Ramesh et al., 2008; Anbalagan et al., 2009; Ravichandran et al., 2009).
The packing of the molecules viewed down a axis is shown in Fig. 2. The molecules are stabilized by N—H···Cl, N—H···O and O—H···Cl intermolecular interactions generating a three-dimensional network.