organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new polymorph of 1,3-bis­­(penta­fluoro­phen­yl)urea

aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@center.wakayama-u.ac.jp

(Received 12 March 2013; accepted 21 March 2013; online 28 March 2013)

The title compound, C13H2F10N2O, has been previously described in the space group Pbca with Z = 8 [Jai-nhuknan et al. (1997[Jai-nhuknan, J., Karipides, A. G., Hughes, J. M. & Cantrell, J. S. (1997). Acta Cryst. C53, 455-457.]). Acta Cryst. C53, 455–457]. The current P212121 polymorph was obtained from a tetra­hydro­furan solution. The penta­fluoro­phenyl rings make dihedral angles of 50.35 (6) and 54.94 (6)° with the urea fragment, in close accord with those reported for the first polymorph. In the crystal, both of the N—H groups donate H atoms to the same carbonyl O atom, forming a one-dimensional mol­ecular array along the a axis. There are close contacts between perfluoro­phenyl C atoms within the array [3.228 (3) Å] and halogen bonds are also observed between the arrays [F⋯F = 2.709 (2) and 2.7323 (18) Å].

Related literature

For the structure of the first reported ploymorph, see: Jai-nhuknan et al. (1997[Jai-nhuknan, J., Karipides, A. G., Hughes, J. M. & Cantrell, J. S. (1997). Acta Cryst. C53, 455-457.]). For the related structure of 1,3-diphenyl­urea, see: Dannecker et al. (1979[Dannecker, W., Kopf, J. & Rust, H. (1979). Cryst. Struct. Commun. 8, 429-432.]). For background to organofluorine chemistry, see: Chambers (2004[Chambers, R. D. (2004). In Fluorine in Organic Chemistry, ch. 9. Oxford: Blackwell Publishing Ltd.]).

[Scheme 1]

Experimental

Crystal data
  • C13H2F10N2O

  • Mr = 392.16

  • Orthorhombic, P 21 21 21

  • a = 4.5798 (7) Å

  • b = 9.5411 (16) Å

  • c = 29.136 (5) Å

  • V = 1273.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 93 K

  • 0.15 × 0.15 × 0.03 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.978, Tmax = 0.993

  • 10307 measured reflections

  • 1993 independent reflections

  • 1941 reflections with F2 > 2σ(F2)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.09

  • 1991 reflections

  • 241 parameters

  • 2 restraints

  • Only H-atom coordinates refined

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.864 (18) 2.057 (18) 2.850 (3) 152 (3)
N2—H2⋯O1i 0.879 (18) 2.008 (18) 2.825 (3) 154 (3)
Symmetry code: (i) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare, et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Perfluoro aromatic compounds have attracted interest from the viewpoint of the electronic and structural comparison with the original compounds (Chambers, 2004). The title compound, (I), is a perfluoro compound of 1,3-diphenylurea (Dannecker et al., 1979). Previously, (I) was isolated in an orthorhombic Pbca polymorph with Z = 8 [Jai-nhuknan et al., 1997]. A new orthorhombic P212121 polymorph was obtained by recrystallization from a tetrahydrofuran solution.

The dihedral angle between the C1—C6/F1—F5 (r.m.s. deviation = 0.0223 Å) and the C7—C12/F6—F10 (r.m.s. deviation = 0.0181 Å) pentafluorophenyl rings is 30.93 (3)°, which is smaller than that of the reported polymorph. The pentafluorophenyl rings make dihedral angles of 50.35 (6)° and 54.94 (6)°, respectively, with the C13/N1/N2/O1 urea fragment (r.m.s. deviation = 0.0011 Å), and this situation is almost accordance with the reported polymorph.

Both of the N—H groups in one molecule donate protons to the same carbonyl O atom, forming a one-dimensional molecular array along the a axis, where the N···O distances were 2.850 (3) Å for N1···O1i and 2.825 (3) Å for N2···O1i [Symmetry code: (i) x + 1, y, z] (Figure 2). There are close contacts between perfluorophenyl carbons within the array, where the C2···C5i distance is 3.228 (3) Å. Halogen-bonds are also recognized between the arrays. The distances of F2···F10ii and F1···F5iii are 2.709 (2) Å and 2.7323 (18) Å, respectively [Symmetry codes: (ii) -x + 1, y + 1/2, -z + 1/2 (iii)-x + 2, y + 1/2, -z + 1/2.] (Figure 2).

Related literature top

For the structure of the first reported ploymorph, see: Jai-nhuknan et al. (1997). For the related structure of 1,3-diphenylurea, see: Dannecker et al. (1979). For background to organofluorine chemistry, see: Chambers (2004).

Experimental top

The title compound was commercially purchased and recrystallized from a tetrahydrofuran solution.

Refinement top

Friedel pairs were merged because the molecule itself was achiral and because there were not any anomalous scattering effects. The N-bound H atom was obtained from a difference Fourier map and was refined isotropically with the restriction of N—H range between 0.85 Å and 0.89 Å. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR92 (Altomare, et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres.
[Figure 2] Fig. 2. A view of the intermolecular interactions in the title compound. [Symmetry codes: (i) x + 1, y, z (ii) -x + 1, y + 1/2, -z + 1/2 (iii)-x + 2, y + 1/2, -z + 1/2.]
1,3-Bis(pentafluorophenyl)urea top
Crystal data top
C13H2F10N2OF(000) = 768.00
Mr = 392.16Dx = 2.046 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 4650 reflections
a = 4.5798 (7) Åθ = 2.3–31.2°
b = 9.5411 (16) ŵ = 0.23 mm1
c = 29.136 (5) ÅT = 93 K
V = 1273.1 (4) Å3Platelet, colorless
Z = 40.15 × 0.15 × 0.03 mm
Data collection top
Rigaku Saturn724+
diffractometer
1941 reflections with F2 > 2σ(F2)
Detector resolution: 28.445 pixels mm-1Rint = 0.023
ω scansθmax = 29.0°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 65
Tmin = 0.978, Tmax = 0.993k = 1213
10307 measured reflectionsl = 3937
1993 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080Only H-atom coordinates refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.6807P]
where P = (Fo2 + 2Fc2)/3
1991 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = 0.20 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H2F10N2OV = 1273.1 (4) Å3
Mr = 392.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.5798 (7) ŵ = 0.23 mm1
b = 9.5411 (16) ÅT = 93 K
c = 29.136 (5) Å0.15 × 0.15 × 0.03 mm
Data collection top
Rigaku Saturn724+
diffractometer
1993 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
1941 reflections with F2 > 2σ(F2)
Tmin = 0.978, Tmax = 0.993Rint = 0.023
10307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.080Only H-atom coordinates refined
S = 1.09Δρmax = 0.34 e Å3
1991 reflectionsΔρmin = 0.20 e Å3
241 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections except for two with very negative F2. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.1418 (3)0.61873 (13)0.20307 (4)0.0201 (3)
F20.9729 (3)0.60115 (14)0.11485 (4)0.0230 (3)
F30.5296 (4)0.42251 (14)0.09057 (4)0.0261 (3)
F40.2849 (3)0.25518 (13)0.15527 (4)0.0235 (3)
F50.4741 (3)0.26032 (12)0.24218 (4)0.0199 (3)
F61.1205 (3)0.65289 (13)0.41004 (4)0.0209 (3)
F70.9048 (4)0.66890 (14)0.49612 (4)0.0269 (3)
F80.4722 (4)0.49024 (15)0.52340 (4)0.0286 (3)
F90.2803 (3)0.28817 (15)0.46530 (4)0.0261 (3)
F100.5071 (3)0.26629 (12)0.38011 (4)0.0213 (3)
O10.4972 (3)0.46701 (15)0.30935 (5)0.0163 (3)
N10.9286 (4)0.4477 (2)0.27009 (5)0.0154 (3)
N20.9324 (4)0.45284 (19)0.34806 (5)0.0149 (3)
C10.8112 (5)0.4427 (2)0.22555 (6)0.0143 (4)
C20.9298 (5)0.5288 (2)0.19172 (6)0.0156 (4)
C30.8433 (5)0.5207 (2)0.14616 (6)0.0172 (4)
C40.6225 (5)0.4295 (3)0.13398 (6)0.0180 (4)
C50.4991 (5)0.3442 (2)0.16699 (6)0.0170 (4)
C60.5947 (5)0.3492 (2)0.21201 (6)0.0150 (4)
C70.8117 (4)0.4624 (2)0.39231 (6)0.0141 (4)
C80.9103 (5)0.5630 (2)0.42307 (6)0.0155 (4)
C90.8013 (5)0.5723 (2)0.46721 (6)0.0181 (4)
C100.5852 (5)0.4809 (3)0.48127 (6)0.0196 (4)
C110.4853 (5)0.3785 (2)0.45158 (6)0.0184 (4)
C120.6005 (5)0.3694 (2)0.40767 (6)0.0158 (4)
C130.7652 (5)0.4563 (2)0.30915 (6)0.0139 (4)
H11.117 (4)0.451 (3)0.2722 (9)0.0184*
H21.123 (4)0.459 (3)0.3452 (9)0.0179*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0170 (6)0.0229 (6)0.0204 (6)0.0048 (5)0.0003 (5)0.0012 (5)
F20.0234 (6)0.0297 (6)0.0158 (5)0.0024 (6)0.0033 (5)0.0049 (5)
F30.0296 (7)0.0353 (7)0.0135 (5)0.0054 (7)0.0075 (6)0.0045 (5)
F40.0220 (6)0.0210 (6)0.0276 (6)0.0030 (6)0.0094 (6)0.0061 (5)
F50.0200 (6)0.0195 (6)0.0202 (6)0.0027 (6)0.0016 (5)0.0030 (5)
F60.0185 (6)0.0226 (6)0.0215 (6)0.0072 (6)0.0018 (5)0.0029 (5)
F70.0326 (8)0.0299 (7)0.0181 (5)0.0002 (7)0.0049 (6)0.0073 (5)
F80.0303 (7)0.0426 (8)0.0129 (5)0.0047 (7)0.0060 (6)0.0026 (5)
F90.0201 (6)0.0324 (7)0.0259 (6)0.0066 (6)0.0043 (6)0.0104 (6)
F100.0221 (6)0.0197 (6)0.0221 (6)0.0056 (6)0.0011 (5)0.0017 (5)
O10.0100 (6)0.0234 (7)0.0154 (6)0.0001 (6)0.0011 (6)0.0006 (6)
N10.0097 (7)0.0242 (8)0.0122 (7)0.0003 (7)0.0006 (6)0.0007 (6)
N20.0094 (7)0.0237 (8)0.0117 (7)0.0000 (7)0.0004 (6)0.0004 (6)
C10.0126 (8)0.0174 (8)0.0129 (8)0.0016 (8)0.0009 (7)0.0011 (7)
C20.0134 (8)0.0178 (8)0.0155 (8)0.0009 (7)0.0004 (7)0.0017 (7)
C30.0180 (9)0.0202 (9)0.0135 (8)0.0046 (8)0.0014 (7)0.0013 (7)
C40.0193 (9)0.0230 (9)0.0116 (8)0.0063 (9)0.0036 (8)0.0040 (7)
C50.0159 (9)0.0165 (8)0.0186 (8)0.0001 (8)0.0051 (8)0.0043 (7)
C60.0136 (8)0.0163 (8)0.0152 (8)0.0015 (8)0.0007 (7)0.0010 (7)
C70.0111 (8)0.0184 (9)0.0127 (8)0.0013 (8)0.0003 (7)0.0026 (7)
C80.0134 (8)0.0180 (8)0.0151 (8)0.0005 (8)0.0008 (7)0.0026 (7)
C90.0197 (9)0.0200 (9)0.0147 (8)0.0027 (8)0.0029 (8)0.0017 (7)
C100.0190 (9)0.0277 (10)0.0122 (8)0.0060 (9)0.0015 (7)0.0032 (7)
C110.0141 (8)0.0224 (9)0.0188 (8)0.0003 (8)0.0015 (8)0.0081 (7)
C120.0139 (8)0.0172 (8)0.0162 (8)0.0003 (8)0.0012 (7)0.0010 (7)
C130.0141 (8)0.0150 (8)0.0126 (8)0.0006 (7)0.0003 (7)0.0000 (7)
Geometric parameters (Å, º) top
F1—C21.337 (3)C1—C21.393 (3)
F2—C31.332 (3)C1—C61.391 (3)
F3—C41.336 (3)C2—C31.387 (3)
F4—C51.342 (3)C3—C41.380 (3)
F5—C61.340 (3)C4—C51.381 (3)
F6—C81.344 (3)C5—C61.384 (3)
F7—C91.336 (3)C7—C81.389 (3)
F8—C101.335 (3)C7—C121.387 (3)
F9—C111.336 (3)C8—C91.382 (3)
F10—C121.340 (3)C9—C101.381 (3)
O1—C131.232 (3)C10—C111.383 (3)
N1—C11.405 (3)C11—C121.387 (3)
N1—C131.364 (3)N1—H10.864 (18)
N2—C71.406 (3)N2—H20.879 (18)
N2—C131.368 (3)
F1···F22.6895 (18)F9···C11xiv3.197 (3)
F1···N12.725 (2)F10···F1vi3.2313 (18)
F2···F32.744 (2)F10···F2viii2.709 (2)
F3···F42.7126 (18)F10···F2vi2.859 (2)
F4···F52.6767 (18)F10···F3viii3.3936 (19)
F5···O12.7803 (19)F10···N2v3.312 (3)
F5···N12.862 (3)F10···C3viii2.942 (3)
F5···C133.014 (3)F10···C4viii3.293 (3)
F6···F72.6999 (18)O1···F4i3.101 (2)
F6···N22.765 (2)O1···F5i3.1785 (19)
F7···F82.732 (2)O1···N1v2.850 (3)
F8···F92.712 (2)O1···N2v2.825 (3)
F9···F102.6989 (18)O1···C13v3.354 (3)
F10···O12.8143 (19)N1···F1vi3.251 (3)
F10···N22.799 (3)N1···F5iii3.178 (3)
F10···C132.993 (3)N1···F5i3.525 (3)
O1···C12.843 (3)N1···O1iii2.850 (3)
O1···C63.083 (3)N2···F1vi3.535 (3)
O1···C72.814 (3)N2···F2vi3.552 (3)
O1···C123.049 (3)N2···F4i3.053 (3)
C1···C42.807 (3)N2···F10iii3.312 (3)
C2···C52.741 (3)N2···O1iii2.825 (3)
C2···C133.571 (3)C1···F1v3.557 (3)
C3···C62.767 (3)C1···F4iii3.478 (3)
C6···C133.109 (3)C1···F5iii3.532 (3)
C7···C102.797 (3)C1···F5i3.432 (3)
C8···C112.753 (3)C2···F4iii3.254 (3)
C8···C133.535 (3)C2···F5i3.466 (3)
C9···C122.757 (3)C2···C5iii3.228 (3)
C12···C133.082 (3)C2···C6iii3.544 (3)
F1···F5i3.5106 (18)C3···F4iii3.252 (3)
F1···F5ii2.7323 (18)C3···F10i2.942 (3)
F1···F10ii3.2313 (18)C3···C5iii3.496 (3)
F1···N1ii3.251 (3)C4···F1v3.487 (3)
F1···N2ii3.535 (3)C4···F2v3.441 (3)
F1···C1iii3.557 (3)C4···F4iii3.515 (3)
F1···C4iii3.487 (3)C4···F6vi3.162 (3)
F1···C5iii3.263 (3)C4···F10i3.293 (3)
F1···C6iii3.315 (3)C5···F1v3.263 (3)
F1···C6ii3.523 (3)C5···F6vi3.377 (3)
F1···C13ii3.269 (3)C5···C2v3.228 (3)
F2···F3iii3.147 (2)C5···C3v3.496 (3)
F2···F8iv2.8148 (18)C6···F1v3.315 (3)
F2···F9i3.1594 (19)C6···F1vi3.523 (3)
F2···F10i2.709 (2)C6···C2v3.544 (3)
F2···F10ii2.859 (2)C7···F2vi3.591 (3)
F2···N2ii3.552 (3)C7···F4i3.150 (3)
F2···C4iii3.441 (3)C7···F9iii3.448 (3)
F2···C7ii3.591 (3)C8···F4i3.061 (3)
F2···C12ii3.286 (3)C8···F9iii3.356 (3)
F3···F2v3.147 (2)C8···C11iii3.275 (3)
F3···F6vi3.0309 (19)C9···F7xi3.246 (3)
F3···F7iv2.9024 (18)C9···F8iii3.568 (3)
F3···F8vii3.131 (2)C9···F9iii3.487 (3)
F3···F8iv3.119 (2)C10···F6v3.395 (3)
F3···F10i3.3936 (19)C10···F7xi3.504 (3)
F4···F6viii2.8319 (18)C10···F9xiii3.133 (3)
F4···F6vi3.4627 (19)C11···F6v3.333 (3)
F4···O1viii3.101 (2)C11···F9xiii3.197 (3)
F4···N2viii3.053 (3)C11···C8v3.275 (3)
F4···C1v3.478 (3)C12···F2vi3.286 (3)
F4···C2v3.254 (3)C12···F6v3.486 (3)
F4···C3v3.252 (3)C13···F1vi3.269 (3)
F4···C4v3.515 (3)C13···F4i3.043 (3)
F4···C7viii3.150 (3)C13···F5i3.442 (3)
F4···C8viii3.061 (3)C13···O1iii3.354 (3)
F4···C13viii3.043 (3)F1···H12.58 (3)
F5···F1viii3.5106 (18)F5···H13.57 (2)
F5···F1vi2.7323 (18)F6···H22.64 (3)
F5···O1viii3.1785 (19)F10···H23.52 (3)
F5···N1v3.178 (3)O1···H13.040 (19)
F5···N1viii3.525 (3)O1···H23.052 (19)
F5···C1v3.532 (3)N1···H22.37 (3)
F5···C1viii3.432 (3)N2···H12.37 (3)
F5···C2viii3.466 (3)C2···H12.61 (3)
F5···C13viii3.442 (3)C6···H13.12 (3)
F6···F3ii3.0309 (19)C8···H22.66 (3)
F6···F4i2.8319 (18)C12···H23.13 (3)
F6···F4ii3.4627 (19)H1···H22.13 (4)
F6···F7ix3.4730 (18)F1···H1ii3.46 (3)
F6···C4ii3.162 (3)F4···H2viii3.39 (3)
F6···C5ii3.377 (3)F5···H1v2.60 (3)
F6···C10iii3.395 (3)F5···H1vi3.52 (3)
F6···C11iii3.333 (3)F10···H2v2.74 (3)
F6···C12iii3.486 (3)O1···H1v2.06 (2)
F7···F3x2.9024 (18)O1···H2v2.01 (2)
F7···F6xi3.4730 (18)C1···H1v3.460 (19)
F7···F7xi2.773 (2)C6···H1v2.97 (3)
F7···F7ix2.773 (2)C7···H2v3.44 (2)
F7···F8iii3.208 (3)C11···H2v3.60 (3)
F7···F8ix3.316 (2)C12···H2v2.97 (3)
F7···C9ix3.246 (3)C13···H1v3.160 (19)
F7···C10ix3.504 (3)C13···H2v3.123 (19)
F8···F2x2.8148 (18)H1···F1vi3.46 (3)
F8···F3xii3.131 (2)H1···F5iii2.60 (3)
F8···F3x3.119 (2)H1···F5ii3.52 (3)
F8···F7v3.208 (3)H1···O1iii2.06 (2)
F8···F7xi3.316 (2)H1···C1iii3.460 (19)
F8···F9xiii3.026 (2)H1···C6iii2.97 (3)
F8···C9v3.568 (3)H1···C13iii3.160 (19)
F9···F2viii3.1594 (19)H2···F4i3.39 (3)
F9···F8xiv3.026 (2)H2···F10iii2.74 (3)
F9···F9xiv3.1405 (19)H2···O1iii2.01 (2)
F9···F9xiii3.1405 (19)H2···C7iii3.44 (2)
F9···C7v3.448 (3)H2···C11iii3.60 (3)
F9···C8v3.356 (3)H2···C12iii2.97 (3)
F9···C9v3.487 (3)H2···C13iii3.123 (19)
F9···C10xiv3.133 (3)
C1—N1—C13124.23 (17)F6—C8—C7119.45 (16)
C7—N2—C13122.57 (16)F6—C8—C9118.75 (17)
N1—C1—C2118.94 (18)C7—C8—C9121.79 (19)
N1—C1—C6123.82 (17)F7—C9—C8120.16 (19)
C2—C1—C6117.09 (17)F7—C9—C10120.19 (17)
F1—C2—C1119.10 (16)C8—C9—C10119.65 (18)
F1—C2—C3118.66 (17)F8—C10—C9120.58 (18)
C1—C2—C3122.19 (18)F8—C10—C11119.58 (19)
F2—C3—C2119.74 (18)C9—C10—C11119.84 (17)
F2—C3—C4120.90 (16)F9—C11—C10120.09 (17)
C2—C3—C4119.36 (18)F9—C11—C12120.21 (17)
F3—C4—C3120.55 (18)C10—C11—C12119.70 (19)
F3—C4—C5119.96 (19)F10—C12—C7119.93 (16)
C3—C4—C5119.49 (17)F10—C12—C11118.52 (18)
F4—C5—C4119.68 (17)C7—C12—C11121.54 (18)
F4—C5—C6119.63 (17)O1—C13—N1123.73 (17)
C4—C5—C6120.70 (19)O1—C13—N2123.75 (17)
F5—C6—C1120.90 (16)N1—C13—N2112.52 (17)
F5—C6—C5118.00 (17)C1—N1—H1116.7 (17)
C1—C6—C5121.09 (18)C13—N1—H1119.0 (17)
N2—C7—C8120.58 (17)C7—N2—H2118.2 (17)
N2—C7—C12121.92 (17)C13—N2—H2118.4 (17)
C8—C7—C12117.45 (17)
C1—N1—C13—O13.5 (3)F4—C5—C6—F52.1 (3)
C1—N1—C13—N2177.01 (17)F4—C5—C6—C1178.37 (15)
C13—N1—C1—C2133.29 (19)C4—C5—C6—F5177.65 (17)
C13—N1—C1—C651.4 (3)C4—C5—C6—C11.8 (3)
C7—N2—C13—O10.5 (3)N2—C7—C8—F60.8 (3)
C7—N2—C13—N1179.00 (16)N2—C7—C8—C9178.16 (16)
C13—N2—C7—C8125.94 (19)N2—C7—C12—F100.4 (3)
C13—N2—C7—C1256.8 (3)N2—C7—C12—C11179.16 (16)
N1—C1—C2—F13.3 (3)C8—C7—C12—F10176.99 (16)
N1—C1—C2—C3174.14 (16)C8—C7—C12—C111.8 (3)
N1—C1—C6—F53.0 (3)C12—C7—C8—F6178.23 (16)
N1—C1—C6—C5176.48 (16)C12—C7—C8—C90.8 (3)
C2—C1—C6—F5178.43 (16)F6—C8—C9—F70.1 (3)
C2—C1—C6—C51.1 (3)F6—C8—C9—C10179.98 (15)
C6—C1—C2—F1178.95 (16)C7—C8—C9—F7178.88 (17)
C6—C1—C2—C31.5 (3)C7—C8—C9—C101.0 (3)
F1—C2—C3—F20.4 (3)F7—C9—C10—F81.7 (3)
F1—C2—C3—C4179.26 (15)F7—C9—C10—C11178.09 (17)
C1—C2—C3—F2177.03 (17)C8—C9—C10—F8178.41 (18)
C1—C2—C3—C43.3 (3)C8—C9—C10—C111.8 (3)
F2—C3—C4—F31.5 (3)F8—C10—C11—F91.1 (3)
F2—C3—C4—C5177.88 (16)F8—C10—C11—C12179.42 (16)
C2—C3—C4—F3178.15 (17)C9—C10—C11—F9178.72 (18)
C2—C3—C4—C52.5 (3)C9—C10—C11—C120.8 (3)
F3—C4—C5—F40.4 (3)F9—C11—C12—F101.8 (3)
F3—C4—C5—C6179.35 (16)F9—C11—C12—C7179.43 (16)
C3—C4—C5—F4179.83 (18)C10—C11—C12—F10177.76 (17)
C3—C4—C5—C60.0 (3)C10—C11—C12—C71.0 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+3/2, y+1, z1/2; (v) x1, y, z; (vi) x+2, y1/2, z+1/2; (vii) x+1/2, y+1, z1/2; (viii) x+1, y1/2, z+1/2; (ix) x+1/2, y+3/2, z+1; (x) x+3/2, y+1, z+1/2; (xi) x1/2, y+3/2, z+1; (xii) x+1/2, y+1, z+1/2; (xiii) x+1/2, y+1/2, z+1; (xiv) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1iii0.864 (18)2.057 (18)2.850 (3)152 (3)
N2—H2···O1iii0.879 (18)2.008 (18)2.825 (3)154 (3)
Symmetry code: (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H2F10N2O
Mr392.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)93
a, b, c (Å)4.5798 (7), 9.5411 (16), 29.136 (5)
V3)1273.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.15 × 0.15 × 0.03
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correctionNumerical
(NUMABS; Rigaku, 1999)
Tmin, Tmax0.978, 0.993
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
10307, 1993, 1941
Rint0.023
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.09
No. of reflections1991
No. of parameters241
No. of restraints2
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.34, 0.20

Computer programs: CrystalClear (Rigaku, 2008), SIR92 (Altomare, et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.864 (18)2.057 (18)2.850 (3)152 (3)
N2—H2···O1i0.879 (18)2.008 (18)2.825 (3)154 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by `Research for Promoting Technological Seeds' of the Japan Science and Technology Agency (JST).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChambers, R. D. (2004). In Fluorine in Organic Chemistry, ch. 9. Oxford: Blackwell Publishing Ltd.  Google Scholar
First citationDannecker, W., Kopf, J. & Rust, H. (1979). Cryst. Struct. Commun. 8, 429–432.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJai-nhuknan, J., Karipides, A. G., Hughes, J. M. & Cantrell, J. S. (1997). Acta Cryst. C53, 455–457.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds