organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o565-o566

Ethyl 23-benzyl-8,11,14-trioxa-23,28,29-tri­aza­penta­cyclo­[19.7.1.02,7.015,20.022,27]nona­cosa-2,4,6,15(20),16,18,21,26-octa­ene-26-carboxyl­ate

aDepartment of Chemistry, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bOrganic Chemistry Department, Russian Peoples Friendship University, Miklukho-Maklaya St. 6, Moscow 117198, Russia, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: thh1101@yahoo.com

(Received 13 March 2013; accepted 16 March 2013; online 23 March 2013)

The title compound, C33H35N3O5, is the product of the multicomponent condensation of 1-benzyl-4-eth­oxy­carbonyl­piperidin-3-one with 1,5-bis­(2-formyl­phen­oxy)-3-oxapentane and ammonium acetate. The mol­ecule comprises a penta­cyclic system containing the aza-14-crown-4-ether macrocycle, tetra­hydro­pyrimidine, tetra­hydro­pyridine and two benzene rings. The aza-14-crown-4-ether ring adopts a bowl conformation with a dihedral angle of 62.37 (5)° between the benzene rings. The tetra­hydro­pyrimidine ring has an envelope conformation with the chiral C atom as the flap, whereas the tetra­hydro­pyridine ring adopts a distorted chair conformation. Two amino groups are involved in intra­molecular N—H⋯O hydrogen bonds. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the ab plane.

Related literature

For general background to the design, synthesis, chemical properties and applications of macrocyclic ligands for coordination chemistry, see: Hiraoka (1982[Hiraoka, M. (1982). In Crown Compounds. Their Characteristic and Application. Tokyo: Kodansha.]); Pedersen (1988[Pedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1053-1083.]); Gokel & Murillo (1996[Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425-432.]); Bradshaw & Izatt (1997[Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338-345.]). For the crystal structures of related compounds, see: Levov et al. (2006[Levov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. pp. 35-37.], 2008[Levov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665-1670.]); Komarova et al. (2008[Komarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd, 44, 624-625.]); Anh et al. (2008[Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463-465.], 2012a[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386-o1387.],b[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588-o1589.],c[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165-o2166.]); Hieu et al. (2009[Hieu, T. H., Anh, L. T., Levov, A. N., Nikitina, E. V. & Soldatenkov, A. T. (2009). Chem. Heterocycl. Compd, 45, 1406-1407.], 2011[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd, 47, 1307-1308.], 2012a[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431-o2432.],b[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848-o2849.]); Khieu et al. (2011[Khieu, T. H., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766-770.]); Sokol et al. (2011[Sokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2086-2088.]).

[Scheme 1]

Experimental

Crystal data
  • C33H35N3O5

  • Mr = 553.64

  • Monoclinic, P 21

  • a = 10.5304 (5) Å

  • b = 12.6363 (5) Å

  • c = 10.7246 (5) Å

  • β = 92.865 (1)°

  • V = 1425.29 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.24 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.982

  • 18837 measured reflections

  • 8289 independent reflections

  • 6878 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.094

  • S = 1.00

  • 8289 reflections

  • 377 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N24—H24⋯O1′ 0.882 (18) 2.015 (18) 2.6928 (16) 132.8 (15)
N25—H25⋯O14 0.882 (18) 2.441 (17) 2.9744 (17) 119.3 (13)
C6—H6⋯O1′i 0.95 2.42 3.3516 (19) 168
C18—H18⋯O1′ii 0.95 2.42 3.3613 (19) 174
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+2]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design, preparation and applications of macroheterocyclic ligands for coordination, supramolecular and medicinal chemistry draw constant attention of investigators during the last several decades (Hiraoka, 1982; Pedersen,1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997). Recently we have developed the effective method of synthesis of azacrown ethers including piperidine (Levov et al., 2006); Anh et al., 2008, 2012a,b), cycloalkanopiperidine (Levov et al. 2008); bispidine (Komarova et al.; Sokol et al.; Hieu et al. 2012a; Anh et al. 2012c); perhydropyrimidine (Hieu et al., 2011) and perhydrotriazine (Hieu et al., 2009, 2012b; Khieu et al., 2011) subunits.

In attempts to apply the chemistry for obtaining azacrown ether containing ethoxy-substituted bispidino subunit with two nitrogen atoms in the unsymmetrical positions, we studied the multicomponent condensation of the 1-benzyl-4-ethoxycarbonylpiperidin-3-one (ketone component) with 1,5-bis(2-formylphenoxy)-3-oxapentane (podand) and ammonium acetate. The reaction has proceeded smoothly under mild conditions to give the title compound as an unexpected product (Fig. 1). The first step of this cascade process appears to be the intermolecular condensation of one aldehyde group of the podand with the activated methylene group of the ketone component. Then the addition of one molecule of ammonia to the keto-group yields its hydroxyl-amino form. Further the second aldehyde group is condensed with the amino group to form the intermediate azacrown ether containing 1,4-azadiene fragment fused to piperidine moiety. The final step is the double Mannich cycloaddition of another molecule of ammonia to the azadiene moiety followed by dehydration to form the product. The structure of the new azacrown system, C33H35N3O5 (I), was unambiguously established by X-ray diffraction study.

The molecule of I comprises a pentacyclic system containing the aza-14-crown-4-ether macrocycle, tetrahydropyrimidine, tetrahydropyridine and two benzene rings (Fig. 2). The aza-14-crown-4-ether ring adopts a bowl conformation. The configuration of the C7—O8—C9—C10 —O11—C12—C13—O14—C15 polyether chain is t–g(-)–t–t–g(+)–t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 62.37 (5)°. The central tetrahydropyrimidine ring has an envelope conformation (the C1 carbon atom is out of the plane passed through the other atoms of the ring (r.m.s. deviation = 0.023 Å) by 0.661 (2) Å), which is stabilized by the intramolecular N25—H25···O14 hydrogen bond (Table 1). The terminal tetrahydropyridine ring adopts a distorted chair conformation (the N1' nitrogen and C6' carbon atoms are out of the plane passed through the other atoms of the ring (r.m.s. deviation = 0.012 Å) by -0.245 (3) and 0.431 (3) Å, respectively). The three N24, N25 and N1' nitrogen atoms have the trigonal-pyramidal geometries. The carboxylate substituent (except for the terminal C16' carbon atom) is practically coplanar to the basal C22—C23—C4'—C5' plane of the tetrahydropyridine ring (the O2'—C14'—C4'—C5' dihedral angle is -5.5 (2)°). This disposition is apparently determined by the intramolecular N24—H24···O1' hydrogen bond (Table 1).

The molecule of I possesses an asymmetric center at the C1 carbon atom and crystallizes in the chiral space group P21. However, its absolute configuration cannot be objectively determined because the absence of the heavy (Z > 14) atoms within the molecule.

In the crystal, the molecules of I are bound by the weak intermolecular C—H···O hydrogen bonding interactions (Table 1) into layers parallel to ab> plane (Figure 3).

Related literature top

For general background to the design, synthesis, chemical properties and applications of macrocyclic ligands for coordination chemistry, see: Hiraoka (1982); Pedersen (1988); Gokel & Murillo (1996); Bradshaw & Izatt (1997). For the crystal structures of related compounds, see: Levov et al. (2006, 2008); Komarova et al. (2008); Anh et al. (2008, 2012a,b,c); Hieu et al. (2009, 2011, 2012a,b); Khieu et al. (2011); Sokol et al. (2011).

Experimental top

Ammonium acetate (5.0 g, 65 mmol) was added to a solution of 1,5-bis(2-formylphenoxy)-3-oxapentane (1.57 g, 5.0 mmol) and 1-benzyl-4-ethoxycarbonylpiperidin-3-one (1.48 g, 5.0 mmol) in ethanol (30 ml) – acetic acid (2 ml). The reaction mixture was stirred at 293 K for 3 days. At the end of the reaction, the formed precipitate was filtered off, washed with ethanol and chromatographically purified on the column filled with silica gel. A re-crystallization from hexane:ethylacetate (3:1) mixture gave 0.83 g of light-yellow crystals of I.Yield is 30.0%. M.p. = 373–376 K. IR (KBr), ν/cm-1: 1599, 1644, 3297, 3374, 3453. 1H NMR (CDCl3, 400 MHz, 300 K): δ = 1.29 (t, 3H, J = 7.2 and 6.8, CH2CH3), 2.26 and 2.78 (both m, 1H and 3H, correspondingly, NCH2CH2), 3.50 and 3.85 (both d, 1H each, J = 13.2 each, NCH2Ar), 3.73–4.15 (m, 9H, OCH2CH2OCH2CH2O and CH2CH3), 4.83 (s, 1H, N—H25), 6.05 (s, 1H, H1), 6.73 (dd, 2H, J = 7.7 and 1.6, H6 and H16), 6.8 (broad t, 2H, J = 8.9, H4 and H18), 6.97–7.09 (m, 5H, Harom), 7.28–7.32 (m, 2H, Harom), 7.47 (dd, 2H, J = 7.6 and 1.6, H3), 7.87 (dd, 2H, J = 7.6 and 1.2, H19), 8.61 (s, 1H, N—H24). Anal. Calcd for C33H35N3O5: C, 71.59; H, 6.37; N, 7.59. Found: C, 71.53; H, 6.22; N, 7.37.

Refinement top

The absolute structure of I cannot be objectively determined by the refinement of Flack parameter because the absence of the heavy (Z > 14) atoms within the molecule.

The hydrogen atoms of the amino groups were localized in the difference-Fourier map and refined isotropically with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the methyl group and 1.2Ueq(C) for the other groups].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Multicomponent condensation of the 1-benzyl-4-ethoxycarbonylpiperidin-3-one with 1,5-bis(2-formylphenoxy)-3-oxapentane and ammonium acetate.
[Figure 2] Fig. 2. Molecular structure of I. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The intramolecular N—H···O hydrogen bonds are drawn by dashed lines.
[Figure 3] Fig. 3. A portion of the crystal structure showing the weak intermolecular C—H···O hydrogen bonds, which are depicted by dashed lines.
Ethyl 23-benzyl-8,11,14-trioxa-23,28,29-triazapentacyclo[19.7.1.02,7.015,20.022,27]nonacosa-2,4,6,15 (20),16,18,21,26-octaene-26-carboxylate top
Crystal data top
C33H35N3O5F(000) = 588
Mr = 553.64Dx = 1.290 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5715 reflections
a = 10.5304 (5) Åθ = 2.5–31.8°
b = 12.6363 (5) ŵ = 0.09 mm1
c = 10.7246 (5) ÅT = 100 K
β = 92.865 (1)°Prism, yellow
V = 1425.29 (11) Å30.30 × 0.24 × 0.21 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
8289 independent reflections
Radiation source: fine-focus sealed tube6878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1414
Tmin = 0.974, Tmax = 0.982k = 1717
18837 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.123P]
where P = (Fo2 + 2Fc2)/3
8289 reflections(Δ/σ)max < 0.001
377 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C33H35N3O5V = 1425.29 (11) Å3
Mr = 553.64Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.5304 (5) ŵ = 0.09 mm1
b = 12.6363 (5) ÅT = 100 K
c = 10.7246 (5) Å0.30 × 0.24 × 0.21 mm
β = 92.865 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8289 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
6878 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.982Rint = 0.027
18837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.23 e Å3
8289 reflectionsΔρmin = 0.18 e Å3
377 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22606 (12)0.22945 (12)0.85547 (12)0.0266 (3)
H10.19920.29500.80900.032*
C20.16248 (12)0.22544 (12)0.97887 (12)0.0271 (3)
C30.13663 (14)0.13054 (13)1.03713 (13)0.0310 (3)
H30.15700.06600.99740.037*
C40.08137 (14)0.12737 (14)1.15267 (14)0.0347 (3)
H40.06440.06151.19120.042*
C50.05172 (14)0.22147 (15)1.21021 (14)0.0376 (3)
H50.01480.22001.28920.045*
C60.07508 (15)0.31771 (14)1.15432 (14)0.0365 (3)
H60.05330.38191.19420.044*
C70.13097 (13)0.31993 (13)1.03861 (13)0.0312 (3)
O80.15789 (13)0.41119 (10)0.97691 (11)0.0441 (3)
C90.16598 (16)0.50775 (12)1.04698 (14)0.0360 (3)
H9A0.21060.49571.12920.043*
H9B0.07990.53561.06070.043*
C100.23872 (16)0.58408 (13)0.97119 (14)0.0367 (3)
H10A0.20170.58740.88460.044*
H10B0.23620.65581.00810.044*
O110.36498 (10)0.54650 (9)0.97231 (10)0.0380 (3)
C120.43821 (16)0.59053 (13)0.87902 (14)0.0372 (3)
H12A0.45940.66510.89950.045*
H12B0.38990.58890.79750.045*
C130.55719 (15)0.52654 (12)0.87280 (14)0.0338 (3)
H13A0.61340.55710.81080.041*
H13B0.60390.52520.95520.041*
O140.51863 (10)0.42183 (9)0.83650 (11)0.0372 (2)
C150.61093 (14)0.35024 (12)0.81031 (13)0.0298 (3)
C160.74063 (14)0.37340 (13)0.81731 (15)0.0361 (3)
H160.76940.44040.84720.043*
C170.82748 (14)0.29860 (14)0.78062 (15)0.0388 (4)
H170.91560.31500.78470.047*
C180.78697 (14)0.20051 (13)0.73815 (15)0.0367 (4)
H180.84650.14990.71140.044*
C190.65764 (14)0.17656 (13)0.73505 (14)0.0325 (3)
H190.63000.10850.70750.039*
C200.56790 (13)0.25002 (12)0.77133 (12)0.0273 (3)
C210.43077 (12)0.22008 (12)0.76601 (12)0.0269 (3)
C220.37341 (13)0.17558 (12)0.66288 (13)0.0272 (3)
C230.24979 (13)0.12495 (11)0.66886 (12)0.0255 (3)
N240.19281 (12)0.13681 (10)0.78031 (11)0.0289 (3)
H240.1137 (17)0.1140 (14)0.7817 (16)0.035*
N250.36503 (11)0.22816 (11)0.87544 (11)0.0278 (2)
H250.3951 (16)0.2792 (14)0.9247 (16)0.033*
N1'0.43614 (11)0.17458 (10)0.54726 (10)0.0272 (2)
C4'0.20023 (13)0.06475 (12)0.57082 (12)0.0280 (3)
C5'0.27720 (14)0.04519 (14)0.45751 (13)0.0353 (3)
H5A0.24250.08850.38690.042*
H5B0.26990.03020.43310.042*
C6'0.41709 (14)0.07292 (12)0.48401 (13)0.0306 (3)
H6A0.45750.01650.53640.037*
H6B0.46020.07470.40410.037*
C7'0.39864 (15)0.26627 (13)0.46972 (15)0.0357 (3)
H7A0.38810.32820.52480.043*
H7B0.31510.25140.42690.043*
C8'0.49217 (14)0.29427 (11)0.37288 (13)0.0301 (3)
C9'0.44865 (17)0.34402 (13)0.26331 (15)0.0399 (4)
H90.35990.35250.24620.048*
C10'0.5333 (2)0.38131 (15)0.17872 (17)0.0510 (5)
H100.50240.41640.10490.061*
C11'0.6611 (2)0.36766 (15)0.20134 (18)0.0542 (5)
H110.71890.39300.14310.065*
C12'0.70637 (18)0.31703 (15)0.30879 (18)0.0474 (4)
H120.79520.30700.32390.057*
C13'0.62174 (15)0.28063 (13)0.39512 (15)0.0366 (3)
H130.65310.24640.46930.044*
C14'0.07571 (14)0.01805 (12)0.57658 (13)0.0298 (3)
O1'0.00688 (10)0.02090 (9)0.66562 (9)0.0342 (2)
O2'0.03869 (11)0.03237 (11)0.46902 (11)0.0452 (3)
C15'0.08813 (17)0.07689 (17)0.46202 (18)0.0507 (5)
H15A0.11110.10000.54620.061*
H15B0.09010.13970.40680.061*
C16'0.1818 (2)0.0022 (2)0.4129 (3)0.0858 (9)
H16A0.26540.03130.40060.129*
H16B0.15480.02980.33300.129*
H16C0.18710.06050.47270.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0254 (6)0.0334 (7)0.0211 (6)0.0014 (6)0.0027 (5)0.0038 (5)
C20.0213 (6)0.0390 (7)0.0210 (6)0.0017 (6)0.0012 (5)0.0044 (6)
C30.0274 (7)0.0388 (8)0.0271 (7)0.0060 (6)0.0032 (5)0.0015 (6)
C40.0281 (7)0.0466 (9)0.0299 (7)0.0044 (6)0.0053 (6)0.0039 (6)
C50.0307 (7)0.0566 (10)0.0262 (7)0.0022 (7)0.0087 (5)0.0027 (7)
C60.0354 (8)0.0456 (9)0.0295 (7)0.0015 (7)0.0089 (6)0.0103 (7)
C70.0298 (7)0.0385 (8)0.0257 (7)0.0007 (6)0.0045 (5)0.0063 (6)
O80.0656 (8)0.0368 (6)0.0311 (6)0.0050 (6)0.0139 (5)0.0102 (5)
C90.0405 (8)0.0359 (8)0.0317 (7)0.0062 (6)0.0044 (6)0.0091 (6)
C100.0431 (9)0.0337 (8)0.0329 (8)0.0110 (7)0.0015 (6)0.0025 (6)
O110.0395 (6)0.0419 (6)0.0330 (5)0.0087 (5)0.0049 (5)0.0092 (5)
C120.0484 (9)0.0305 (7)0.0327 (8)0.0005 (7)0.0014 (7)0.0052 (6)
C130.0386 (8)0.0323 (8)0.0306 (7)0.0076 (6)0.0026 (6)0.0011 (6)
O140.0305 (5)0.0331 (6)0.0484 (7)0.0034 (4)0.0060 (5)0.0088 (5)
C150.0286 (7)0.0345 (7)0.0267 (7)0.0018 (6)0.0049 (5)0.0024 (5)
C160.0315 (8)0.0398 (9)0.0370 (8)0.0073 (6)0.0027 (6)0.0032 (7)
C170.0251 (7)0.0517 (10)0.0399 (8)0.0032 (7)0.0043 (6)0.0146 (7)
C180.0283 (7)0.0469 (10)0.0353 (8)0.0096 (6)0.0059 (6)0.0089 (7)
C190.0322 (7)0.0368 (8)0.0288 (7)0.0029 (6)0.0035 (6)0.0033 (6)
C200.0252 (6)0.0358 (8)0.0211 (6)0.0013 (5)0.0034 (5)0.0027 (5)
C210.0244 (6)0.0309 (7)0.0257 (6)0.0001 (6)0.0046 (5)0.0027 (6)
C220.0266 (7)0.0336 (7)0.0220 (6)0.0012 (6)0.0070 (5)0.0004 (5)
C230.0260 (6)0.0287 (7)0.0220 (6)0.0024 (5)0.0026 (5)0.0005 (5)
N240.0261 (6)0.0375 (7)0.0237 (5)0.0049 (5)0.0061 (5)0.0066 (5)
N250.0242 (5)0.0367 (6)0.0229 (5)0.0029 (5)0.0039 (4)0.0067 (5)
N1'0.0292 (6)0.0331 (6)0.0197 (5)0.0018 (5)0.0057 (4)0.0014 (4)
C4'0.0285 (7)0.0341 (8)0.0216 (6)0.0000 (6)0.0020 (5)0.0031 (5)
C5'0.0343 (8)0.0487 (9)0.0230 (6)0.0027 (7)0.0043 (6)0.0086 (6)
C6'0.0305 (7)0.0380 (8)0.0236 (6)0.0027 (6)0.0058 (5)0.0037 (6)
C7'0.0349 (8)0.0405 (8)0.0323 (7)0.0109 (6)0.0092 (6)0.0078 (6)
C8'0.0372 (8)0.0272 (7)0.0265 (7)0.0017 (6)0.0064 (6)0.0013 (5)
C9'0.0499 (9)0.0385 (9)0.0311 (7)0.0039 (7)0.0001 (7)0.0061 (6)
C10'0.0774 (14)0.0410 (10)0.0352 (9)0.0028 (9)0.0092 (9)0.0128 (7)
C11'0.0757 (14)0.0426 (10)0.0466 (10)0.0157 (9)0.0262 (10)0.0039 (8)
C12'0.0409 (9)0.0468 (10)0.0555 (10)0.0095 (8)0.0138 (8)0.0014 (9)
C13'0.0377 (8)0.0378 (8)0.0346 (8)0.0006 (6)0.0047 (6)0.0034 (6)
C14'0.0307 (7)0.0312 (7)0.0273 (7)0.0001 (6)0.0015 (5)0.0019 (6)
O1'0.0327 (5)0.0388 (6)0.0314 (5)0.0058 (4)0.0052 (4)0.0018 (4)
O2'0.0381 (6)0.0640 (8)0.0335 (6)0.0157 (6)0.0017 (5)0.0158 (5)
C15'0.0457 (10)0.0629 (12)0.0430 (10)0.0233 (9)0.0026 (8)0.0109 (9)
C16'0.0484 (12)0.113 (2)0.0931 (19)0.0321 (13)0.0237 (12)0.0484 (17)
Geometric parameters (Å, º) top
C1—N241.4542 (18)C21—C221.3556 (19)
C1—N251.4685 (17)C21—N251.3957 (16)
C1—C21.5135 (17)C22—N1'1.4338 (17)
C1—H11.0000C22—C231.4548 (19)
C2—C31.386 (2)C23—N241.3721 (17)
C2—C71.403 (2)C23—C4'1.3790 (19)
C3—C41.396 (2)N24—H240.882 (18)
C3—H30.9500N25—H250.883 (18)
C4—C51.383 (2)N1'—C6'1.4620 (19)
C4—H40.9500N1'—C7'1.4687 (19)
C5—C61.383 (3)C4'—C14'1.442 (2)
C5—H50.9500C4'—C5'1.5144 (19)
C6—C71.400 (2)C5'—C6'1.527 (2)
C6—H60.9500C5'—H5A0.9900
C7—O81.366 (2)C5'—H5B0.9900
O8—C91.4334 (18)C6'—H6A0.9900
C9—C101.497 (2)C6'—H6B0.9900
C9—H9A0.9900C7'—C8'1.509 (2)
C9—H9B0.9900C7'—H7A0.9900
C10—O111.4114 (19)C7'—H7B0.9900
C10—H10A0.9900C8'—C13'1.384 (2)
C10—H10B0.9900C8'—C9'1.390 (2)
O11—C121.4079 (18)C9'—C10'1.386 (2)
C12—C131.495 (2)C9'—H90.9500
C12—H12A0.9900C10'—C11'1.367 (3)
C12—H12B0.9900C10'—H100.9500
C13—O141.4322 (18)C11'—C12'1.382 (3)
C13—H13A0.9900C11'—H110.9500
C13—H13B0.9900C12'—C13'1.395 (2)
O14—C151.3672 (18)C12'—H120.9500
C15—C161.395 (2)C13'—H130.9500
C15—C201.402 (2)C14'—O1'1.2279 (17)
C16—C171.386 (2)C14'—O2'1.3578 (17)
C16—H160.9500O2'—C15'1.448 (2)
C17—C181.381 (2)C15'—C16'1.482 (3)
C17—H170.9500C15'—H15A0.9900
C18—C191.394 (2)C15'—H15B0.9900
C18—H180.9500C16'—H16A0.9800
C19—C201.394 (2)C16'—H16B0.9800
C19—H190.9500C16'—H16C0.9800
C20—C211.4912 (18)
N24—C1—N25106.41 (11)N25—C21—C20117.99 (11)
N24—C1—C2110.67 (12)C21—C22—N1'120.23 (12)
N25—C1—C2110.68 (11)C21—C22—C23120.64 (12)
N24—C1—H1109.7N1'—C22—C23119.09 (12)
N25—C1—H1109.7N24—C23—C4'123.99 (12)
C2—C1—H1109.7N24—C23—C22114.94 (12)
C3—C2—C7118.32 (12)C4'—C23—C22120.95 (12)
C3—C2—C1121.92 (13)C23—N24—C1117.85 (12)
C7—C2—C1119.74 (13)C23—N24—H24115.7 (11)
C2—C3—C4121.69 (14)C1—N24—H24117.0 (11)
C2—C3—H3119.2C21—N25—C1114.25 (11)
C4—C3—H3119.2C21—N25—H25112.2 (11)
C5—C4—C3119.02 (15)C1—N25—H25113.9 (11)
C5—C4—H4120.5C22—N1'—C6'110.52 (11)
C3—C4—H4120.5C22—N1'—C7'111.12 (11)
C4—C5—C6120.91 (13)C6'—N1'—C7'113.80 (11)
C4—C5—H5119.5C23—C4'—C14'120.22 (12)
C6—C5—H5119.5C23—C4'—C5'120.30 (12)
C5—C6—C7119.57 (14)C14'—C4'—C5'119.46 (12)
C5—C6—H6120.2C4'—C5'—C6'111.30 (11)
C7—C6—H6120.2C4'—C5'—H5A109.4
O8—C7—C6123.56 (14)C6'—C5'—H5A109.4
O8—C7—C2115.95 (12)C4'—C5'—H5B109.4
C6—C7—C2120.49 (14)C6'—C5'—H5B109.4
C7—O8—C9118.22 (11)H5A—C5'—H5B108.0
O8—C9—C10106.41 (12)N1'—C6'—C5'113.37 (12)
O8—C9—H9A110.4N1'—C6'—H6A108.9
C10—C9—H9A110.4C5'—C6'—H6A108.9
O8—C9—H9B110.4N1'—C6'—H6B108.9
C10—C9—H9B110.4C5'—C6'—H6B108.9
H9A—C9—H9B108.6H6A—C6'—H6B107.7
O11—C10—C9106.62 (12)N1'—C7'—C8'114.11 (12)
O11—C10—H10A110.4N1'—C7'—H7A108.7
C9—C10—H10A110.4C8'—C7'—H7A108.7
O11—C10—H10B110.4N1'—C7'—H7B108.7
C9—C10—H10B110.4C8'—C7'—H7B108.7
H10A—C10—H10B108.6H7A—C7'—H7B107.6
C12—O11—C10114.21 (12)C13'—C8'—C9'118.85 (14)
O11—C12—C13107.93 (12)C13'—C8'—C7'121.60 (13)
O11—C12—H12A110.1C9'—C8'—C7'119.27 (14)
C13—C12—H12A110.1C10'—C9'—C8'120.77 (16)
O11—C12—H12B110.1C10'—C9'—H9119.6
C13—C12—H12B110.1C8'—C9'—H9119.6
H12A—C12—H12B108.4C11'—C10'—C9'120.05 (17)
O14—C13—C12106.55 (12)C11'—C10'—H10120.0
O14—C13—H13A110.4C9'—C10'—H10120.0
C12—C13—H13A110.4C10'—C11'—C12'120.14 (16)
O14—C13—H13B110.4C10'—C11'—H11119.9
C12—C13—H13B110.4C12'—C11'—H11119.9
H13A—C13—H13B108.6C11'—C12'—C13'120.06 (17)
C15—O14—C13118.19 (12)C11'—C12'—H12120.0
O14—C15—C16123.66 (14)C13'—C12'—H12120.0
O14—C15—C20115.89 (12)C8'—C13'—C12'120.10 (15)
C16—C15—C20120.43 (14)C8'—C13'—H13119.9
C17—C16—C15119.99 (15)C12'—C13'—H13119.9
C17—C16—H16120.0O1'—C14'—O2'121.26 (13)
C15—C16—H16120.0O1'—C14'—C4'126.49 (13)
C18—C17—C16120.57 (14)O2'—C14'—C4'112.25 (12)
C18—C17—H17119.7C14'—O2'—C15'116.83 (12)
C16—C17—H17119.7O2'—C15'—C16'110.61 (17)
C17—C18—C19119.21 (14)O2'—C15'—H15A109.5
C17—C18—H18120.4C16'—C15'—H15A109.5
C19—C18—H18120.4O2'—C15'—H15B109.5
C20—C19—C18121.60 (15)C16'—C15'—H15B109.5
C20—C19—H19119.2H15A—C15'—H15B108.1
C18—C19—H19119.2C15'—C16'—H16A109.5
C19—C20—C15118.12 (13)C15'—C16'—H16B109.5
C19—C20—C21119.28 (13)H16A—C16'—H16B109.5
C15—C20—C21122.59 (12)C15'—C16'—H16C109.5
C22—C21—N25119.80 (12)H16A—C16'—H16C109.5
C22—C21—C20121.84 (12)H16B—C16'—H16C109.5
N24—C1—C2—C330.99 (17)C21—C22—C23—N246.9 (2)
N25—C1—C2—C386.73 (16)N1'—C22—C23—N24175.27 (12)
N24—C1—C2—C7150.56 (13)C21—C22—C23—C4'169.29 (14)
N25—C1—C2—C791.72 (15)N1'—C22—C23—C4'8.5 (2)
C7—C2—C3—C40.4 (2)C4'—C23—N24—C1157.44 (13)
C1—C2—C3—C4178.09 (13)C22—C23—N24—C126.47 (18)
C2—C3—C4—C50.0 (2)N25—C1—N24—C2355.37 (16)
C3—C4—C5—C60.6 (2)C2—C1—N24—C23175.67 (12)
C4—C5—C6—C70.8 (2)C22—C21—N25—C124.73 (19)
C5—C6—C7—O8179.74 (15)C20—C21—N25—C1162.10 (13)
C5—C6—C7—C20.4 (2)N24—C1—N25—C2153.10 (16)
C3—C2—C7—O8179.70 (13)C2—C1—N25—C21173.39 (12)
C1—C2—C7—O81.80 (18)C21—C22—N1'—C6'139.13 (14)
C3—C2—C7—C60.1 (2)C23—C22—N1'—C6'38.69 (17)
C1—C2—C7—C6178.37 (13)C21—C22—N1'—C7'93.54 (16)
C6—C7—O8—C919.4 (2)C23—C22—N1'—C7'88.65 (16)
C2—C7—O8—C9160.75 (13)N24—C23—C4'—C14'6.2 (2)
C7—O8—C9—C10160.67 (13)C22—C23—C4'—C14'177.91 (13)
O8—C9—C10—O1168.86 (15)N24—C23—C4'—C5'172.46 (14)
C9—C10—O11—C12163.21 (13)C22—C23—C4'—C5'3.4 (2)
C10—O11—C12—C13167.25 (13)C23—C4'—C5'—C6'15.1 (2)
O11—C12—C13—O1462.76 (15)C14'—C4'—C5'—C6'163.57 (13)
C12—C13—O14—C15172.76 (12)C22—N1'—C6'—C5'57.81 (15)
C13—O14—C15—C160.2 (2)C7'—N1'—C6'—C5'68.03 (15)
C13—O14—C15—C20177.99 (12)C4'—C5'—C6'—N1'46.07 (17)
O14—C15—C16—C17175.38 (15)C22—N1'—C7'—C8'158.26 (13)
C20—C15—C16—C172.7 (2)C6'—N1'—C7'—C8'76.22 (16)
C15—C16—C17—C180.7 (2)N1'—C7'—C8'—C13'34.0 (2)
C16—C17—C18—C191.4 (2)N1'—C7'—C8'—C9'152.10 (14)
C17—C18—C19—C201.4 (2)C13'—C8'—C9'—C10'1.3 (2)
C18—C19—C20—C150.7 (2)C7'—C8'—C9'—C10'172.83 (16)
C18—C19—C20—C21179.96 (13)C8'—C9'—C10'—C11'1.2 (3)
O14—C15—C20—C19175.56 (13)C9'—C10'—C11'—C12'0.3 (3)
C16—C15—C20—C192.7 (2)C10'—C11'—C12'—C13'0.6 (3)
O14—C15—C20—C213.7 (2)C9'—C8'—C13'—C12'0.4 (2)
C16—C15—C20—C21178.04 (13)C7'—C8'—C13'—C12'173.59 (16)
C19—C20—C21—C2249.5 (2)C11'—C12'—C13'—C8'0.6 (3)
C15—C20—C21—C22129.79 (16)C23—C4'—C14'—O1'4.2 (2)
C19—C20—C21—N25123.54 (15)C5'—C4'—C14'—O1'174.51 (14)
C15—C20—C21—N2557.19 (19)C23—C4'—C14'—O2'175.85 (13)
N25—C21—C22—N1'174.95 (13)C5'—C4'—C14'—O2'5.5 (2)
C20—C21—C22—N1'12.2 (2)O1'—C14'—O2'—C15'3.5 (2)
N25—C21—C22—C237.3 (2)C4'—C14'—O2'—C15'176.51 (15)
C20—C21—C22—C23165.62 (13)C14'—O2'—C15'—C16'88.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N24—H24···O10.882 (18)2.015 (18)2.6928 (16)132.8 (15)
N25—H25···O140.882 (18)2.441 (17)2.9744 (17)119.3 (13)
C6—H6···O1i0.952.423.3516 (19)168
C18—H18···O1ii0.952.423.3613 (19)174
Symmetry codes: (i) x, y+1/2, z+2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC33H35N3O5
Mr553.64
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)10.5304 (5), 12.6363 (5), 10.7246 (5)
β (°) 92.865 (1)
V3)1425.29 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.24 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.974, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
18837, 8289, 6878
Rint0.027
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.094, 1.00
No. of reflections8289
No. of parameters377
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N24—H24···O1'0.882 (18)2.015 (18)2.6928 (16)132.8 (15)
N25—H25···O140.882 (18)2.441 (17)2.9744 (17)119.3 (13)
C6—H6···O1'i0.952.423.3516 (19)168
C18—H18···O1'ii0.952.423.3613 (19)174
Symmetry codes: (i) x, y+1/2, z+2; (ii) x+1, y, z.
 

Acknowledgements

We thank the National Foundation for Science and Technology Development (NAFOSTED), Hanoi, Vietnam (grant No. 104.02–2012.44) for the financial support of this work.

References

First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588–o1589.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165–o2166.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386–o1387.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465.  Google Scholar
First citationBradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425–432.  CrossRef CAS Web of Science Google Scholar
First citationHieu, T. H., Anh, L. T., Levov, A. N., Nikitina, E. V. & Soldatenkov, A. T. (2009). Chem. Heterocycl. Compd, 45, 1406–1407.  CrossRef CAS Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd, 47, 1307–1308.  Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431–o2432.  CSD CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848–o2849.  CSD CrossRef IUCr Journals Google Scholar
First citationHiraoka, M. (1982). In Crown Compounds. Their Characteristic and Application. Tokyo: Kodansha.  Google Scholar
First citationKhieu, T. H., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770.  Web of Science CrossRef CAS Google Scholar
First citationKomarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd, 44, 624–625.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665–1670.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. pp. 35–37.  Web of Science CSD CrossRef Google Scholar
First citationPedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1053–1083.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2086–2088.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o565-o566
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds