metal-organic compounds
cis-Dichloridobis(ethyl methyl sulfide-κS)oxidovanadium(IV)
aDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, and bComprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
*Correspondence e-mail: fuji@chem.saitama-u.ac.jp
The mononuclear title complex, [VCl2O(C3H8S)2], features a VIV=O double bond [1.5845 (15) Å] in an overall trigonal–bipyramidal coordination environment defined by two Cl− and the S atoms of two (CH3CH2)(CH3)S ligands. In the crystal, pairs of molecules form centrosymmetric dimers via C—H⋯O hydrogen bonds between the methyl C—H group and the oxidovanadium O atom of a neighbouring molecule.
Related literature
For related structures, see: Azuma et al. (1994); Bristow et al. (1989); Hartung et al. (2005); Kakeya, Fujihara, Kasaya et al. (2006); Kakeya, Fujihara & Nagasawa (2006); Matsuura et al. (2012); Papoutsakis et al. (2004); Takano et al. (2009). For hydrogen-bonded motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: XCIF (Bruker, 2008).
Supporting information
10.1107/S1600536813006703/cq2002sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813006703/cq2002Isup2.hkl
All the reactions were carried out under a dry argon atmosphere by using standard Schlenk tube techniques. Vanadium trichloride, VCl3 (1.0 g, 6.4 mmol), was suspended in CH2Cl2 (40 mL), and ethylmethyl sulfide (C3H8S, 1.7 mL, 19 mmol) added to the solution at room temperature. The mixture was stirred at room temperature for 2 d, during which time, a purple precipitate, probably of residual starting material, was generated gradually. This was removed by filtration. The resultant filtrate was concentrated to 5 mL before the addition of n-hexane (10 mL). The solution was then set aside in a freezer at 255 K. After several days, blue crystals grew in the solution. The product was too reactive with liquid water to exist at temperatures higher than 273 K even in solvent under an Ar atmosphere.
The H atoms were placed in calculated positions, with C—H = 0.98 (methyl) and 0.99 (methylene) Å , and refined using a riding model, with Uiso(H) = 1.5.(methyl) and 1.2 Ueq (methylene).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: XCIF (Bruker, 2008).[VCl2O(C3H8S)2] | F(000) = 596 |
Mr = 290.15 | Dx = 1.489 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3238 reflections |
a = 10.503 (3) Å | θ = 2.5–27.0° |
b = 10.386 (3) Å | µ = 1.46 mm−1 |
c = 11.890 (4) Å | T = 150 K |
β = 93.484 (3)° | Block, blue |
V = 1294.6 (7) Å3 | 0.15 × 0.13 × 0.11 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2646 independent reflections |
Radiation source: Bruker TXS fine-focus rotating anode | 2125 reflections with I > 2σ(I) |
Bruker Helios multilayer confocal mirror monochromator | Rint = 0.059 |
Detector resolution: 8.333 pixels mm-1 | θmax = 26.4°, θmin = 2.5° |
ϕ and ω scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −12→12 |
Tmin = 0.811, Tmax = 0.856 | l = −14→14 |
13449 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 1.24 | w = 1/[σ2(Fo2) + (0.P)2] where P = (Fo2 + 2Fc2)/3 |
2646 reflections | (Δ/σ)max < 0.001 |
113 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[VCl2O(C3H8S)2] | V = 1294.6 (7) Å3 |
Mr = 290.15 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.503 (3) Å | µ = 1.46 mm−1 |
b = 10.386 (3) Å | T = 150 K |
c = 11.890 (4) Å | 0.15 × 0.13 × 0.11 mm |
β = 93.484 (3)° |
Bruker APEXII CCD area-detector diffractometer | 2646 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2125 reflections with I > 2σ(I) |
Tmin = 0.811, Tmax = 0.856 | Rint = 0.059 |
13449 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 1.24 | Δρmax = 0.36 e Å−3 |
2646 reflections | Δρmin = −0.37 e Å−3 |
113 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
V1 | 0.29967 (3) | 0.19666 (4) | 0.98439 (3) | 0.02823 (12) | |
Cl1 | 0.08892 (5) | 0.14880 (7) | 0.95318 (5) | 0.0513 (2) | |
Cl2 | 0.38968 (6) | 0.37705 (6) | 1.06207 (5) | 0.04726 (18) | |
S1 | 0.27796 (5) | 0.11532 (6) | 1.17891 (4) | 0.03144 (15) | |
S2 | 0.28225 (5) | 0.31343 (6) | 0.80213 (5) | 0.03179 (15) | |
C1 | 0.4391 (2) | 0.1050 (2) | 1.24240 (17) | 0.0361 (6) | |
H1A | 0.4932 | 0.0586 | 1.1905 | 0.043* | |
H1B | 0.4740 | 0.1931 | 1.2527 | 0.043* | |
C2 | 0.4459 (2) | 0.0369 (3) | 1.35491 (17) | 0.0464 (7) | |
H2A | 0.3901 | 0.0805 | 1.4059 | 0.070* | |
H2B | 0.5339 | 0.0386 | 1.3874 | 0.070* | |
H2C | 0.4182 | −0.0526 | 1.3444 | 0.070* | |
C3 | 0.2416 (2) | −0.0523 (2) | 1.15743 (19) | 0.0467 (6) | |
H3A | 0.3105 | −0.0935 | 1.1186 | 0.070* | |
H3B | 0.1613 | −0.0607 | 1.1115 | 0.070* | |
H3C | 0.2332 | −0.0941 | 1.2305 | 0.070* | |
C4 | 0.4450 (2) | 0.3479 (3) | 0.7720 (2) | 0.0492 (7) | |
H4A | 0.4942 | 0.2677 | 0.7732 | 0.074* | |
H4B | 0.4826 | 0.4070 | 0.8291 | 0.074* | |
H4C | 0.4468 | 0.3878 | 0.6974 | 0.074* | |
C5 | 0.2422 (2) | 0.1881 (2) | 0.70034 (18) | 0.0392 (6) | |
H5A | 0.3071 | 0.1190 | 0.7085 | 0.047* | |
H5B | 0.1588 | 0.1503 | 0.7169 | 0.047* | |
C6 | 0.2351 (3) | 0.2359 (3) | 0.5799 (2) | 0.0544 (7) | |
H6A | 0.1737 | 0.3068 | 0.5718 | 0.082* | |
H6B | 0.2075 | 0.1655 | 0.5292 | 0.082* | |
H6C | 0.3194 | 0.2662 | 0.5606 | 0.082* | |
O1 | 0.39676 (14) | 0.09120 (15) | 0.94548 (12) | 0.0415 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.02533 (19) | 0.0281 (2) | 0.0312 (2) | −0.00192 (16) | 0.00131 (15) | 0.00101 (16) |
Cl1 | 0.0309 (3) | 0.0701 (5) | 0.0518 (4) | −0.0170 (3) | −0.0072 (3) | 0.0221 (3) |
Cl2 | 0.0595 (4) | 0.0392 (4) | 0.0433 (3) | −0.0187 (3) | 0.0047 (3) | −0.0057 (3) |
S1 | 0.0290 (3) | 0.0353 (4) | 0.0302 (3) | −0.0030 (3) | 0.0034 (2) | −0.0008 (2) |
S2 | 0.0319 (3) | 0.0292 (4) | 0.0345 (3) | −0.0001 (3) | 0.0044 (2) | 0.0039 (2) |
C1 | 0.0298 (11) | 0.0464 (16) | 0.0317 (12) | −0.0050 (11) | −0.0007 (9) | −0.0011 (11) |
C2 | 0.0441 (14) | 0.0599 (19) | 0.0344 (13) | 0.0017 (13) | −0.0029 (11) | 0.0058 (12) |
C3 | 0.0614 (16) | 0.0385 (16) | 0.0391 (14) | −0.0180 (13) | −0.0068 (12) | 0.0046 (12) |
C4 | 0.0378 (14) | 0.0590 (19) | 0.0517 (15) | −0.0153 (13) | 0.0097 (12) | 0.0001 (13) |
C5 | 0.0410 (13) | 0.0388 (16) | 0.0376 (13) | −0.0033 (11) | 0.0019 (11) | −0.0036 (11) |
C6 | 0.0561 (16) | 0.070 (2) | 0.0371 (14) | −0.0027 (15) | 0.0041 (12) | −0.0044 (13) |
O1 | 0.0471 (9) | 0.0402 (11) | 0.0374 (9) | 0.0140 (8) | 0.0031 (7) | 0.0023 (7) |
V1—O1 | 1.5845 (15) | C2—H2C | 0.9800 |
V1—Cl2 | 2.2695 (9) | C3—H3A | 0.9800 |
V1—Cl1 | 2.2769 (9) | C3—H3B | 0.9800 |
V1—S2 | 2.4803 (9) | C3—H3C | 0.9800 |
V1—S1 | 2.4858 (9) | C4—H4A | 0.9800 |
S1—C3 | 1.797 (3) | C4—H4B | 0.9800 |
S1—C1 | 1.814 (2) | C4—H4C | 0.9800 |
S2—C4 | 1.804 (2) | C5—C6 | 1.513 (3) |
S2—C5 | 1.810 (2) | C5—H5A | 0.9900 |
C1—C2 | 1.511 (3) | C5—H5B | 0.9900 |
C1—H1A | 0.9900 | C6—H6A | 0.9800 |
C1—H1B | 0.9900 | C6—H6B | 0.9800 |
C2—H2A | 0.9800 | C6—H6C | 0.9800 |
C2—H2B | 0.9800 | ||
O1—V1—Cl2 | 115.47 (7) | H2A—C2—H2C | 109.5 |
O1—V1—Cl1 | 115.97 (7) | H2B—C2—H2C | 109.5 |
Cl2—V1—Cl1 | 128.56 (3) | S1—C3—H3A | 109.5 |
O1—V1—S2 | 95.60 (6) | S1—C3—H3B | 109.5 |
Cl2—V1—S2 | 87.64 (3) | H3A—C3—H3B | 109.5 |
Cl1—V1—S2 | 86.85 (2) | S1—C3—H3C | 109.5 |
O1—V1—S1 | 97.69 (6) | H3A—C3—H3C | 109.5 |
Cl2—V1—S1 | 87.79 (3) | H3B—C3—H3C | 109.5 |
Cl1—V1—S1 | 86.23 (2) | S2—C4—H4A | 109.5 |
S2—V1—S1 | 166.66 (2) | S2—C4—H4B | 109.5 |
C3—S1—C1 | 100.77 (12) | H4A—C4—H4B | 109.5 |
C3—S1—V1 | 103.16 (8) | S2—C4—H4C | 109.5 |
C1—S1—V1 | 105.74 (7) | H4A—C4—H4C | 109.5 |
C4—S2—C5 | 101.24 (11) | H4B—C4—H4C | 109.5 |
C4—S2—V1 | 104.47 (9) | C6—C5—S2 | 113.16 (18) |
C5—S2—V1 | 103.56 (8) | C6—C5—H5A | 108.9 |
C2—C1—S1 | 112.89 (15) | S2—C5—H5A | 108.9 |
C2—C1—H1A | 109.0 | C6—C5—H5B | 108.9 |
S1—C1—H1A | 109.0 | S2—C5—H5B | 108.9 |
C2—C1—H1B | 109.0 | H5A—C5—H5B | 107.8 |
S1—C1—H1B | 109.0 | C5—C6—H6A | 109.5 |
H1A—C1—H1B | 107.8 | C5—C6—H6B | 109.5 |
C1—C2—H2A | 109.5 | H6A—C6—H6B | 109.5 |
C1—C2—H2B | 109.5 | C5—C6—H6C | 109.5 |
H2A—C2—H2B | 109.5 | H6A—C6—H6C | 109.5 |
C1—C2—H2C | 109.5 | H6B—C6—H6C | 109.5 |
O1—V1—S1—C3 | −51.05 (11) | Cl1—V1—S2—C4 | −168.84 (9) |
Cl2—V1—S1—C3 | −166.45 (9) | S1—V1—S2—C4 | 132.35 (13) |
Cl1—V1—S1—C3 | 64.67 (9) | O1—V1—S2—C5 | 52.59 (10) |
S2—V1—S1—C3 | 123.54 (13) | Cl2—V1—S2—C5 | 167.95 (8) |
O1—V1—S1—C1 | 54.33 (10) | Cl1—V1—S2—C5 | −63.22 (8) |
Cl2—V1—S1—C1 | −61.07 (9) | S1—V1—S2—C5 | −122.02 (13) |
Cl1—V1—S1—C1 | 170.05 (9) | C3—S1—C1—C2 | −63.62 (19) |
S2—V1—S1—C1 | −131.08 (13) | V1—S1—C1—C2 | −170.74 (16) |
O1—V1—S2—C4 | −53.04 (11) | C4—S2—C5—C6 | −68.07 (19) |
Cl2—V1—S2—C4 | 62.33 (9) | V1—S2—C5—C6 | −176.14 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.99 | 2.57 | 3.547 (3) | 170 |
Symmetry code: (i) −x+1, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [VCl2O(C3H8S)2] |
Mr | 290.15 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 10.503 (3), 10.386 (3), 11.890 (4) |
β (°) | 93.484 (3) |
V (Å3) | 1294.6 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.46 |
Crystal size (mm) | 0.15 × 0.13 × 0.11 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.811, 0.856 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13449, 2646, 2125 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.066, 1.24 |
No. of reflections | 2646 |
No. of parameters | 113 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.37 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), XCIF (Bruker, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.99 | 2.57 | 3.547 (3) | 170.2 |
Symmetry code: (i) −x+1, −y, −z+2. |
Acknowledgements
This work has been supported by the programs of the Grants-in-Aid for Scientific Research (to TF, No. 23510115) from the Japan Society for the Promotion of Science.
References
Azuma, N., Ozawa, T. & Ishizu, K. (1994). Polyhedron, 13, 1715–1723. CSD CrossRef CAS Web of Science Google Scholar
Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bristow, S., McAvilley, S. C. M., Clegg, W. & Collison, D. (1989). Polyhedron, 8, 87–90. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX2, SADABS, SAINT, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hartung, J., Schmidt, P., Svoboda, I. & Fuess, H. (2005). Acta Cryst. E61, m1253–m1255. Web of Science CrossRef IUCr Journals Google Scholar
Kakeya, M., Fujihara, T., Kasaya, T. & Nagasawa, A. (2006). Organometallics, 25, 4131–4137. Web of Science CSD CrossRef CAS Google Scholar
Kakeya, M., Fujihara, T. & Nagasawa, A. (2006). Acta Cryst. E62, m553–m554. Web of Science CSD CrossRef IUCr Journals Google Scholar
Matsuura, M., Fujihara, T., Nagasawa, A. & Ng, S. W. (2012). Acta Cryst. E68, m1166. CSD CrossRef IUCr Journals Google Scholar
Papoutsakis, D., Ichimura, A. S., Young Jr, V. G., Jackson, J. E. & Nocera, D. G. (2004). J. Chem. Soc. Dalton Trans. pp. 224–228. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takano, K., Sunatsuki, Y., Kojima, M., Kinoshita, I. & Shibahara, T. (2009). Inorg. Chim. Acta, 362, 3201–3207. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of the higher oxidation states of vanadium with neutral thioether ligands in discrete complexes remains relatively unexplored due to the instability of such complexes. Our research group has already carried out X-ray crystallographic determinations of lower oxidation state niobium complexes of the general formula [Nb2Cl6L12L2] (L1= L2= tetrahydrothiophene C4H8S (THT) (Kakeya, Fujihara, Kasaya et al., 2006) and dimethyl sulfide C2H6S (Kakeya, Fujihara & Nagasawa, 2006)) and (L1 = dimethyl selenide C2H6Se, L2 = C2H6S) (Matsuura et al., 2012). We report here the structure of [VOCl2(C3H8S)2] (I, Scheme I). The molecule has two Cl- and two EtMeS ligands (Fig. 1). Crystal structures have been reported for trigonal bipyramidal complexes formed when the water ligands in [VOCl2(H2O)2] are replaced by 8-hydroxyquinolinium chloride (Takano et al., 2009), bis(2-(2-pyridylamino)pyridinium) dichloride (Hartung et al., 2005), diethyl ether (Papoutsakis et al., 2004) and benzo-15-crown-5 (Azuma et al., 1994). The only trigonal bipyramidal complex containing S2- reported to date is [VOCl2(thiourea)2] (II, Bristow et al., 1989). In complex I, the O atom and two Cl- ligands occupy the equatorial positions and the two EtMeS ligands the axial positions of a distorted trigonal bipyramid. The S2—V1—S1 angle of 166.66 (2) o deviates from the ideal value of 180 o. The steric bulkness of the EtMeS ligand may be responsible for controlling the structure. The V—S distances, 2.4803 (9) and 2.4858 (9) Å, in our complex are slightly longer than that of 2.424 (1) Å in II. The average V—Cl distance and other geometrical parameters fall within the range of those in II. In the crystal, pairs of molecules form centrosymmetric R22(10) dimers (Bernstein et al., 1995) via C—H···O hydrogen bonds between the methyl C—H group and the O atom of oxidovanadium in a neighboring molecule (Fig. 2).