organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(5-Hy­dr­oxy-2,2,8,8-tetra­methyl-2H,8H-pyrano[2,3-f]chromen-6-yl)-3-(4-meth­­oxy­phen­yl)prop-2-en-1-one

aSchool of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: koorbanally@ukzn.ac.za

(Received 18 February 2013; accepted 27 February 2013; online 2 March 2013)

In the biologically active title compound, C26H26O5, the pyran ring of the chromene unit adopts a half-chair conformation. The C=C double bond of the propenone unit exhibits a trans conformation and the carbonyl group is syn conformation to the double bond. The dihedral angle between the benzene ring and the benzopyran­one moiety is 31.54 (4)°. The mol­ecular structure is stabilized by an intra­molecular C=O⋯H—O hydrogen bond.

Related literature

For related structures, see: Bhattacharyya et al. (1999[Bhattacharyya, K., Mazumdar, S. K., Bocelli, G., Cantoni, A., Ray, A. B., Neogi, P. & Mazumdar, G. (1999). Acta Cryst. C55, 215-217.]); Lee & Li (2007[Lee, Y. R. & Li, X. (2007). Bull. Korean Chem. Soc. 28, 1739-1745.]); Lin et al. (1992[Lin, Y.-L., Chen, Y.-L. & Kuo, Y.-H. (1992). Chem. Pharm. Bull. 40, 2295-2299.]); Narender et al. (2005[Narender, T., Khaliq, T., Shweta, Nishi, Goyal, N. & Gupta, S. (2005). Bioorg. Med. Chem. 13, 6543-6550.]); Liu et al. (2005[Liu, T., Xu, Z.-M. & Hu, Y.-Z. (2005). Acta Cryst. E61, o3389-o3390.]). For the biological activity of similar mol­ecules, see: Nicolaou et al. (2000[Nicolaou, K. C., Pfefferkorn, J. A., Roecker, A. J., Cao, G.-Q., Barluenga, S. & Mitchell, H. J. (2000). J. Am. Chem. Soc. 122, 9939-9953.]); Dhar (1981[Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds, pp. 1-32. New York: John Wiley and Sons.]). For bond lengths and angles in related structures, see: Bhattacharyya et al. (1999[Bhattacharyya, K., Mazumdar, S. K., Bocelli, G., Cantoni, A., Ray, A. B., Neogi, P. & Mazumdar, G. (1999). Acta Cryst. C55, 215-217.]); Pawar et al. (2012[Pawar, S., Cheddie, A., Omondi, B. & Koorbanally, N. A. (2012). Acta Cryst. E68, o3048.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26O5

  • Mr = 418.47

  • Monoclinic, P 21 /c

  • a = 9.6422 (2) Å

  • b = 12.0871 (3) Å

  • c = 18.4517 (4) Å

  • β = 99.228 (1)°

  • V = 2122.64 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 446 K

  • 0.37 × 0.33 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.981

  • 68753 measured reflections

  • 5126 independent reflections

  • 4677 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.01

  • 5126 reflections

  • 286 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.82 1.72 2.4523 (10) 148

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Chalcones are considered to be the primary precursors and constitute important intermediates in the synthesis of flavonoids. Pyranochromenechalcone is a core structure in various naturally active compounds (Nicolaou et al., 2000). Chalcones are synthesized by the Claisen-Schmidt condensation of an aldehyde and ketone using a base as a catalyst, which is followed by dehydration. Chalcones possess antifungal, antioxidant,anti-inflammatory, antimalarial and antileishmanial activity amongst others (Dhar, 1981). With this in mind, a series of chalcones have been synthesized in our laboratory and their biological activity is currently under investigation.

The title compound is a 2-hydroxychalcone, with a central tricyclic core and a peripheral aromatic ring (Lee & Li 2007). The middle ring of the tricyclic core is fully substituted while the pyran rings have two unsubstituted sites. The pyran rings of the chromene unit forms a half chair conformation [Q = 0.3750 (10) Å, θ = 66.86 (15)° and ψ = 39.54 (17) °]. The C8— C9—C10—C11 torsion angle is 160.57 (9) Å, indicating a trans configuration of the double bond. This is supported by 1H NMR spectroscopy where a trans arrangement of the H atoms in the —CH = CH— group is evident by the coupling constant of J = 15.6 Hz. The carbonyl group is in a cis configuration with respect to the double bond (Liu et al. 2005). The dihedral angle between the phenyl ring and the benzopyranone moiety is 31.54 (4)°. Bond angles and lenghs are within normal ranges relative to reported compounds (Bhattacharyya et al.,1999; Pawar et al., 2012).

Related literature top

For related structures, see: Bhattacharyya et al. (1999); Lee & Li (2007); Lin et al. (1992); Narender et al. (2005); Liu et al. (2005). For the biological activity of similar molecules, see: Nicolaou et al. (2000); Dhar (1981). For bond lengths and angles in related structures, see: Bhattacharyya et al. (1999); Pawar et al. (2012).

Experimental top

Potassium hydroxide (112 mg, 0.7 mmol) and 4-methoxybenzaldehyde (95 mg, 0.7 mmol) was added to a solution of octandrenolone (150 mg, 0.5 mmol) in ethanol (10 ml) and water (2 ml) at room temperature. The reaction mixture was stirred for 48 h at room temperature. The solvent was then distilled off under reduced pressure and the residue dissolved in water (20 ml). The solution was then acidified with 2 N-HCl (20 ml) and the mixture extracted with ethyl acetate (3 × 30 ml), washed with water, and dried over anhydrous MgSO4. Removal of the solvent followed by flash column chromatography on silica gel gave the pure compound (178 mg, 85%) as a brown solid with a m.p. of 125 - 126 oC.

1HNMR (400 MHz, CDCl3): 14.49 (1H, s), 8.00 (1H, d, J = 15.56 Hz), 7.76 (1H, d, J = 15.56 Hz), 7.55 (2H, d, J = 8.32 Hz), 6.93 (2H, d, J = 8.32 Hz), 6.69 (1H, d, J = 10.0 Hz), 6.61 (1H,d, J = 10.0 Hz), 5.47 (2H, d, J= 10.0 Hz), 3.85 (3H, s), 1.55 (6H, s), 1.45 (6H, s)

13C NMR (100 MHz, CDCl3): 193.0, 161.7, 161.5, 156.3, 155.3, 142.4, 130.1, 128.6, 125.5, 125.4, 124.9, 116.8, 116.5, 114.5, 106.1, 102.8, 102.7, 78.3, 78.4, 55.6, 28.3, 28.6

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.96 A for Me H atoms and 0.93 A for aromatic H atoms; Uiso(H) = 1.2Ueq(C) (1.5 for Me groups)] and were included in the refinement in the riding model approximation. The O—H H-atom was located in a difference map and also placed in a calculated position O—H = 0.82 A (Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP diagram showing the molecular structure of the titled compound with atomic labelling scheme. Non-H atoms are drawn with 50% probability displacement ellipsoids and H atoms are shown as open circles.
1-(5-Hydroxy-2,2,8,8-tetramethyl-2H,8H-pyrano[2,3-f]chromen-6-yl)-3-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C26H26O5F(000) = 888
Mr = 418.47Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 71516 reflections
a = 9.6422 (2) Åθ = 2.0–28°
b = 12.0871 (3) ŵ = 0.09 mm1
c = 18.4517 (4) ÅT = 446 K
β = 99.228 (1)°Block, brown
V = 2122.64 (8) Å30.37 × 0.33 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4677 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 28°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.968, Tmax = 0.981k = 1515
68753 measured reflectionsl = 2424
5126 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.9316P]
where P = (Fo2 + 2Fc2)/3
5126 reflections(Δ/σ)max = 0.003
286 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C26H26O5V = 2122.64 (8) Å3
Mr = 418.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6422 (2) ŵ = 0.09 mm1
b = 12.0871 (3) ÅT = 446 K
c = 18.4517 (4) Å0.37 × 0.33 × 0.21 mm
β = 99.228 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5126 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4677 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.981Rint = 0.020
68753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.01Δρmax = 0.38 e Å3
5126 reflectionsΔρmin = 0.23 e Å3
286 parameters
Special details top

Experimental. Carbon-bound H-atoms were placed in calculated positions [C—H = 0.96 Å for Me H atoms and 0.93 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C) (1.5 for Me groups)] and were included in the refinement in the riding model approximation. The O—H H-atom was located in a difference map and also placed in calculated position O—H = 0.84 Å (Uiso(H) = 1.2Ueq(O).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. >>> The Following Model ALERT was generated - (Acta-Mode) <<< Format: alert-number_ALERT_alert-type_alert-level text 918_ALERT_3_C Reflection(s) # with I(obs) much smaller I(calc) 1 NOTED:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14616 (10)0.12942 (8)0.45580 (6)0.0187 (2)
C20.12410 (11)0.11703 (8)0.52813 (6)0.0207 (2)
H20.11440.04680.54730.025*
C30.11675 (11)0.20968 (9)0.57126 (6)0.0192 (2)
H30.10070.2010.61930.023*
C40.13298 (10)0.31683 (8)0.54411 (5)0.01655 (19)
C50.15481 (10)0.32699 (8)0.47122 (6)0.0179 (2)
H50.16550.3970.4520.022*
C60.16087 (11)0.23495 (9)0.42712 (6)0.0190 (2)
H60.17470.24340.37870.023*
C70.17381 (13)0.04268 (10)0.34274 (6)0.0282 (2)
H7A0.09980.08620.31560.042*
H7B0.17350.02980.32150.042*
H7C0.26260.07770.3410.042*
C80.12434 (10)0.41146 (8)0.59236 (5)0.01725 (19)
H80.0960.39650.63720.021*
C90.15272 (10)0.51777 (8)0.57928 (5)0.01690 (19)
H90.18210.5380.53550.02*
C100.13665 (10)0.60171 (8)0.63516 (5)0.01499 (18)
C110.20284 (9)0.71156 (8)0.63883 (5)0.01365 (18)
C120.17283 (10)0.78670 (8)0.69429 (5)0.01453 (18)
C130.23344 (10)0.89200 (8)0.70296 (5)0.01503 (19)
C140.19923 (10)0.97192 (8)0.75649 (6)0.0185 (2)
H140.12280.96030.78060.022*
C150.27897 (11)1.06184 (9)0.77042 (6)0.0200 (2)
H150.25371.11630.80140.024*
C160.40971 (10)1.07586 (8)0.73628 (5)0.01676 (19)
C170.53457 (11)1.01888 (9)0.78265 (6)0.0195 (2)
H17A0.51590.94110.78530.029*
H17B0.54921.04970.83120.029*
H17C0.61721.030.76060.029*
C180.44156 (12)1.19660 (9)0.72296 (6)0.0227 (2)
H18A0.52281.20140.69910.034*
H18B0.45951.2350.76910.034*
H18C0.36251.22970.69230.034*
C190.32725 (10)0.92351 (8)0.65633 (5)0.01412 (18)
C200.35864 (10)0.85484 (8)0.60002 (5)0.01394 (18)
C210.29703 (10)0.74988 (8)0.59257 (5)0.01330 (18)
C220.38220 (10)0.72295 (8)0.47666 (5)0.01553 (19)
C230.47626 (10)0.82157 (8)0.49591 (5)0.01718 (19)
H230.54480.83860.46750.021*
C240.46159 (10)0.88436 (8)0.55330 (5)0.01615 (19)
H240.5170.94710.56370.019*
C250.45997 (12)0.62799 (9)0.44730 (6)0.0212 (2)
H25A0.53820.60660.48360.032*
H25B0.49350.65110.40340.032*
H25C0.39750.56630.43640.032*
C260.25010 (12)0.75443 (9)0.42370 (6)0.0224 (2)
H26A0.19050.69080.4140.034*
H26B0.27580.78080.37860.034*
H26C0.20080.81160.44520.034*
O10.15230 (9)0.03378 (6)0.41723 (5)0.02628 (18)
O20.06220 (8)0.57627 (6)0.68277 (4)0.02028 (16)
O30.08410 (8)0.75943 (6)0.74064 (4)0.01852 (16)
H3A0.05690.69570.73260.028*
O40.38941 (7)1.02473 (6)0.66293 (4)0.01655 (15)
O50.33812 (7)0.67778 (6)0.54356 (4)0.01567 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0172 (4)0.0153 (5)0.0231 (5)0.0006 (3)0.0014 (4)0.0037 (4)
C20.0228 (5)0.0137 (4)0.0249 (5)0.0015 (4)0.0021 (4)0.0022 (4)
C30.0206 (5)0.0182 (5)0.0186 (5)0.0020 (4)0.0025 (4)0.0018 (4)
C40.0138 (4)0.0148 (4)0.0204 (5)0.0014 (3)0.0009 (3)0.0007 (4)
C50.0176 (4)0.0145 (4)0.0213 (5)0.0017 (3)0.0022 (4)0.0014 (4)
C60.0192 (5)0.0191 (5)0.0186 (5)0.0006 (4)0.0027 (4)0.0001 (4)
C70.0337 (6)0.0257 (6)0.0239 (5)0.0054 (5)0.0010 (4)0.0075 (4)
C80.0166 (4)0.0175 (5)0.0175 (4)0.0014 (3)0.0022 (3)0.0001 (4)
C90.0166 (4)0.0170 (5)0.0173 (4)0.0031 (3)0.0035 (3)0.0013 (4)
C100.0144 (4)0.0145 (4)0.0158 (4)0.0011 (3)0.0018 (3)0.0015 (3)
C110.0140 (4)0.0131 (4)0.0139 (4)0.0006 (3)0.0022 (3)0.0000 (3)
C120.0134 (4)0.0162 (4)0.0142 (4)0.0003 (3)0.0029 (3)0.0007 (3)
C130.0150 (4)0.0147 (4)0.0155 (4)0.0002 (3)0.0025 (3)0.0017 (3)
C140.0177 (4)0.0188 (5)0.0200 (5)0.0013 (4)0.0062 (4)0.0030 (4)
C150.0224 (5)0.0173 (5)0.0213 (5)0.0013 (4)0.0064 (4)0.0056 (4)
C160.0215 (5)0.0131 (4)0.0157 (4)0.0023 (3)0.0030 (3)0.0033 (3)
C170.0214 (5)0.0187 (5)0.0181 (5)0.0015 (4)0.0021 (4)0.0009 (4)
C180.0303 (5)0.0136 (5)0.0239 (5)0.0037 (4)0.0029 (4)0.0018 (4)
C190.0154 (4)0.0117 (4)0.0147 (4)0.0003 (3)0.0006 (3)0.0006 (3)
C200.0152 (4)0.0136 (4)0.0131 (4)0.0008 (3)0.0024 (3)0.0008 (3)
C210.0144 (4)0.0131 (4)0.0123 (4)0.0008 (3)0.0018 (3)0.0002 (3)
C220.0191 (4)0.0150 (4)0.0135 (4)0.0009 (3)0.0057 (3)0.0002 (3)
C230.0183 (4)0.0166 (4)0.0177 (4)0.0022 (3)0.0062 (3)0.0018 (4)
C240.0175 (4)0.0144 (4)0.0168 (4)0.0031 (3)0.0035 (3)0.0017 (3)
C250.0270 (5)0.0171 (5)0.0220 (5)0.0009 (4)0.0112 (4)0.0011 (4)
C260.0233 (5)0.0236 (5)0.0193 (5)0.0004 (4)0.0000 (4)0.0003 (4)
O10.0366 (4)0.0160 (4)0.0266 (4)0.0009 (3)0.0062 (3)0.0054 (3)
O20.0237 (4)0.0179 (4)0.0213 (4)0.0052 (3)0.0097 (3)0.0003 (3)
O30.0199 (3)0.0182 (3)0.0192 (3)0.0042 (3)0.0087 (3)0.0021 (3)
O40.0223 (3)0.0123 (3)0.0153 (3)0.0039 (3)0.0036 (3)0.0020 (2)
O50.0206 (3)0.0128 (3)0.0152 (3)0.0019 (2)0.0076 (3)0.0010 (2)
Geometric parameters (Å, º) top
C1—O11.3638 (12)C15—C161.5064 (14)
C1—C21.3927 (15)C15—H150.93
C1—C61.3969 (14)C16—O41.4722 (11)
C2—C31.3823 (15)C16—C181.5194 (14)
C2—H20.93C16—C171.5249 (14)
C3—C41.4063 (14)C17—H17A0.96
C3—H30.93C17—H17B0.96
C4—C51.3997 (14)C17—H17C0.96
C4—C81.4601 (14)C18—H18A0.96
C5—C61.3851 (14)C18—H18B0.96
C5—H50.93C18—H18C0.96
C6—H60.93C19—O41.3593 (11)
C7—O11.4266 (14)C19—C201.4004 (13)
C7—H7A0.96C20—C211.3983 (13)
C7—H7B0.96C20—C241.4595 (13)
C7—H7C0.96C21—O51.3599 (11)
C8—C91.3438 (14)C22—O51.4733 (11)
C8—H80.93C22—C231.5054 (13)
C9—C101.4725 (13)C22—C251.5177 (14)
C9—H90.93C22—C261.5241 (14)
C10—O21.2585 (12)C23—C241.3288 (14)
C10—C111.4699 (13)C23—H230.93
C11—C211.4201 (13)C24—H240.93
C11—C121.4321 (13)C25—H25A0.96
C12—O31.3441 (11)C25—H25B0.96
C12—C131.3990 (13)C25—H25C0.96
C13—C191.3975 (13)C26—H26A0.96
C13—C141.4568 (13)C26—H26B0.96
C14—C151.3323 (14)C26—H26C0.96
C14—H140.93O3—H3A0.82
O1—C1—C2115.78 (9)C15—C16—C17110.67 (8)
O1—C1—C6124.11 (9)C18—C16—C17111.27 (8)
C2—C1—C6120.11 (9)C16—C17—H17A109.5
C3—C2—C1119.63 (9)C16—C17—H17B109.5
C3—C2—H2120.2H17A—C17—H17B109.5
C1—C2—H2120.2C16—C17—H17C109.5
C2—C3—C4121.47 (9)H17A—C17—H17C109.5
C2—C3—H3119.3H17B—C17—H17C109.5
C4—C3—H3119.3C16—C18—H18A109.5
C5—C4—C3117.75 (9)C16—C18—H18B109.5
C5—C4—C8123.32 (9)H18A—C18—H18B109.5
C3—C4—C8118.93 (9)C16—C18—H18C109.5
C6—C5—C4121.40 (9)H18A—C18—H18C109.5
C6—C5—H5119.3H18B—C18—H18C109.5
C4—C5—H5119.3O4—C19—C13120.65 (8)
C5—C6—C1119.64 (9)O4—C19—C20117.08 (8)
C5—C6—H6120.2C13—C19—C20122.25 (9)
C1—C6—H6120.2C21—C20—C19118.14 (8)
O1—C7—H7A109.5C21—C20—C24118.84 (8)
O1—C7—H7B109.5C19—C20—C24122.80 (9)
H7A—C7—H7B109.5O5—C21—C20118.84 (8)
O1—C7—H7C109.5O5—C21—C11118.25 (8)
H7A—C7—H7C109.5C20—C21—C11122.65 (8)
H7B—C7—H7C109.5O5—C22—C23109.86 (7)
C9—C8—C4127.33 (9)O5—C22—C25104.14 (7)
C9—C8—H8116.3C23—C22—C25111.69 (8)
C4—C8—H8116.3O5—C22—C26107.81 (8)
C8—C9—C10119.06 (9)C23—C22—C26111.31 (8)
C8—C9—H9120.5C25—C22—C26111.71 (8)
C10—C9—H9120.5C24—C23—C22120.21 (9)
O2—C10—C11118.73 (9)C24—C23—H23119.9
O2—C10—C9117.15 (9)C22—C23—H23119.9
C11—C10—C9124.12 (8)C23—C24—C20120.03 (9)
C21—C11—C12116.40 (8)C23—C24—H24120
C21—C11—C10125.57 (8)C20—C24—H24120
C12—C11—C10118.02 (8)C22—C25—H25A109.5
O3—C12—C13116.57 (8)C22—C25—H25B109.5
O3—C12—C11121.42 (9)H25A—C25—H25B109.5
C13—C12—C11122.01 (9)C22—C25—H25C109.5
C19—C13—C12118.51 (9)H25A—C25—H25C109.5
C19—C13—C14118.43 (9)H25B—C25—H25C109.5
C12—C13—C14123.02 (9)C22—C26—H26A109.5
C15—C14—C13119.03 (9)C22—C26—H26B109.5
C15—C14—H14120.5H26A—C26—H26B109.5
C13—C14—H14120.5C22—C26—H26C109.5
C14—C15—C16120.46 (9)H26A—C26—H26C109.5
C14—C15—H15119.8H26B—C26—H26C109.5
C16—C15—H15119.8C1—O1—C7117.64 (9)
O4—C16—C15109.90 (8)C12—O3—H3A109.5
O4—C16—C18104.77 (8)C19—O4—C16116.87 (7)
C15—C16—C18112.34 (8)C21—O5—C22118.27 (7)
O4—C16—C17107.63 (8)
O1—C1—C2—C3179.87 (9)C14—C13—C19—O42.68 (14)
C6—C1—C2—C30.06 (15)C12—C13—C19—C202.16 (14)
C1—C2—C3—C40.88 (15)C14—C13—C19—C20175.54 (9)
C2—C3—C4—C50.96 (15)O4—C19—C20—C21179.39 (8)
C2—C3—C4—C8179.91 (9)C13—C19—C20—C212.33 (14)
C3—C4—C5—C60.24 (14)O4—C19—C20—C244.86 (14)
C8—C4—C5—C6179.33 (9)C13—C19—C20—C24176.85 (9)
C4—C5—C6—C10.55 (15)C19—C20—C21—O5172.89 (8)
O1—C1—C6—C5179.15 (9)C24—C20—C21—O51.87 (13)
C2—C1—C6—C50.65 (15)C19—C20—C21—C111.10 (14)
C5—C4—C8—C99.13 (16)C24—C20—C21—C11175.85 (9)
C3—C4—C8—C9171.79 (10)C12—C11—C21—O5174.23 (8)
C4—C8—C9—C10179.61 (9)C10—C11—C21—O54.63 (14)
C8—C9—C10—O218.82 (14)C12—C11—C21—C200.21 (14)
C8—C9—C10—C11160.57 (9)C10—C11—C21—C20178.65 (9)
O2—C10—C11—C21175.47 (9)O5—C22—C23—C2429.29 (12)
C9—C10—C11—C213.91 (15)C25—C22—C23—C24144.33 (10)
O2—C10—C11—C123.37 (13)C26—C22—C23—C2490.05 (11)
C9—C10—C11—C12177.24 (9)C22—C23—C24—C202.94 (15)
C21—C11—C12—O3179.36 (8)C21—C20—C24—C2312.64 (14)
C10—C11—C12—O31.69 (14)C19—C20—C24—C23172.87 (9)
C21—C11—C12—C130.39 (14)C2—C1—O1—C7179.59 (9)
C10—C11—C12—C13178.56 (8)C6—C1—O1—C70.61 (15)
O3—C12—C13—C19179.49 (8)C13—C19—O4—C1627.90 (12)
C11—C12—C13—C190.75 (14)C20—C19—O4—C16153.79 (8)
O3—C12—C13—C142.92 (14)C15—C16—O4—C1943.92 (11)
C11—C12—C13—C14176.84 (9)C18—C16—O4—C19164.82 (8)
C19—C13—C14—C1514.31 (14)C17—C16—O4—C1976.67 (10)
C12—C13—C14—C15168.10 (10)C20—C21—O5—C2231.54 (12)
C13—C14—C15—C165.24 (15)C11—C21—O5—C22154.21 (8)
C14—C15—C16—O433.00 (13)C23—C22—O5—C2143.94 (11)
C14—C15—C16—C18149.22 (10)C25—C22—O5—C21163.69 (8)
C14—C15—C16—C1785.74 (12)C26—C22—O5—C2177.52 (10)
C12—C13—C19—O4179.62 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.722.4523 (10)148

Experimental details

Crystal data
Chemical formulaC26H26O5
Mr418.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)446
a, b, c (Å)9.6422 (2), 12.0871 (3), 18.4517 (4)
β (°) 99.228 (1)
V3)2122.64 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.33 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.968, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
68753, 5126, 4677
Rint0.020
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.01
No. of reflections5126
No. of parameters286
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.722.4523 (10)148.3
 

Acknowledgements

SP thanks the College of Agriculture, Engineering and Science of the University of KwaZulu-Natal for a doctoral bursary.

References

First citationBhattacharyya, K., Mazumdar, S. K., Bocelli, G., Cantoni, A., Ray, A. B., Neogi, P. & Mazumdar, G. (1999). Acta Cryst. C55, 215–217.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds, pp. 1–32. New York: John Wiley and Sons.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, Y. R. & Li, X. (2007). Bull. Korean Chem. Soc. 28, 1739–1745.  CAS Google Scholar
First citationLin, Y.-L., Chen, Y.-L. & Kuo, Y.-H. (1992). Chem. Pharm. Bull. 40, 2295–2299.  CrossRef CAS Google Scholar
First citationLiu, T., Xu, Z.-M. & Hu, Y.-Z. (2005). Acta Cryst. E61, o3389–o3390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarender, T., Khaliq, T., Shweta, Nishi, Goyal, N. & Gupta, S. (2005). Bioorg. Med. Chem. 13, 6543–6550.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNicolaou, K. C., Pfefferkorn, J. A., Roecker, A. J., Cao, G.-Q., Barluenga, S. & Mitchell, H. J. (2000). J. Am. Chem. Soc. 122, 9939–9953.  Web of Science CrossRef CAS Google Scholar
First citationPawar, S., Cheddie, A., Omondi, B. & Koorbanally, N. A. (2012). Acta Cryst. E68, o3048.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds