organic compounds
3-Bromo-7-methoxy-2-phenylimidazo[2,1-b][1,3]benzothiazole
aDepartment of Chemistry and Chemical Technology, Togliatti State University, 14 Belorusskaya Street, Togliatti 445667, Russian Federation, bDepartment of Bioorganic and Medicinal Chemistry, Samara State University, 1 Academika Pavlova Street, Samara 443011, Russian Federation, and cX-ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: a.s.bunev@gmail.com
In the title molecule, C16H11BrN2OS, the central imidazo[2,1-b][1,3]benzothiazole tricycle is essentially planar (r.m.s. deviation = 0.021 Å). The terminal phenyl ring is twisted at 36.18 (5)° from the mean plane of the tricycle. In the crystal, pairs of eak C—H⋯O hydrogen bonds link molecules into centrosymmetric dimers, which are further packed into stacks along the a axis.
Related literature
For applications of imidazo[2,1-b][1,3]benzothiazoles, see: Mase et al. (1988); Ager et al. (1988); Barchéchath et al. (2005); Kumbhare et al. (2011); Yousefi et al. (2011); Chandak et al. (2013). For the crystal structures of related compounds, see: Landreau et al. (2002); Adib et al. (2008); Fun, Asik et al. (2011); Fun, Hemamalini et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813006582/cv5391sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813006582/cv5391Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813006582/cv5391Isup3.cml
A solution of bromine (0.51 ml, 1.6 g, 10 mmol) in dry CHCl3 (10 ml) was added to a solution of 7-methoxy-2-phenylimidazo[2,1-b][1,3]benzothiazole (2.80 g, 10 mmol) in dry CHCl3 (50 ml). The reaction mixture was stirred at room temperature for 3 h. The solvent was evaporated from the reaction mixture on rotavapor. The crude product was diluted with 5% solution of Na2CO3 in water (50 ml). The precipitate was filtered and crystallized from dimethylformamide. Yield is 89%. The single crystals of I were obtained by slow crystallization from dimethylformamide. M.p. = 447–448 K. IR (KBr), ν/cm-1: 2961, 1607, 1580, 1493, 1222, 684,633. 1H NMR (500 MHz, DMSO-d6, 303 K): δ = 8.31 (d, 1H, H5, J = 9.0), 7.95–8.01 (m, 2H, H2', H6'), 7.73 (d, 1H, H8, J = 2.8), 7.49 (t, 2H, H3', H5', J = 7.7), 7.38 (t, 1H, H4', J = 7.4), 7.17 (dd, 1H, H6, J = 9.0, J = 2.6), 3.85 (s, 3H, OCH3). Anal. Calcd. for C16H11BrN2OS: C, 53.49; H, 3.09; N, 7.8. Found: C, 53.45; H, 3.05; N, 7.75.
All hydrogen atoms were placed in the calculated positions, with C—H = 0.95 Å (CH-groups) and 0.98 Å (CH3-group), and refined in the riding model, with Uiso(H) = 1.2–1.5Ueq(C).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H11BrN2OS | F(000) = 720 |
Mr = 359.24 | Dx = 1.763 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9814 reflections |
a = 3.8346 (4) Å | θ = 2.2–30.5° |
b = 9.4848 (11) Å | µ = 3.19 mm−1 |
c = 37.236 (4) Å | T = 100 K |
β = 91.810 (2)° | Needle, colourless |
V = 1353.6 (3) Å3 | 0.35 × 0.15 × 0.15 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 3924 independent reflections |
Radiation source: fine-focus sealed tube | 3578 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ϕ and ω scans | θmax = 30.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −5→5 |
Tmin = 0.402, Tmax = 0.646 | k = −13→13 |
17224 measured reflections | l = −52→52 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0196P)2 + 2.89P] where P = (Fo2 + 2Fc2)/3 |
3924 reflections | (Δ/σ)max = 0.001 |
191 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −0.95 e Å−3 |
C16H11BrN2OS | V = 1353.6 (3) Å3 |
Mr = 359.24 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 3.8346 (4) Å | µ = 3.19 mm−1 |
b = 9.4848 (11) Å | T = 100 K |
c = 37.236 (4) Å | 0.35 × 0.15 × 0.15 mm |
β = 91.810 (2)° |
Bruker APEXII CCD diffractometer | 3924 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 3578 reflections with I > 2σ(I) |
Tmin = 0.402, Tmax = 0.646 | Rint = 0.041 |
17224 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.59 e Å−3 |
3924 reflections | Δρmin = −0.95 e Å−3 |
191 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | −0.02456 (5) | 0.18794 (2) | 0.820287 (5) | 0.01435 (6) | |
O1 | 0.7765 (4) | −0.18472 (16) | 0.97119 (4) | 0.0169 (3) | |
N1 | 0.3136 (5) | 0.49917 (19) | 0.88973 (5) | 0.0132 (3) | |
C2 | 0.1687 (5) | 0.4553 (2) | 0.85658 (5) | 0.0128 (4) | |
C3 | 0.1626 (5) | 0.3103 (2) | 0.85500 (5) | 0.0132 (4) | |
N4 | 0.3079 (4) | 0.26156 (18) | 0.88734 (4) | 0.0114 (3) | |
C4A | 0.4010 (5) | 0.1337 (2) | 0.90429 (5) | 0.0108 (3) | |
C5 | 0.3563 (5) | −0.0040 (2) | 0.89273 (5) | 0.0122 (4) | |
H5 | 0.2447 | −0.0235 | 0.8701 | 0.015* | |
C6 | 0.4774 (5) | −0.1141 (2) | 0.91473 (6) | 0.0140 (4) | |
H6 | 0.4476 | −0.2091 | 0.9071 | 0.017* | |
C7 | 0.6429 (5) | −0.0847 (2) | 0.94802 (5) | 0.0123 (4) | |
C8 | 0.6842 (5) | 0.0541 (2) | 0.96019 (5) | 0.0131 (4) | |
H8 | 0.7929 | 0.0739 | 0.9829 | 0.016* | |
C8A | 0.5618 (5) | 0.1615 (2) | 0.93805 (5) | 0.0122 (4) | |
S9 | 0.59204 (13) | 0.34210 (5) | 0.947997 (13) | 0.01341 (10) | |
C9A | 0.3926 (5) | 0.3811 (2) | 0.90637 (5) | 0.0120 (4) | |
C10 | 0.0582 (5) | 0.5587 (2) | 0.82933 (5) | 0.0130 (4) | |
C11 | −0.0888 (5) | 0.6869 (2) | 0.83961 (6) | 0.0154 (4) | |
H11 | −0.1203 | 0.7057 | 0.8644 | 0.018* | |
C12 | −0.1889 (6) | 0.7866 (2) | 0.81419 (6) | 0.0192 (4) | |
H12 | −0.2904 | 0.8729 | 0.8216 | 0.023* | |
C13 | −0.1415 (6) | 0.7611 (2) | 0.77781 (6) | 0.0198 (4) | |
H13 | −0.2092 | 0.8298 | 0.7604 | 0.024* | |
C14 | 0.0052 (6) | 0.6347 (3) | 0.76713 (6) | 0.0189 (4) | |
H14 | 0.0374 | 0.6168 | 0.7423 | 0.023* | |
C15 | 0.1053 (5) | 0.5339 (2) | 0.79261 (6) | 0.0159 (4) | |
H15 | 0.2062 | 0.4477 | 0.7851 | 0.019* | |
C16 | 0.7532 (6) | −0.3284 (2) | 0.96000 (6) | 0.0161 (4) | |
H16A | 0.8656 | −0.3888 | 0.9783 | 0.024* | |
H16B | 0.8708 | −0.3400 | 0.9372 | 0.024* | |
H16C | 0.5073 | −0.3551 | 0.9568 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01465 (9) | 0.01602 (10) | 0.01221 (9) | −0.00152 (7) | −0.00252 (6) | −0.00246 (7) |
O1 | 0.0232 (7) | 0.0110 (7) | 0.0161 (7) | 0.0009 (6) | −0.0046 (6) | 0.0000 (5) |
N1 | 0.0148 (8) | 0.0134 (8) | 0.0114 (7) | −0.0011 (6) | 0.0001 (6) | −0.0007 (6) |
C2 | 0.0129 (8) | 0.0144 (9) | 0.0111 (8) | −0.0006 (7) | 0.0002 (7) | −0.0001 (7) |
C3 | 0.0132 (8) | 0.0143 (9) | 0.0121 (8) | −0.0011 (7) | −0.0012 (7) | −0.0025 (7) |
N4 | 0.0121 (7) | 0.0119 (8) | 0.0102 (7) | 0.0002 (6) | −0.0009 (6) | −0.0007 (6) |
C4A | 0.0097 (8) | 0.0134 (9) | 0.0091 (8) | −0.0004 (7) | −0.0005 (6) | 0.0004 (7) |
C5 | 0.0109 (8) | 0.0141 (9) | 0.0116 (8) | −0.0005 (7) | −0.0015 (7) | −0.0014 (7) |
C6 | 0.0130 (9) | 0.0117 (9) | 0.0171 (9) | −0.0011 (7) | −0.0006 (7) | −0.0016 (7) |
C7 | 0.0120 (8) | 0.0138 (9) | 0.0111 (8) | −0.0003 (7) | 0.0004 (7) | 0.0018 (7) |
C8 | 0.0136 (8) | 0.0149 (9) | 0.0107 (8) | −0.0020 (7) | 0.0001 (7) | −0.0007 (7) |
C8A | 0.0114 (8) | 0.0125 (9) | 0.0127 (8) | −0.0008 (7) | −0.0001 (7) | −0.0015 (7) |
S9 | 0.0176 (2) | 0.0104 (2) | 0.0120 (2) | −0.00075 (17) | −0.00341 (17) | −0.00098 (16) |
C9A | 0.0124 (8) | 0.0129 (9) | 0.0106 (8) | −0.0018 (7) | −0.0006 (7) | −0.0020 (7) |
C10 | 0.0109 (8) | 0.0157 (9) | 0.0125 (8) | −0.0019 (7) | −0.0016 (7) | 0.0012 (7) |
C11 | 0.0148 (9) | 0.0150 (9) | 0.0163 (9) | −0.0012 (8) | 0.0001 (7) | 0.0002 (7) |
C12 | 0.0168 (10) | 0.0143 (10) | 0.0262 (11) | 0.0000 (8) | −0.0028 (8) | 0.0027 (8) |
C13 | 0.0168 (10) | 0.0213 (10) | 0.0210 (10) | −0.0025 (8) | −0.0032 (8) | 0.0092 (8) |
C14 | 0.0186 (10) | 0.0250 (11) | 0.0130 (9) | −0.0025 (9) | −0.0020 (8) | 0.0044 (8) |
C15 | 0.0130 (8) | 0.0184 (10) | 0.0164 (9) | −0.0005 (7) | 0.0005 (7) | 0.0031 (8) |
C16 | 0.0188 (9) | 0.0112 (9) | 0.0182 (9) | 0.0008 (8) | −0.0022 (8) | −0.0009 (7) |
Br1—C3 | 1.864 (2) | C8—H8 | 0.9500 |
O1—C7 | 1.371 (2) | C8A—S9 | 1.756 (2) |
O1—C16 | 1.427 (2) | S9—C9A | 1.746 (2) |
N1—C9A | 1.311 (3) | C10—C11 | 1.398 (3) |
N1—C2 | 1.401 (2) | C10—C15 | 1.404 (3) |
C2—C3 | 1.377 (3) | C11—C12 | 1.384 (3) |
C2—C10 | 1.465 (3) | C11—H11 | 0.9500 |
C3—N4 | 1.390 (2) | C12—C13 | 1.394 (3) |
N4—C9A | 1.370 (3) | C12—H12 | 0.9500 |
N4—C4A | 1.408 (3) | C13—C14 | 1.388 (3) |
C4A—C5 | 1.385 (3) | C13—H13 | 0.9500 |
C4A—C8A | 1.407 (3) | C14—C15 | 1.392 (3) |
C5—C6 | 1.397 (3) | C14—H14 | 0.9500 |
C5—H5 | 0.9500 | C15—H15 | 0.9500 |
C6—C7 | 1.403 (3) | C16—H16A | 0.9800 |
C6—H6 | 0.9500 | C16—H16B | 0.9800 |
C7—C8 | 1.399 (3) | C16—H16C | 0.9800 |
C8—C8A | 1.383 (3) | ||
C7—O1—C16 | 117.30 (16) | C9A—S9—C8A | 89.72 (10) |
C9A—N1—C2 | 104.00 (17) | N1—C9A—N4 | 114.52 (17) |
C3—C2—N1 | 109.89 (17) | N1—C9A—S9 | 133.52 (16) |
C3—C2—C10 | 129.46 (18) | N4—C9A—S9 | 111.95 (15) |
N1—C2—C10 | 120.63 (18) | C11—C10—C15 | 118.53 (19) |
C2—C3—N4 | 106.81 (17) | C11—C10—C2 | 120.19 (18) |
C2—C3—Br1 | 131.09 (16) | C15—C10—C2 | 121.25 (19) |
N4—C3—Br1 | 121.94 (15) | C12—C11—C10 | 120.8 (2) |
C9A—N4—C3 | 104.77 (17) | C12—C11—H11 | 119.6 |
C9A—N4—C4A | 115.35 (16) | C10—C11—H11 | 119.6 |
C3—N4—C4A | 139.80 (17) | C11—C12—C13 | 120.3 (2) |
C5—C4A—N4 | 130.27 (17) | C11—C12—H12 | 119.9 |
C5—C4A—C8A | 120.03 (18) | C13—C12—H12 | 119.9 |
N4—C4A—C8A | 109.70 (17) | C14—C13—C12 | 119.7 (2) |
C4A—C5—C6 | 119.16 (18) | C14—C13—H13 | 120.2 |
C4A—C5—H5 | 120.4 | C12—C13—H13 | 120.2 |
C6—C5—H5 | 120.4 | C13—C14—C15 | 120.2 (2) |
C5—C6—C7 | 120.13 (19) | C13—C14—H14 | 119.9 |
C5—C6—H6 | 119.9 | C15—C14—H14 | 119.9 |
C7—C6—H6 | 119.9 | C14—C15—C10 | 120.5 (2) |
O1—C7—C8 | 114.26 (17) | C14—C15—H15 | 119.8 |
O1—C7—C6 | 124.62 (18) | C10—C15—H15 | 119.8 |
C8—C7—C6 | 121.12 (18) | O1—C16—H16A | 109.5 |
C8A—C8—C7 | 117.81 (18) | O1—C16—H16B | 109.5 |
C8A—C8—H8 | 121.1 | H16A—C16—H16B | 109.5 |
C7—C8—H8 | 121.1 | O1—C16—H16C | 109.5 |
C8—C8A—C4A | 121.72 (18) | H16A—C16—H16C | 109.5 |
C8—C8A—S9 | 125.00 (16) | H16B—C16—H16C | 109.5 |
C4A—C8A—S9 | 113.27 (15) | ||
C9A—N1—C2—C3 | 0.9 (2) | N4—C4A—C8A—C8 | −178.98 (18) |
C9A—N1—C2—C10 | −177.60 (18) | C5—C4A—C8A—S9 | −179.60 (15) |
N1—C2—C3—N4 | −0.5 (2) | N4—C4A—C8A—S9 | 0.2 (2) |
C10—C2—C3—N4 | 177.8 (2) | C8—C8A—S9—C9A | 178.51 (19) |
N1—C2—C3—Br1 | 174.83 (15) | C4A—C8A—S9—C9A | −0.68 (16) |
C10—C2—C3—Br1 | −6.9 (4) | C2—N1—C9A—N4 | −0.9 (2) |
C2—C3—N4—C9A | 0.0 (2) | C2—N1—C9A—S9 | 177.88 (18) |
Br1—C3—N4—C9A | −175.90 (14) | C3—N4—C9A—N1 | 0.6 (2) |
C2—C3—N4—C4A | −176.4 (2) | C4A—N4—C9A—N1 | 178.04 (18) |
Br1—C3—N4—C4A | 7.7 (3) | C3—N4—C9A—S9 | −178.45 (14) |
C9A—N4—C4A—C5 | −179.7 (2) | C4A—N4—C9A—S9 | −1.0 (2) |
C3—N4—C4A—C5 | −3.5 (4) | C8A—S9—C9A—N1 | −177.9 (2) |
C9A—N4—C4A—C8A | 0.5 (2) | C8A—S9—C9A—N4 | 0.95 (15) |
C3—N4—C4A—C8A | 176.6 (2) | C3—C2—C10—C11 | 146.1 (2) |
N4—C4A—C5—C6 | 179.2 (2) | N1—C2—C10—C11 | −35.7 (3) |
C8A—C4A—C5—C6 | −1.0 (3) | C3—C2—C10—C15 | −35.6 (3) |
C4A—C5—C6—C7 | −0.2 (3) | N1—C2—C10—C15 | 142.5 (2) |
C16—O1—C7—C8 | −178.10 (18) | C15—C10—C11—C12 | 0.6 (3) |
C16—O1—C7—C6 | 1.8 (3) | C2—C10—C11—C12 | 178.9 (2) |
C5—C6—C7—O1 | −178.68 (19) | C10—C11—C12—C13 | −0.6 (3) |
C5—C6—C7—C8 | 1.2 (3) | C11—C12—C13—C14 | 0.3 (3) |
O1—C7—C8—C8A | 178.87 (18) | C12—C13—C14—C15 | −0.1 (3) |
C6—C7—C8—C8A | −1.1 (3) | C13—C14—C15—C10 | 0.2 (3) |
C7—C8—C8A—C4A | −0.1 (3) | C11—C10—C15—C14 | −0.4 (3) |
C7—C8—C8A—S9 | −179.27 (15) | C2—C10—C15—C14 | −178.7 (2) |
C5—C4A—C8A—C8 | 1.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.95 | 2.56 | 3.465 (3) | 158 |
Symmetry code: (i) −x+2, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C16H11BrN2OS |
Mr | 359.24 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 3.8346 (4), 9.4848 (11), 37.236 (4) |
β (°) | 91.810 (2) |
V (Å3) | 1353.6 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.19 |
Crystal size (mm) | 0.35 × 0.15 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.402, 0.646 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17224, 3924, 3578 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.070, 1.00 |
No. of reflections | 3924 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.59, −0.95 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.95 | 2.56 | 3.465 (3) | 158 |
Symmetry code: (i) −x+2, −y, −z+2. |
Acknowledgements
The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 3.1168.2011).
References
Adib, M., Sheibani, E., Zhu, L.-G. & Bijanzadeh, H. R. (2008). Synlett, pp. 2941–2944. Web of Science CSD CrossRef Google Scholar
Ager, I. R., Barnes, A. C., Danswan, G. W., Hairsine, P. W., Kay, D. P., Kennewell, P. D., Matharu, S. S., Miller, P. & Robson, P. (1988). J. Med. Chem. 31, 1098–1115. CrossRef CAS PubMed Web of Science Google Scholar
Barchéchath, S. D., Tawatao, R. I., Corr, V., Carson, D. I. & Cottam, H. B. (2005). J. Med. Chem. 48, 6409–6422. Web of Science PubMed Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chandak, N., Bhardwaj, J. K., Sharma, R. K. & Sharma, P. K. (2013). Eur. J. Med. Chem. 59, 203–208. Web of Science CrossRef CAS PubMed Google Scholar
Fun, H.-K., Asik, S. I. J., Himaja, M., Munirajasekhar, D. & Sarojini, B. K. (2011). Acta Cryst. E67, o2810. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Hemamalini, M., Umesha, K., Sarojini, B. K. & Narayana, B. (2011). Acta Cryst. E67, o3265–o3266. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kumbhare, R. M., Kumar, K. V., Ramaiah, M. J., Dadmal, T., Pushpavalli, S. N., Mukhopadhyay, D., Divya, B., Devi, T. A., Kosurkar, U. & Pal-Bhadra, M. (2011). Eur. J. Med. Chem. 46, 4258–4266. Web of Science CrossRef CAS PubMed Google Scholar
Landreau, C., Deniaud, D., Evain, M., Reliquet, A. & Meslin, J.-C. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 741–745. Web of Science CSD CrossRef Google Scholar
Mase, T., Arima, H., Tomioka, K., Yamada, T. & Murase, K. (1988). Eur. J. Med. Chem. 23, 335–339. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yousefi, B. H., Drzezga, F., Reutern, B., Manook, A., Schwaiger, H. M., Wester, H. J. & Henriksen, G. (2011). ACS Med. Chem. Lett. 2, 673–677. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Imidazo[2,1–b][1,3]benzothiazoles are of great interest due to their biological properties. These compounds and their derivatives demonstrate the immunosuppressive (Mase et al., 1988), antiallergic (Ager et al., 1988) and anti-cancer (Kumbhare et al., 2011) activities as well as the inhibition activity of apoptosis in testiculargerm cells (Chandak et al., 2013) and lymphocytes (Barchéchath et al., 2005). Moreover, the substituted imidazo[2,1–b][1,3]benzothiazoles have emerged as significant components in various diversified therapeutic applications. In particular, they are potential agents for High-Contrast PET Imaging (Yousefi et al., 2011). In this work, a new halogensubstituted imidazo[2,1-b][1,3]benzothiazole, C16H11N2OSBr, (I) was prepared by the reaction of imidazo[2,1–b][1,3]benzothiazole with bromine at room temperature (Figure 1), and its structure was unambiguously established by the X-ray diffraction study (Figure 2).
The bond lengths and angles within the molecule of I are in a good agreement with those found in the related compounds (Landreau et al., 2002; Adib et al., 2008; Fun, Asik et al., 2011; Fun, Hemamalini et al., 2011). The central imidazo[2,1–b][1,3]benzothiazole fragment is essentially planar (r.m.s. deviation is 0.021 Å). The methoxy group is practically coplanar to this fragment (the corresponding C6—C7—O1—C16 dihedral angle is 1.8 (3)°), and the terminal phenyl ring is twisted from it at 36.18 (5)°.
In the crystal, molecules form the centrosymmetrical dimers by the weak intermolecular C—H···O hydrogen bonds (Table 1, Figure 3). The dimers are further packed into stacks along the a axis.