metal-organic compounds
Tetrakis(μ-4-chlorobenzoato-κ2O:O′)bis[(ethanol-κO)copper(II)](Cu—Cu)
aDipartimento di Scienze Chimiche, Universitá di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
*Correspondence e-mail: fnicolo@unime.it
In the centrosymmetric dinuclear title CuII complex, [Cu2(C7H4ClO2)(C2H5OH)2], the Cu—Cu distance is 2.5905 (4) Å. The two metal atoms are bridged by four 4-chlorobenzoate ligands and each has an ethanol molecule in the axial position of the overall octahedral coordination environment. The crystal packing features O—H⋯O hydrogen bonds.
Related literature
For general background to metal-coordination polymers, see: Deka et al. (2006); Eddaoudi et al. (2001); Casarin et al. (2005). For their coordination modes, see: Chen & Chen (2002). For related structures, see: Hauptmann et al. (2000); Ueda et al. (2005); Hökelek et al. (2008); Hu et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPW (Siemens, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536813006909/fj2617sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813006909/fj2617Isup2.hkl
The reagents used here were purchased from commercial sources (Sigma–Aldrich). To synthetize the title complex 1 ml of Copper(II) Chloride (0,1 mmol; 100mM) were added to a water (3 ml) / ethanol (3 ml) mixture containing 0,0134 g of melanine and 0,017 g of acid p-Chlorobenzoic. The reaction was sealed in a Teflon-lined stainless steel autoclave, which was heated at 130°C for 3 days under autogenous pressure. After slow cooling to room temperature in 6 h. In this conditions are formed green crystals of the complex and colourless crystal of melamine. A suitable sample of the green crystals has been selected by optical microscope and used in X-Ray structure determination.
The structure was solved by direct method and subsequent Fourier difference techniques and refined using full-matrix least-squares procedure on F2 with anisotropic thermal parameters for all non-hydrogen atoms (SHELXL97). All non hydrogen atoms were refined anisotropically. Several hydrogen atoms were located on the final difference map, the H atoms were included in the
via the "riding model" method with the X—H bond geometry and the H isotropic displacement parameter depending on the parent atom X. Owing to the usual of the terminal ethanol, no suitable bond/angles constrain was introduced during the last cycles so that the ligand geometry appears distorted but similar to the reported values in analogous complexes.Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPW (Siemens, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(C7H4ClO2)(C2H6O)2] | Z = 1 |
Mr = 841.42 | F(000) = 426 |
Triclinic, P1 | Dx = 1.600 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5766 (1) Å | Cell parameters from 9962 reflections |
b = 11.1792 (2) Å | θ = 2.6–28.9° |
c = 12.4355 (3) Å | µ = 1.58 mm−1 |
α = 93.175 (1)° | T = 296 K |
β = 103.890 (1)° | Irregular, green |
γ = 98.688 (1)° | 0.38 × 0.18 × 0.10 mm |
V = 873.34 (3) Å3 |
Bruker APEXII CCD diffractometer | 5070 independent reflections |
Radiation source: fine-focus sealed tube | 4288 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 30.1°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −9→9 |
Tmin = 0.695, Tmax = 0.746 | k = −15→15 |
36853 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0523P)2 + 0.4776P] where P = (Fo2 + 2Fc2)/3 |
5070 reflections | (Δ/σ)max = 0.004 |
220 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
[Cu2(C7H4ClO2)(C2H6O)2] | γ = 98.688 (1)° |
Mr = 841.42 | V = 873.34 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.5766 (1) Å | Mo Kα radiation |
b = 11.1792 (2) Å | µ = 1.58 mm−1 |
c = 12.4355 (3) Å | T = 296 K |
α = 93.175 (1)° | 0.38 × 0.18 × 0.10 mm |
β = 103.890 (1)° |
Bruker APEXII CCD diffractometer | 5070 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 4288 reflections with I > 2σ(I) |
Tmin = 0.695, Tmax = 0.746 | Rint = 0.033 |
36853 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.50 e Å−3 |
5070 reflections | Δρmin = −0.42 e Å−3 |
220 parameters |
Experimental. SADABS-2008/1 - Bruker AXS area detector scaling and absorption correction. wR2(int) was 0.0889 before and 0.0361 after correction. The crystals suitable for the X-ray analysis were obtained by solvothermal synthesis of the reaction of p-Chlorobenzoate with Copper(II) salt in water/ethanol (1:1) mixed together with melanin. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2. Conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.83458 (4) | −0.06609 (2) | 0.018444 (19) | 0.02666 (8) | |
O1 | 1.0314 (3) | −0.10047 (19) | 0.15327 (16) | 0.0579 (5) | |
O2 | 1.3138 (3) | 0.00860 (19) | 0.11950 (14) | 0.0505 (5) | |
C1 | 1.2246 (3) | −0.05778 (18) | 0.17776 (17) | 0.0314 (4) | |
C2 | 1.3598 (3) | −0.08960 (19) | 0.28342 (17) | 0.0327 (4) | |
C3 | 1.2696 (4) | −0.1556 (2) | 0.3558 (2) | 0.0430 (5) | |
H3 | 1.1231 | −0.1805 | 0.3386 | 0.052* | |
C4 | 1.3950 (5) | −0.1850 (3) | 0.4537 (2) | 0.0519 (6) | |
H4 | 1.3341 | −0.2293 | 0.5026 | 0.062* | |
C5 | 1.6119 (5) | −0.1476 (2) | 0.47747 (19) | 0.0473 (6) | |
C6 | 1.7056 (4) | −0.0834 (2) | 0.4065 (2) | 0.0470 (6) | |
H6 | 1.8524 | −0.0603 | 0.4236 | 0.056* | |
C7 | 1.5796 (4) | −0.0530 (2) | 0.30873 (19) | 0.0404 (5) | |
H7 | 1.6414 | −0.0085 | 0.2604 | 0.048* | |
Cl1 | 1.77151 (15) | −0.18454 (8) | 0.59985 (6) | 0.0714 (2) | |
O3 | 0.8063 (3) | 0.08393 (16) | 0.09854 (16) | 0.0508 (5) | |
O4 | 1.0913 (3) | 0.19567 (16) | 0.06969 (19) | 0.0601 (6) | |
C8 | 0.9365 (3) | 0.18035 (19) | 0.11129 (16) | 0.0318 (4) | |
C9 | 0.9026 (4) | 0.28429 (19) | 0.18188 (18) | 0.0348 (4) | |
C10 | 0.7242 (4) | 0.2754 (2) | 0.2238 (2) | 0.0407 (5) | |
H10 | 0.6230 | 0.2049 | 0.2069 | 0.049* | |
C11 | 0.6966 (5) | 0.3717 (2) | 0.2911 (2) | 0.0503 (6) | |
H11 | 0.5771 | 0.3663 | 0.3193 | 0.060* | |
C12 | 0.8467 (6) | 0.4743 (2) | 0.3154 (2) | 0.0579 (7) | |
C13 | 1.0244 (6) | 0.4853 (3) | 0.2747 (3) | 0.0663 (8) | |
H13 | 1.1250 | 0.5561 | 0.2922 | 0.080* | |
C14 | 1.0514 (5) | 0.3897 (2) | 0.2074 (2) | 0.0512 (6) | |
H14 | 1.1707 | 0.3963 | 0.1790 | 0.061* | |
Cl2 | 0.8148 (2) | 0.59368 (9) | 0.40221 (10) | 0.0981 (4) | |
O5 | 0.5654 (2) | −0.17863 (14) | 0.04837 (14) | 0.0397 (3) | |
H5 | 0.4613 | −0.1549 | 0.0620 | 0.060* | |
C15 | 0.5781 (8) | −0.2948 (4) | 0.0851 (5) | 0.1087 (17) | |
H15A | 0.6283 | −0.3412 | 0.0316 | 0.130* | |
H15B | 0.6867 | −0.2846 | 0.1548 | 0.130* | |
C16 | 0.3962 (8) | −0.3657 (4) | 0.1019 (5) | 0.1163 (18) | |
H16A | 0.4349 | −0.4090 | 0.1663 | 0.174* | |
H16B | 0.3314 | −0.4227 | 0.0378 | 0.174* | |
H16C | 0.2975 | −0.3141 | 0.1132 | 0.174* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02393 (12) | 0.02850 (13) | 0.02705 (13) | 0.00328 (8) | 0.00589 (8) | 0.00402 (8) |
O1 | 0.0326 (8) | 0.0750 (13) | 0.0550 (11) | −0.0070 (8) | −0.0070 (7) | 0.0366 (10) |
O2 | 0.0298 (8) | 0.0832 (13) | 0.0354 (8) | 0.0014 (8) | 0.0030 (6) | 0.0257 (9) |
C1 | 0.0303 (9) | 0.0317 (9) | 0.0305 (10) | 0.0082 (8) | 0.0029 (8) | 0.0016 (8) |
C2 | 0.0348 (10) | 0.0335 (10) | 0.0280 (9) | 0.0098 (8) | 0.0025 (8) | 0.0013 (8) |
C3 | 0.0413 (12) | 0.0516 (13) | 0.0373 (12) | 0.0128 (10) | 0.0077 (9) | 0.0110 (10) |
C4 | 0.0640 (17) | 0.0570 (15) | 0.0372 (13) | 0.0175 (13) | 0.0101 (11) | 0.0165 (11) |
C5 | 0.0621 (16) | 0.0478 (13) | 0.0279 (11) | 0.0255 (12) | −0.0055 (10) | 0.0002 (9) |
C6 | 0.0396 (12) | 0.0535 (14) | 0.0394 (12) | 0.0118 (10) | −0.0073 (10) | −0.0024 (10) |
C7 | 0.0356 (11) | 0.0462 (12) | 0.0349 (11) | 0.0072 (9) | 0.0001 (9) | 0.0034 (9) |
Cl1 | 0.0926 (6) | 0.0776 (5) | 0.0369 (3) | 0.0401 (4) | −0.0136 (3) | 0.0065 (3) |
O3 | 0.0396 (9) | 0.0434 (9) | 0.0689 (12) | −0.0044 (7) | 0.0257 (8) | −0.0206 (8) |
O4 | 0.0695 (12) | 0.0341 (8) | 0.0897 (15) | −0.0028 (8) | 0.0556 (12) | −0.0083 (9) |
C8 | 0.0324 (10) | 0.0350 (10) | 0.0287 (9) | 0.0106 (8) | 0.0056 (8) | 0.0046 (8) |
C9 | 0.0398 (11) | 0.0344 (10) | 0.0310 (10) | 0.0099 (8) | 0.0084 (8) | 0.0024 (8) |
C10 | 0.0451 (12) | 0.0394 (11) | 0.0407 (12) | 0.0100 (9) | 0.0152 (10) | 0.0024 (9) |
C11 | 0.0614 (16) | 0.0510 (14) | 0.0484 (14) | 0.0202 (12) | 0.0264 (12) | 0.0032 (11) |
C12 | 0.086 (2) | 0.0420 (13) | 0.0532 (16) | 0.0204 (14) | 0.0275 (15) | −0.0057 (12) |
C13 | 0.080 (2) | 0.0396 (14) | 0.079 (2) | −0.0028 (14) | 0.0324 (18) | −0.0152 (14) |
C14 | 0.0545 (15) | 0.0406 (13) | 0.0612 (16) | 0.0033 (11) | 0.0251 (13) | −0.0039 (11) |
Cl2 | 0.1417 (10) | 0.0610 (5) | 0.1054 (8) | 0.0210 (6) | 0.0633 (7) | −0.0266 (5) |
O5 | 0.0338 (8) | 0.0368 (8) | 0.0509 (9) | 0.0031 (6) | 0.0159 (7) | 0.0103 (7) |
C15 | 0.102 (3) | 0.060 (2) | 0.181 (5) | 0.008 (2) | 0.061 (3) | 0.056 (3) |
C16 | 0.114 (4) | 0.081 (3) | 0.161 (5) | −0.006 (3) | 0.056 (4) | 0.045 (3) |
Cu1—O1 | 1.9530 (16) | O4—C8 | 1.243 (3) |
Cu1—O2i | 1.9535 (16) | O4—Cu1i | 1.9572 (17) |
Cu1—O4i | 1.9572 (17) | C8—C9 | 1.493 (3) |
Cu1—O3 | 1.9590 (16) | C9—C14 | 1.381 (3) |
Cu1—O5 | 2.1334 (15) | C9—C10 | 1.387 (3) |
Cu1—Cu1i | 2.5905 (4) | C10—C11 | 1.387 (3) |
O1—C1 | 1.245 (3) | C10—H10 | 0.9300 |
O2—C1 | 1.246 (3) | C11—C12 | 1.363 (4) |
O2—Cu1i | 1.9535 (16) | C11—H11 | 0.9300 |
C1—C2 | 1.493 (3) | C12—C13 | 1.373 (4) |
C2—C3 | 1.380 (3) | C12—Cl2 | 1.740 (3) |
C2—C7 | 1.394 (3) | C13—C14 | 1.380 (4) |
C3—C4 | 1.384 (3) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | C14—H14 | 0.9300 |
C4—C5 | 1.379 (4) | O5—C15 | 1.408 (4) |
C4—H4 | 0.9300 | O5—H5 | 0.8200 |
C5—C6 | 1.368 (4) | C15—C16 | 1.398 (6) |
C5—Cl1 | 1.738 (2) | C15—H15A | 0.9700 |
C6—C7 | 1.388 (3) | C15—H15B | 0.9700 |
C6—H6 | 0.9300 | C16—H16A | 0.9600 |
C7—H7 | 0.9300 | C16—H16B | 0.9600 |
O3—C8 | 1.248 (3) | C16—H16C | 0.9600 |
O1—Cu1—O2i | 168.55 (7) | C8—O3—Cu1 | 123.45 (14) |
O1—Cu1—O4i | 91.24 (10) | C8—O4—Cu1i | 122.94 (15) |
O2i—Cu1—O4i | 89.13 (10) | O4—C8—O3 | 124.7 (2) |
O1—Cu1—O3 | 88.85 (9) | O4—C8—C9 | 118.06 (19) |
O2i—Cu1—O3 | 88.55 (9) | O3—C8—C9 | 117.20 (19) |
O4i—Cu1—O3 | 168.69 (7) | C14—C9—C10 | 119.4 (2) |
O1—Cu1—O5 | 94.39 (7) | C14—C9—C8 | 120.0 (2) |
O2i—Cu1—O5 | 96.99 (7) | C10—C9—C8 | 120.6 (2) |
O4i—Cu1—O5 | 94.10 (7) | C11—C10—C9 | 120.0 (2) |
O3—Cu1—O5 | 97.17 (7) | C11—C10—H10 | 120.0 |
O1—Cu1—Cu1i | 85.05 (5) | C9—C10—H10 | 120.0 |
O2i—Cu1—Cu1i | 83.59 (5) | C12—C11—C10 | 119.2 (2) |
O4i—Cu1—Cu1i | 84.70 (5) | C12—C11—H11 | 120.4 |
O3—Cu1—Cu1i | 84.04 (5) | C10—C11—H11 | 120.4 |
O5—Cu1—Cu1i | 178.66 (5) | C11—C12—C13 | 121.8 (2) |
C1—O1—Cu1 | 122.56 (15) | C11—C12—Cl2 | 119.2 (2) |
C1—O2—Cu1i | 124.19 (14) | C13—C12—Cl2 | 119.0 (2) |
O1—C1—O2 | 124.5 (2) | C12—C13—C14 | 118.9 (3) |
O1—C1—C2 | 117.91 (19) | C12—C13—H13 | 120.5 |
O2—C1—C2 | 117.55 (18) | C14—C13—H13 | 120.5 |
C3—C2—C7 | 119.7 (2) | C13—C14—C9 | 120.5 (3) |
C3—C2—C1 | 120.6 (2) | C13—C14—H14 | 119.7 |
C7—C2—C1 | 119.6 (2) | C9—C14—H14 | 119.7 |
C2—C3—C4 | 120.6 (2) | C15—O5—Cu1 | 121.5 (2) |
C2—C3—H3 | 119.7 | C15—O5—H5 | 109.5 |
C4—C3—H3 | 119.7 | Cu1—O5—H5 | 125.7 |
C5—C4—C3 | 118.8 (2) | C16—C15—O5 | 119.3 (4) |
C5—C4—H4 | 120.6 | C16—C15—H15A | 107.5 |
C3—C4—H4 | 120.6 | O5—C15—H15A | 107.5 |
C6—C5—C4 | 121.7 (2) | C16—C15—H15B | 107.5 |
C6—C5—Cl1 | 119.0 (2) | O5—C15—H15B | 107.5 |
C4—C5—Cl1 | 119.3 (2) | H15A—C15—H15B | 107.0 |
C5—C6—C7 | 119.5 (2) | C15—C16—H16A | 109.5 |
C5—C6—H6 | 120.3 | C15—C16—H16B | 109.5 |
C7—C6—H6 | 120.3 | H16A—C16—H16B | 109.5 |
C6—C7—C2 | 119.7 (2) | C15—C16—H16C | 109.5 |
C6—C7—H7 | 120.2 | H16A—C16—H16C | 109.5 |
C2—C7—H7 | 120.2 | H16B—C16—H16C | 109.5 |
O2i—Cu1—O1—C1 | −7.8 (6) | O5—Cu1—O3—C8 | 176.32 (19) |
O4i—Cu1—O1—C1 | 83.9 (2) | Cu1i—Cu1—O3—C8 | −3.11 (19) |
O3—Cu1—O1—C1 | −84.8 (2) | Cu1i—O4—C8—O3 | −3.1 (4) |
O5—Cu1—O1—C1 | 178.1 (2) | Cu1i—O4—C8—C9 | 176.85 (15) |
Cu1i—Cu1—O1—C1 | −0.6 (2) | Cu1—O3—C8—O4 | 4.6 (4) |
Cu1—O1—C1—O2 | −1.3 (4) | Cu1—O3—C8—C9 | −175.33 (14) |
Cu1—O1—C1—C2 | 179.60 (15) | O4—C8—C9—C14 | −5.8 (3) |
Cu1i—O2—C1—O1 | 3.4 (4) | O3—C8—C9—C14 | 174.2 (2) |
Cu1i—O2—C1—C2 | −177.55 (15) | O4—C8—C9—C10 | 175.3 (2) |
O1—C1—C2—C3 | −5.4 (3) | O3—C8—C9—C10 | −4.7 (3) |
O2—C1—C2—C3 | 175.4 (2) | C14—C9—C10—C11 | −0.2 (4) |
O1—C1—C2—C7 | 174.1 (2) | C8—C9—C10—C11 | 178.7 (2) |
O2—C1—C2—C7 | −5.0 (3) | C9—C10—C11—C12 | −0.2 (4) |
C7—C2—C3—C4 | 0.5 (4) | C10—C11—C12—C13 | 0.3 (5) |
C1—C2—C3—C4 | −180.0 (2) | C10—C11—C12—Cl2 | −178.6 (2) |
C2—C3—C4—C5 | −0.2 (4) | C11—C12—C13—C14 | 0.0 (5) |
C3—C4—C5—C6 | −0.6 (4) | Cl2—C12—C13—C14 | 178.9 (3) |
C3—C4—C5—Cl1 | −179.7 (2) | C12—C13—C14—C9 | −0.4 (5) |
C4—C5—C6—C7 | 1.1 (4) | C10—C9—C14—C13 | 0.5 (4) |
Cl1—C5—C6—C7 | −179.76 (19) | C8—C9—C14—C13 | −178.4 (3) |
C5—C6—C7—C2 | −0.8 (4) | O1—Cu1—O5—C15 | −43.4 (3) |
C3—C2—C7—C6 | 0.0 (4) | O2i—Cu1—O5—C15 | 137.8 (3) |
C1—C2—C7—C6 | −179.5 (2) | O4i—Cu1—O5—C15 | 48.1 (3) |
O1—Cu1—O3—C8 | 82.0 (2) | O3—Cu1—O5—C15 | −132.8 (3) |
O2i—Cu1—O3—C8 | −86.8 (2) | Cu1—O5—C15—C16 | −179.0 (4) |
O4i—Cu1—O3—C8 | −8.6 (6) |
Symmetry code: (i) −x+2, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O2ii | 0.82 | 2.35 | 3.073 (3) | 148 |
O5—H5···O3iii | 0.82 | 2.57 | 3.047 (3) | 118 |
Symmetry codes: (ii) x−1, y, z; (iii) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C7H4ClO2)(C2H6O)2] |
Mr | 841.42 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 6.5766 (1), 11.1792 (2), 12.4355 (3) |
α, β, γ (°) | 93.175 (1), 103.890 (1), 98.688 (1) |
V (Å3) | 873.34 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.58 |
Crystal size (mm) | 0.38 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.695, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 36853, 5070, 4288 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.102, 1.03 |
No. of reflections | 5070 |
No. of parameters | 220 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.42 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XPW (Siemens, 1996), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O2i | 0.82 | 2.35 | 3.073 (3) | 148 |
O5—H5···O3ii | 0.82 | 2.57 | 3.047 (3) | 118 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z. |
References
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casarin, M., Corvaja, C., Nicola, C. D., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265–6276. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21. Web of Science CSD CrossRef CAS Google Scholar
Deka, K., Sarma, R. J. & Baruah, J. B. (2006). Inorg. Chem. Commun. 9, 931–934. Web of Science CSD CrossRef CAS Google Scholar
Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330. Web of Science CrossRef PubMed CAS Google Scholar
Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172. CAS Google Scholar
Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m460–m461. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hu, R.-Z., Liu, Z.-D., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m946–m947. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). XPW. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Ueda, M., Itou, M., Okazawa, K., Mochida, T. & Mori, H. (2005). Polyhedron, 24, 2189–2193. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of metal-coordination polymers has been advanced due to their diverse topologies and potential applications in smart optoelectronic, magnetic, microporous and biomimetic materials with specific structures, properties, and reactivities (Deka et al., 2006; Eddaoudi et al., 2001). A coordination polymer contains one or more center of metal linked by coordinated ligands into an infinite array, in one/two or three dimension. Coordination polymers constitute one of the most important classes of organic–inorganic hybrid materials (Casarin et al., 2005) that have been the subject of intensive research in recent years. In this paper is presented a new dinuclear complex of copper(II).
The carboxylates ligands have different coordination modes so it is important to have control on the binding of carboxylate to a metal ion in specific manner in the presence of other ligand/s. Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Hauptmann et al., 2000). In this compound the copper have a octahedral coordination and combine another center of copper, four oxygen of four acid and one ethanol. The copper dimer has a perfect Ci symmetry and is placed on a crystallographic centre of inversion (Figure 1). The mean value of the distances Cu—O [1.953 (2) Å] is similar to that reported in other structures (Ueda et al., 2005; Hökelek et al., 2008). The structure is very similar to another already known (Hu et al., 2004) differing for the halogen atom bonded to the carboxylic acid.
The crystal packing is constituted by centrosymmetric couple (3 - x, -y, 1 - z) of the dinuclear complexes assembled by weak π-stacking interaction of the C2—C7 aromatic rings [C5 at 3.586 (4) Å from centroid of the other ring] and a chlorine Cl1 interaction with the C9—C14 ring of the other molecule [Cl1—C9 is 3.387 (3) Å] (Figure 2). The packing is further stabilized by intermolecular hydrogen bonds (Tables 1).