metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-4-chloro­benzoato-κ2O:O′)bis­­[(ethanol-κO)copper(II)](CuCu)

aDipartimento di Scienze Chimiche, Universitá di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
*Correspondence e-mail: fnicolo@unime.it

(Received 19 February 2013; accepted 12 March 2013; online 16 March 2013)

In the centrosymmetric dinuclear title CuII complex, [Cu2(C7H4ClO2)(C2H5OH)2], the Cu—Cu distance is 2.5905 (4) Å. The two metal atoms are bridged by four 4-chloro­benzoate ligands and each has an ethanol mol­ecule in the axial position of the overall octahedral coordination environment. The crystal packing features O—H⋯O hydrogen bonds.

Related literature

For general background to metal-coordination polymers, see: Deka et al. (2006[Deka, K., Sarma, R. J. & Baruah, J. B. (2006). Inorg. Chem. Commun. 9, 931-934.]); Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Casarin et al. (2005[Casarin, M., Corvaja, C., Nicola, C. D., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265-6276.]). For their coordination modes, see: Chen & Chen (2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]). For related structures, see: Hauptmann et al. (2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]); Ueda et al. (2005[Ueda, M., Itou, M., Okazawa, K., Mochida, T. & Mori, H. (2005). Polyhedron, 24, 2189-2193.]); Hökelek et al. (2008[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m460-m461.]); Hu et al. (2004[Hu, R.-Z., Liu, Z.-D., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m946-m947.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H4ClO2)(C2H6O)2]

  • Mr = 841.42

  • Triclinic, [P \overline 1]

  • a = 6.5766 (1) Å

  • b = 11.1792 (2) Å

  • c = 12.4355 (3) Å

  • α = 93.175 (1)°

  • β = 103.890 (1)°

  • γ = 98.688 (1)°

  • V = 873.34 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 296 K

  • 0.38 × 0.18 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.695, Tmax = 0.746

  • 36853 measured reflections

  • 5070 independent reflections

  • 4288 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.03

  • 5070 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2i 0.82 2.35 3.073 (3) 148
O5—H5⋯O3ii 0.82 2.57 3.047 (3) 118
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XPW (Siemens, 1996[Siemens (1996). XPW. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The chemistry of metal-coordination polymers has been advanced due to their diverse topologies and potential applications in smart optoelectronic, magnetic, microporous and biomimetic materials with specific structures, properties, and reactivities (Deka et al., 2006; Eddaoudi et al., 2001). A coordination polymer contains one or more center of metal linked by coordinated ligands into an infinite array, in one/two or three dimension. Coordination polymers constitute one of the most important classes of organic–inorganic hybrid materials (Casarin et al., 2005) that have been the subject of intensive research in recent years. In this paper is presented a new dinuclear complex of copper(II).

The carboxylates ligands have different coordination modes so it is important to have control on the binding of carboxylate to a metal ion in specific manner in the presence of other ligand/s. Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Hauptmann et al., 2000). In this compound the copper have a octahedral coordination and combine another center of copper, four oxygen of four acid and one ethanol. The copper dimer has a perfect Ci symmetry and is placed on a crystallographic centre of inversion (Figure 1). The mean value of the distances Cu—O [1.953 (2) Å] is similar to that reported in other structures (Ueda et al., 2005; Hökelek et al., 2008). The structure is very similar to another already known (Hu et al., 2004) differing for the halogen atom bonded to the carboxylic acid.

The crystal packing is constituted by centrosymmetric couple (3 - x, -y, 1 - z) of the dinuclear complexes assembled by weak π-stacking interaction of the C2—C7 aromatic rings [C5 at 3.586 (4) Å from centroid of the other ring] and a chlorine Cl1 interaction with the C9—C14 ring of the other molecule [Cl1—C9 is 3.387 (3) Å] (Figure 2). The packing is further stabilized by intermolecular hydrogen bonds (Tables 1).

Related literature top

For general background to metal-coordination polymers, see Deka et al. (2006); Eddaoudi et al. (2001); Casarin et al. (2005). For their coordination modes, see Chen & Chen (2002). For related structures, see Hauptmann et al. (2000); Ueda et al. (2005); Hökelek et al. (2008); Hu et al. (2004).

Experimental top

The reagents used here were purchased from commercial sources (Sigma–Aldrich). To synthetize the title complex 1 ml of Copper(II) Chloride (0,1 mmol; 100mM) were added to a water (3 ml) / ethanol (3 ml) mixture containing 0,0134 g of melanine and 0,017 g of acid p-Chlorobenzoic. The reaction was sealed in a Teflon-lined stainless steel autoclave, which was heated at 130°C for 3 days under autogenous pressure. After slow cooling to room temperature in 6 h. In this conditions are formed green crystals of the complex and colourless crystal of melamine. A suitable sample of the green crystals has been selected by optical microscope and used in X-Ray structure determination.

Refinement top

The structure was solved by direct method and subsequent Fourier difference techniques and refined using full-matrix least-squares procedure on F2 with anisotropic thermal parameters for all non-hydrogen atoms (SHELXL97). All non hydrogen atoms were refined anisotropically. Several hydrogen atoms were located on the final difference map, the H atoms were included in the refinement via the "riding model" method with the X—H bond geometry and the H isotropic displacement parameter depending on the parent atom X. Owing to the usual conformational disorder of the terminal ethanol, no suitable bond/angles constrain was introduced during the last refinement cycles so that the ligand geometry appears distorted but similar to the reported values in analogous complexes.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPW (Siemens, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with the corresponding atom labelling of the crystallographic asymmetric unit. The equivalent centrosymmetric fragment (2 - x, -y, -z) is represented by empty style. Displacement ellipsoids are plotted at a 30% probability level while H atom size is arbitrary.
[Figure 2] Fig. 2. Crystal packing of the dinuclear units showing the centrosymmetric arrangement of each complex couple (3 - x, -y, 1 - z) assembled by weak π-stacking and chlorine-phenyl interactions. Displacement ellipsoids are plotted at a 30% probability level and H atoms are drawn with an arbitrary radius.
Tetrakis(µ-4-chlorobenzoato-κ2O:O')bis[(ethanol-κO)copper(II)](CuCu) top
Crystal data top
[Cu2(C7H4ClO2)(C2H6O)2]Z = 1
Mr = 841.42F(000) = 426
Triclinic, P1Dx = 1.600 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5766 (1) ÅCell parameters from 9962 reflections
b = 11.1792 (2) Åθ = 2.6–28.9°
c = 12.4355 (3) ŵ = 1.58 mm1
α = 93.175 (1)°T = 296 K
β = 103.890 (1)°Irregular, green
γ = 98.688 (1)°0.38 × 0.18 × 0.10 mm
V = 873.34 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5070 independent reflections
Radiation source: fine-focus sealed tube4288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.1°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.695, Tmax = 0.746k = 1515
36853 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.4776P]
where P = (Fo2 + 2Fc2)/3
5070 reflections(Δ/σ)max = 0.004
220 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu2(C7H4ClO2)(C2H6O)2]γ = 98.688 (1)°
Mr = 841.42V = 873.34 (3) Å3
Triclinic, P1Z = 1
a = 6.5766 (1) ÅMo Kα radiation
b = 11.1792 (2) ŵ = 1.58 mm1
c = 12.4355 (3) ÅT = 296 K
α = 93.175 (1)°0.38 × 0.18 × 0.10 mm
β = 103.890 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5070 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4288 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.746Rint = 0.033
36853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.50 e Å3
5070 reflectionsΔρmin = 0.42 e Å3
220 parameters
Special details top

Experimental. SADABS-2008/1 - Bruker AXS area detector scaling and absorption correction. wR2(int) was 0.0889 before and 0.0361 after correction.

The crystals suitable for the X-ray analysis were obtained by solvothermal synthesis of the reaction of p-Chlorobenzoate with Copper(II) salt in water/ethanol (1:1) mixed together with melanin.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2. Conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.83458 (4)0.06609 (2)0.018444 (19)0.02666 (8)
O11.0314 (3)0.10047 (19)0.15327 (16)0.0579 (5)
O21.3138 (3)0.00860 (19)0.11950 (14)0.0505 (5)
C11.2246 (3)0.05778 (18)0.17776 (17)0.0314 (4)
C21.3598 (3)0.08960 (19)0.28342 (17)0.0327 (4)
C31.2696 (4)0.1556 (2)0.3558 (2)0.0430 (5)
H31.12310.18050.33860.052*
C41.3950 (5)0.1850 (3)0.4537 (2)0.0519 (6)
H41.33410.22930.50260.062*
C51.6119 (5)0.1476 (2)0.47747 (19)0.0473 (6)
C61.7056 (4)0.0834 (2)0.4065 (2)0.0470 (6)
H61.85240.06030.42360.056*
C71.5796 (4)0.0530 (2)0.30873 (19)0.0404 (5)
H71.64140.00850.26040.048*
Cl11.77151 (15)0.18454 (8)0.59985 (6)0.0714 (2)
O30.8063 (3)0.08393 (16)0.09854 (16)0.0508 (5)
O41.0913 (3)0.19567 (16)0.06969 (19)0.0601 (6)
C80.9365 (3)0.18035 (19)0.11129 (16)0.0318 (4)
C90.9026 (4)0.28429 (19)0.18188 (18)0.0348 (4)
C100.7242 (4)0.2754 (2)0.2238 (2)0.0407 (5)
H100.62300.20490.20690.049*
C110.6966 (5)0.3717 (2)0.2911 (2)0.0503 (6)
H110.57710.36630.31930.060*
C120.8467 (6)0.4743 (2)0.3154 (2)0.0579 (7)
C131.0244 (6)0.4853 (3)0.2747 (3)0.0663 (8)
H131.12500.55610.29220.080*
C141.0514 (5)0.3897 (2)0.2074 (2)0.0512 (6)
H141.17070.39630.17900.061*
Cl20.8148 (2)0.59368 (9)0.40221 (10)0.0981 (4)
O50.5654 (2)0.17863 (14)0.04837 (14)0.0397 (3)
H50.46130.15490.06200.060*
C150.5781 (8)0.2948 (4)0.0851 (5)0.1087 (17)
H15A0.62830.34120.03160.130*
H15B0.68670.28460.15480.130*
C160.3962 (8)0.3657 (4)0.1019 (5)0.1163 (18)
H16A0.43490.40900.16630.174*
H16B0.33140.42270.03780.174*
H16C0.29750.31410.11320.174*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02393 (12)0.02850 (13)0.02705 (13)0.00328 (8)0.00589 (8)0.00402 (8)
O10.0326 (8)0.0750 (13)0.0550 (11)0.0070 (8)0.0070 (7)0.0366 (10)
O20.0298 (8)0.0832 (13)0.0354 (8)0.0014 (8)0.0030 (6)0.0257 (9)
C10.0303 (9)0.0317 (9)0.0305 (10)0.0082 (8)0.0029 (8)0.0016 (8)
C20.0348 (10)0.0335 (10)0.0280 (9)0.0098 (8)0.0025 (8)0.0013 (8)
C30.0413 (12)0.0516 (13)0.0373 (12)0.0128 (10)0.0077 (9)0.0110 (10)
C40.0640 (17)0.0570 (15)0.0372 (13)0.0175 (13)0.0101 (11)0.0165 (11)
C50.0621 (16)0.0478 (13)0.0279 (11)0.0255 (12)0.0055 (10)0.0002 (9)
C60.0396 (12)0.0535 (14)0.0394 (12)0.0118 (10)0.0073 (10)0.0024 (10)
C70.0356 (11)0.0462 (12)0.0349 (11)0.0072 (9)0.0001 (9)0.0034 (9)
Cl10.0926 (6)0.0776 (5)0.0369 (3)0.0401 (4)0.0136 (3)0.0065 (3)
O30.0396 (9)0.0434 (9)0.0689 (12)0.0044 (7)0.0257 (8)0.0206 (8)
O40.0695 (12)0.0341 (8)0.0897 (15)0.0028 (8)0.0556 (12)0.0083 (9)
C80.0324 (10)0.0350 (10)0.0287 (9)0.0106 (8)0.0056 (8)0.0046 (8)
C90.0398 (11)0.0344 (10)0.0310 (10)0.0099 (8)0.0084 (8)0.0024 (8)
C100.0451 (12)0.0394 (11)0.0407 (12)0.0100 (9)0.0152 (10)0.0024 (9)
C110.0614 (16)0.0510 (14)0.0484 (14)0.0202 (12)0.0264 (12)0.0032 (11)
C120.086 (2)0.0420 (13)0.0532 (16)0.0204 (14)0.0275 (15)0.0057 (12)
C130.080 (2)0.0396 (14)0.079 (2)0.0028 (14)0.0324 (18)0.0152 (14)
C140.0545 (15)0.0406 (13)0.0612 (16)0.0033 (11)0.0251 (13)0.0039 (11)
Cl20.1417 (10)0.0610 (5)0.1054 (8)0.0210 (6)0.0633 (7)0.0266 (5)
O50.0338 (8)0.0368 (8)0.0509 (9)0.0031 (6)0.0159 (7)0.0103 (7)
C150.102 (3)0.060 (2)0.181 (5)0.008 (2)0.061 (3)0.056 (3)
C160.114 (4)0.081 (3)0.161 (5)0.006 (3)0.056 (4)0.045 (3)
Geometric parameters (Å, º) top
Cu1—O11.9530 (16)O4—C81.243 (3)
Cu1—O2i1.9535 (16)O4—Cu1i1.9572 (17)
Cu1—O4i1.9572 (17)C8—C91.493 (3)
Cu1—O31.9590 (16)C9—C141.381 (3)
Cu1—O52.1334 (15)C9—C101.387 (3)
Cu1—Cu1i2.5905 (4)C10—C111.387 (3)
O1—C11.245 (3)C10—H100.9300
O2—C11.246 (3)C11—C121.363 (4)
O2—Cu1i1.9535 (16)C11—H110.9300
C1—C21.493 (3)C12—C131.373 (4)
C2—C31.380 (3)C12—Cl21.740 (3)
C2—C71.394 (3)C13—C141.380 (4)
C3—C41.384 (3)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.379 (4)O5—C151.408 (4)
C4—H40.9300O5—H50.8200
C5—C61.368 (4)C15—C161.398 (6)
C5—Cl11.738 (2)C15—H15A0.9700
C6—C71.388 (3)C15—H15B0.9700
C6—H60.9300C16—H16A0.9600
C7—H70.9300C16—H16B0.9600
O3—C81.248 (3)C16—H16C0.9600
O1—Cu1—O2i168.55 (7)C8—O3—Cu1123.45 (14)
O1—Cu1—O4i91.24 (10)C8—O4—Cu1i122.94 (15)
O2i—Cu1—O4i89.13 (10)O4—C8—O3124.7 (2)
O1—Cu1—O388.85 (9)O4—C8—C9118.06 (19)
O2i—Cu1—O388.55 (9)O3—C8—C9117.20 (19)
O4i—Cu1—O3168.69 (7)C14—C9—C10119.4 (2)
O1—Cu1—O594.39 (7)C14—C9—C8120.0 (2)
O2i—Cu1—O596.99 (7)C10—C9—C8120.6 (2)
O4i—Cu1—O594.10 (7)C11—C10—C9120.0 (2)
O3—Cu1—O597.17 (7)C11—C10—H10120.0
O1—Cu1—Cu1i85.05 (5)C9—C10—H10120.0
O2i—Cu1—Cu1i83.59 (5)C12—C11—C10119.2 (2)
O4i—Cu1—Cu1i84.70 (5)C12—C11—H11120.4
O3—Cu1—Cu1i84.04 (5)C10—C11—H11120.4
O5—Cu1—Cu1i178.66 (5)C11—C12—C13121.8 (2)
C1—O1—Cu1122.56 (15)C11—C12—Cl2119.2 (2)
C1—O2—Cu1i124.19 (14)C13—C12—Cl2119.0 (2)
O1—C1—O2124.5 (2)C12—C13—C14118.9 (3)
O1—C1—C2117.91 (19)C12—C13—H13120.5
O2—C1—C2117.55 (18)C14—C13—H13120.5
C3—C2—C7119.7 (2)C13—C14—C9120.5 (3)
C3—C2—C1120.6 (2)C13—C14—H14119.7
C7—C2—C1119.6 (2)C9—C14—H14119.7
C2—C3—C4120.6 (2)C15—O5—Cu1121.5 (2)
C2—C3—H3119.7C15—O5—H5109.5
C4—C3—H3119.7Cu1—O5—H5125.7
C5—C4—C3118.8 (2)C16—C15—O5119.3 (4)
C5—C4—H4120.6C16—C15—H15A107.5
C3—C4—H4120.6O5—C15—H15A107.5
C6—C5—C4121.7 (2)C16—C15—H15B107.5
C6—C5—Cl1119.0 (2)O5—C15—H15B107.5
C4—C5—Cl1119.3 (2)H15A—C15—H15B107.0
C5—C6—C7119.5 (2)C15—C16—H16A109.5
C5—C6—H6120.3C15—C16—H16B109.5
C7—C6—H6120.3H16A—C16—H16B109.5
C6—C7—C2119.7 (2)C15—C16—H16C109.5
C6—C7—H7120.2H16A—C16—H16C109.5
C2—C7—H7120.2H16B—C16—H16C109.5
O2i—Cu1—O1—C17.8 (6)O5—Cu1—O3—C8176.32 (19)
O4i—Cu1—O1—C183.9 (2)Cu1i—Cu1—O3—C83.11 (19)
O3—Cu1—O1—C184.8 (2)Cu1i—O4—C8—O33.1 (4)
O5—Cu1—O1—C1178.1 (2)Cu1i—O4—C8—C9176.85 (15)
Cu1i—Cu1—O1—C10.6 (2)Cu1—O3—C8—O44.6 (4)
Cu1—O1—C1—O21.3 (4)Cu1—O3—C8—C9175.33 (14)
Cu1—O1—C1—C2179.60 (15)O4—C8—C9—C145.8 (3)
Cu1i—O2—C1—O13.4 (4)O3—C8—C9—C14174.2 (2)
Cu1i—O2—C1—C2177.55 (15)O4—C8—C9—C10175.3 (2)
O1—C1—C2—C35.4 (3)O3—C8—C9—C104.7 (3)
O2—C1—C2—C3175.4 (2)C14—C9—C10—C110.2 (4)
O1—C1—C2—C7174.1 (2)C8—C9—C10—C11178.7 (2)
O2—C1—C2—C75.0 (3)C9—C10—C11—C120.2 (4)
C7—C2—C3—C40.5 (4)C10—C11—C12—C130.3 (5)
C1—C2—C3—C4180.0 (2)C10—C11—C12—Cl2178.6 (2)
C2—C3—C4—C50.2 (4)C11—C12—C13—C140.0 (5)
C3—C4—C5—C60.6 (4)Cl2—C12—C13—C14178.9 (3)
C3—C4—C5—Cl1179.7 (2)C12—C13—C14—C90.4 (5)
C4—C5—C6—C71.1 (4)C10—C9—C14—C130.5 (4)
Cl1—C5—C6—C7179.76 (19)C8—C9—C14—C13178.4 (3)
C5—C6—C7—C20.8 (4)O1—Cu1—O5—C1543.4 (3)
C3—C2—C7—C60.0 (4)O2i—Cu1—O5—C15137.8 (3)
C1—C2—C7—C6179.5 (2)O4i—Cu1—O5—C1548.1 (3)
O1—Cu1—O3—C882.0 (2)O3—Cu1—O5—C15132.8 (3)
O2i—Cu1—O3—C886.8 (2)Cu1—O5—C15—C16179.0 (4)
O4i—Cu1—O3—C88.6 (6)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2ii0.822.353.073 (3)148
O5—H5···O3iii0.822.573.047 (3)118
Symmetry codes: (ii) x1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C7H4ClO2)(C2H6O)2]
Mr841.42
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.5766 (1), 11.1792 (2), 12.4355 (3)
α, β, γ (°)93.175 (1), 103.890 (1), 98.688 (1)
V3)873.34 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.38 × 0.18 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.695, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
36853, 5070, 4288
Rint0.033
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.03
No. of reflections5070
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.42

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XPW (Siemens, 1996), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.822.353.073 (3)148
O5—H5···O3ii0.822.573.047 (3)118
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasarin, M., Corvaja, C., Nicola, C. D., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265–6276.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationDeka, K., Sarma, R. J. & Baruah, J. B. (2006). Inorg. Chem. Commun. 9, 931–934.  Web of Science CSD CrossRef CAS Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m460–m461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, R.-Z., Liu, Z.-D., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m946–m947.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XPW. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationUeda, M., Itou, M., Okazawa, K., Mochida, T. & Mori, H. (2005). Polyhedron, 24, 2189–2193.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds