organic compounds
3-(4-Nitrobenzyl)-4H-chromen-4-one
aSchool of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa, bSchool of Chemical Engineering, University of KwaZulu-Natal, Durban, South Africa, and cChemistry Department, University of Cape Town, Rondebosch 7701, South Africa
*Correspondence e-mail: koorbanally@ukzn.ac.za
In the title compound, C16H11NO4, the dihedral angle between the ten-membered chromen-4-one ring system (r.m.s. deviation = 0.0095 Å) and the benzene ring is 86.16 (5)°. In the crystal, molecules are linked into a three-dimensional network by weak C—H⋯O hydrogen bonds. The crystal studied was a non-merohedral twin, with the minor twin component refining to 0.093 (1).
Related literature
For the preparation, see: Desideri et al. (2011); Valkonen et al. (2012). For related structures, see: Valkonen et al. (2012); Gopaul et al. (2013). For the biological activity of homoisoflavonoids, see: Abegaz et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536813006119/fj2618sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813006119/fj2618Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813006119/fj2618Isup3.cml
A mixture of chroman-4-one (1.02 g, 6.749 mmol), 4-nitrobenzaldehyde (1.22 g, 8.099 mmol) and 10–15 drops of piperidine was heated at 80°C for 12 hrs. The reaction mixture was monitored for completion by thin layer
Upon completion, the reaction mixture was cooled, diluted with water and neutralized using 10% HCl. To the viscous reaction mixture, 20 ml of ethyl acetate was added. Upon the addition of hexane to the reaction mixture, the homoisoflavonoid precipitated out. The powdered product was filtered, washed with hexane and dried under vacuum. Upon slow evaporation of chloroform, the crystals of the homoisoflavonoid were obtained. (m.p. of 179–180 °C).1H NMR (400 MHz, CDCl3) δ: 3.87 (2H, s, H-9), 7.38 (1H, t, J=7.54 Hz, H-6), 7.41 (1H, d, J=8.60 Hz, H-8), 7.45 (1H, d, J=8.48 Hz, H-2'/6'), 7.65 (1H, td, J=8.32, 1.10 Hz, H-7), 7.79 (1H, s, H-2), 8.12 (1H, d, J=8.56 Hz, H-3'/5'), 8.18 (1H, dd, J=7.98, 0.66 Hz, H-5).
13C NMR (100 MHz, CDCl3) δ: 31.89 (C-9), 118.15 (C-8), 123.06 (C-3/1'), 123.79 (C-3'/5'), 123.83 (C-4a), 125.32 (C-6), 125.92 (C-5), 129.65 (C-2'/6'), 133.84 (C-7), 146.76 (C-4'), 153.14 (C-2), 156.52 (C-8a), 177.18 (C-4).
The crystal was a non-merohedral twin. Two domains were indexed using CELL_NOW1 and the intensity data for each domain was then integrated, reduced using the program SAINT. The combined data were scaled and absorption correction performed using TWINABS. The structure was solved by
using SHELXS97 and refined by full-matrix least-squares methods based on F2 using SHELXL97. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in idealized positions and refined with geometrical constraints. The structure was refined to factor = 0.0504, BASF = 0.093 (1) for HKLF5.Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C16H11NO4 | F(000) = 584 |
Mr = 281.26 | Dx = 1.464 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3303 reflections |
a = 4.9246 (9) Å | θ = 1.6–27.4° |
b = 10.0160 (19) Å | µ = 0.11 mm−1 |
c = 25.907 (5) Å | T = 173 K |
β = 92.845 (4)° | Needle, colourless |
V = 1276.3 (4) Å3 | 0.35 × 0.09 × 0.08 mm |
Z = 4 |
Bruker Kappa DUO APEXII diffractometer | 3303 independent reflections |
Radiation source: fine-focus sealed tube | 2887 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
0.5° ϕ scans and ω scans | θmax = 27.4°, θmin = 1.6° |
Absorption correction: multi-scan (TWINABS; Sheldrick, 1997) | h = −6→6 |
Tmin = 0.964, Tmax = 0.992 | k = 0→12 |
87638 measured reflections | l = 0→33 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.154 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0779P)2 + 0.7278P] where P = (Fo2 + 2Fc2)/3 |
3303 reflections | (Δ/σ)max < 0.001 |
191 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C16H11NO4 | V = 1276.3 (4) Å3 |
Mr = 281.26 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 4.9246 (9) Å | µ = 0.11 mm−1 |
b = 10.0160 (19) Å | T = 173 K |
c = 25.907 (5) Å | 0.35 × 0.09 × 0.08 mm |
β = 92.845 (4)° |
Bruker Kappa DUO APEXII diffractometer | 3303 independent reflections |
Absorption correction: multi-scan (TWINABS; Sheldrick, 1997) | 2887 reflections with I > 2σ(I) |
Tmin = 0.964, Tmax = 0.992 | Rint = 0.063 |
87638 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.154 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.25 e Å−3 |
3303 reflections | Δρmin = −0.23 e Å−3 |
191 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.9485 (3) | 0.30392 (15) | 0.16095 (6) | 0.0339 (4) | |
O2 | 0.3498 (3) | 0.50967 (15) | 0.23136 (6) | 0.0355 (4) | |
O3 | 0.8175 (4) | 0.63590 (18) | 0.49727 (6) | 0.0449 (4) | |
O4 | 1.1513 (4) | 0.7098 (2) | 0.45470 (7) | 0.0522 (5) | |
N1 | 0.9499 (4) | 0.63878 (18) | 0.45839 (7) | 0.0328 (4) | |
C1 | 0.8059 (4) | 0.4022 (2) | 0.13399 (8) | 0.0282 (4) | |
C2 | 0.8774 (5) | 0.2756 (2) | 0.20963 (8) | 0.0323 (4) | |
H2 | 0.9747 | 0.2063 | 0.2275 | 0.039* | |
C3 | 0.6800 (4) | 0.33749 (19) | 0.23490 (7) | 0.0281 (4) | |
C4 | 0.5276 (4) | 0.44552 (19) | 0.20968 (7) | 0.0264 (4) | |
C5 | 0.5991 (4) | 0.47384 (19) | 0.15623 (7) | 0.0260 (4) | |
C6 | 0.4653 (5) | 0.5734 (2) | 0.12658 (8) | 0.0333 (5) | |
H6 | 0.3235 | 0.6233 | 0.1410 | 0.040* | |
C7 | 0.5368 (5) | 0.6000 (2) | 0.07681 (9) | 0.0383 (5) | |
H7 | 0.4457 | 0.6681 | 0.0572 | 0.046* | |
C8 | 0.7441 (5) | 0.5262 (3) | 0.05552 (8) | 0.0402 (5) | |
H8 | 0.7927 | 0.5445 | 0.0212 | 0.048* | |
C9 | 0.8801 (5) | 0.4268 (2) | 0.08354 (8) | 0.0364 (5) | |
H9 | 1.0205 | 0.3767 | 0.0688 | 0.044* | |
C10 | 0.6125 (5) | 0.2953 (2) | 0.28877 (8) | 0.0343 (5) | |
H10A | 0.6971 | 0.2072 | 0.2960 | 0.041* | |
H10B | 0.4131 | 0.2836 | 0.2895 | 0.041* | |
C11 | 0.7026 (4) | 0.39038 (19) | 0.33199 (7) | 0.0273 (4) | |
C12 | 0.5763 (5) | 0.3825 (2) | 0.37937 (8) | 0.0347 (5) | |
H12 | 0.4330 | 0.3203 | 0.3831 | 0.042* | |
C13 | 0.6553 (5) | 0.4630 (2) | 0.42049 (8) | 0.0341 (5) | |
H13 | 0.5682 | 0.4569 | 0.4523 | 0.041* | |
C14 | 0.8652 (4) | 0.55301 (19) | 0.41435 (7) | 0.0273 (4) | |
C15 | 0.9971 (4) | 0.5640 (2) | 0.36858 (8) | 0.0313 (4) | |
H15 | 1.1411 | 0.6261 | 0.3653 | 0.038* | |
C16 | 0.9136 (4) | 0.4816 (2) | 0.32739 (8) | 0.0309 (4) | |
H16 | 1.0018 | 0.4879 | 0.2957 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0369 (8) | 0.0348 (7) | 0.0303 (7) | 0.0077 (7) | 0.0045 (6) | −0.0026 (6) |
O2 | 0.0400 (8) | 0.0371 (8) | 0.0303 (8) | 0.0037 (7) | 0.0105 (6) | −0.0019 (6) |
O3 | 0.0529 (10) | 0.0535 (10) | 0.0290 (8) | −0.0090 (8) | 0.0089 (7) | −0.0110 (7) |
O4 | 0.0546 (11) | 0.0583 (11) | 0.0440 (10) | −0.0286 (9) | 0.0047 (8) | −0.0118 (8) |
N1 | 0.0365 (9) | 0.0334 (9) | 0.0284 (9) | −0.0030 (8) | 0.0001 (7) | −0.0015 (7) |
C1 | 0.0308 (9) | 0.0287 (9) | 0.0250 (9) | −0.0015 (8) | 0.0003 (8) | −0.0025 (7) |
C2 | 0.0409 (11) | 0.0274 (9) | 0.0282 (10) | 0.0017 (9) | −0.0023 (9) | −0.0006 (8) |
C3 | 0.0368 (10) | 0.0251 (9) | 0.0222 (9) | −0.0056 (8) | 0.0003 (8) | −0.0022 (7) |
C4 | 0.0315 (9) | 0.0242 (8) | 0.0237 (9) | −0.0051 (8) | 0.0034 (8) | −0.0030 (7) |
C5 | 0.0282 (9) | 0.0256 (9) | 0.0243 (9) | −0.0035 (7) | 0.0019 (8) | −0.0025 (7) |
C6 | 0.0362 (10) | 0.0321 (10) | 0.0316 (10) | 0.0035 (9) | 0.0018 (9) | 0.0024 (8) |
C7 | 0.0425 (12) | 0.0404 (11) | 0.0318 (11) | 0.0005 (10) | −0.0014 (9) | 0.0089 (9) |
C8 | 0.0433 (12) | 0.0524 (13) | 0.0251 (10) | −0.0064 (11) | 0.0037 (9) | 0.0058 (9) |
C9 | 0.0358 (11) | 0.0461 (12) | 0.0278 (10) | −0.0012 (10) | 0.0067 (9) | −0.0044 (9) |
C10 | 0.0513 (13) | 0.0276 (9) | 0.0239 (10) | −0.0063 (9) | 0.0009 (9) | 0.0014 (8) |
C11 | 0.0334 (10) | 0.0260 (9) | 0.0222 (9) | 0.0002 (8) | −0.0005 (8) | 0.0026 (7) |
C12 | 0.0384 (11) | 0.0375 (11) | 0.0286 (10) | −0.0126 (9) | 0.0042 (9) | 0.0005 (8) |
C13 | 0.0365 (11) | 0.0414 (11) | 0.0249 (9) | −0.0062 (9) | 0.0065 (9) | −0.0004 (8) |
C14 | 0.0290 (9) | 0.0290 (9) | 0.0238 (9) | 0.0007 (8) | −0.0001 (7) | −0.0001 (7) |
C15 | 0.0320 (10) | 0.0334 (10) | 0.0285 (10) | −0.0060 (8) | 0.0017 (8) | 0.0022 (8) |
C16 | 0.0337 (10) | 0.0340 (10) | 0.0253 (9) | −0.0029 (9) | 0.0054 (8) | 0.0017 (8) |
O1—C2 | 1.356 (3) | C7—H7 | 0.9500 |
O1—C1 | 1.379 (3) | C8—C9 | 1.385 (3) |
O2—C4 | 1.243 (2) | C8—H8 | 0.9500 |
O3—N1 | 1.227 (2) | C9—H9 | 0.9500 |
O4—N1 | 1.228 (2) | C10—C11 | 1.519 (3) |
N1—C14 | 1.472 (3) | C10—H10A | 0.9900 |
C1—C5 | 1.394 (3) | C10—H10B | 0.9900 |
C1—C9 | 1.397 (3) | C11—C16 | 1.393 (3) |
C2—C3 | 1.350 (3) | C11—C12 | 1.406 (3) |
C2—H2 | 0.9500 | C12—C13 | 1.376 (3) |
C3—C4 | 1.453 (3) | C12—H12 | 0.9500 |
C3—C10 | 1.511 (3) | C13—C14 | 1.387 (3) |
C4—C5 | 1.473 (3) | C13—H13 | 0.9500 |
C5—C6 | 1.403 (3) | C14—C15 | 1.385 (3) |
C6—C7 | 1.379 (3) | C15—C16 | 1.394 (3) |
C6—H6 | 0.9500 | C15—H15 | 0.9500 |
C7—C8 | 1.396 (3) | C16—H16 | 0.9500 |
C2—O1—C1 | 118.18 (16) | C8—C9—C1 | 118.4 (2) |
O3—N1—O4 | 122.80 (18) | C8—C9—H9 | 120.8 |
O3—N1—C14 | 118.74 (17) | C1—C9—H9 | 120.8 |
O4—N1—C14 | 118.46 (18) | C3—C10—C11 | 115.84 (17) |
O1—C1—C5 | 121.51 (18) | C3—C10—H10A | 108.3 |
O1—C1—C9 | 116.75 (18) | C11—C10—H10A | 108.3 |
C5—C1—C9 | 121.74 (19) | C3—C10—H10B | 108.3 |
C3—C2—O1 | 125.48 (19) | C11—C10—H10B | 108.3 |
C3—C2—H2 | 117.3 | H10A—C10—H10B | 107.4 |
O1—C2—H2 | 117.3 | C16—C11—C12 | 118.41 (18) |
C2—C3—C4 | 119.50 (18) | C16—C11—C10 | 122.68 (18) |
C2—C3—C10 | 121.08 (19) | C12—C11—C10 | 118.86 (18) |
C4—C3—C10 | 119.42 (18) | C13—C12—C11 | 121.51 (19) |
O2—C4—C3 | 122.79 (18) | C13—C12—H12 | 119.2 |
O2—C4—C5 | 122.13 (18) | C11—C12—H12 | 119.2 |
C3—C4—C5 | 115.08 (17) | C12—C13—C14 | 118.41 (18) |
C1—C5—C6 | 118.21 (18) | C12—C13—H13 | 120.8 |
C1—C5—C4 | 120.18 (18) | C14—C13—H13 | 120.8 |
C6—C5—C4 | 121.60 (18) | C15—C14—C13 | 122.27 (19) |
C7—C6—C5 | 121.0 (2) | C15—C14—N1 | 119.37 (18) |
C7—C6—H6 | 119.5 | C13—C14—N1 | 118.35 (17) |
C5—C6—H6 | 119.5 | C14—C15—C16 | 118.37 (19) |
C6—C7—C8 | 119.5 (2) | C14—C15—H15 | 120.8 |
C6—C7—H7 | 120.2 | C16—C15—H15 | 120.8 |
C8—C7—H7 | 120.2 | C11—C16—C15 | 121.03 (18) |
C9—C8—C7 | 121.2 (2) | C11—C16—H16 | 119.5 |
C9—C8—H8 | 119.4 | C15—C16—H16 | 119.5 |
C7—C8—H8 | 119.4 | ||
C2—O1—C1—C5 | 1.8 (3) | C7—C8—C9—C1 | −0.3 (4) |
C2—O1—C1—C9 | −178.58 (19) | O1—C1—C9—C8 | −179.1 (2) |
C1—O1—C2—C3 | −1.4 (3) | C5—C1—C9—C8 | 0.5 (3) |
O1—C2—C3—C4 | −0.9 (3) | C2—C3—C10—C11 | 107.3 (2) |
O1—C2—C3—C10 | 178.39 (19) | C4—C3—C10—C11 | −73.4 (3) |
C2—C3—C4—O2 | −177.5 (2) | C3—C10—C11—C16 | −23.1 (3) |
C10—C3—C4—O2 | 3.2 (3) | C3—C10—C11—C12 | 159.7 (2) |
C2—C3—C4—C5 | 2.6 (3) | C16—C11—C12—C13 | 0.4 (3) |
C10—C3—C4—C5 | −176.76 (17) | C10—C11—C12—C13 | 177.8 (2) |
O1—C1—C5—C6 | 179.24 (18) | C11—C12—C13—C14 | −0.1 (3) |
C9—C1—C5—C6 | −0.3 (3) | C12—C13—C14—C15 | −0.3 (3) |
O1—C1—C5—C4 | −0.1 (3) | C12—C13—C14—N1 | −179.9 (2) |
C9—C1—C5—C4 | −179.63 (19) | O3—N1—C14—C15 | 174.2 (2) |
O2—C4—C5—C1 | 177.96 (19) | O4—N1—C14—C15 | −6.2 (3) |
C3—C4—C5—C1 | −2.1 (3) | O3—N1—C14—C13 | −6.2 (3) |
O2—C4—C5—C6 | −1.3 (3) | O4—N1—C14—C13 | 173.4 (2) |
C3—C4—C5—C6 | 178.63 (18) | C13—C14—C15—C16 | 0.4 (3) |
C1—C5—C6—C7 | −0.1 (3) | N1—C14—C15—C16 | 179.96 (19) |
C4—C5—C6—C7 | 179.1 (2) | C12—C11—C16—C15 | −0.3 (3) |
C5—C6—C7—C8 | 0.4 (3) | C10—C11—C16—C15 | −177.6 (2) |
C6—C7—C8—C9 | −0.2 (4) | C14—C15—C16—C11 | 0.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.95 | 2.38 | 3.322 (3) | 170 |
C7—H7···O3ii | 0.95 | 2.56 | 3.491 (3) | 166 |
C9—H9···O4iii | 0.95 | 2.42 | 3.355 (3) | 167 |
C13—H13···O3iv | 0.95 | 2.53 | 3.382 (3) | 149 |
C16—H16···O2v | 0.95 | 2.46 | 3.378 (3) | 163 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1/2, −y+3/2, z−1/2; (iii) −x+5/2, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C16H11NO4 |
Mr | 281.26 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 173 |
a, b, c (Å) | 4.9246 (9), 10.0160 (19), 25.907 (5) |
β (°) | 92.845 (4) |
V (Å3) | 1276.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.35 × 0.09 × 0.08 |
Data collection | |
Diffractometer | Bruker Kappa DUO APEXII diffractometer |
Absorption correction | Multi-scan (TWINABS; Sheldrick, 1997) |
Tmin, Tmax | 0.964, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 87638, 3303, 2887 |
Rint | 0.063 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.154, 1.09 |
No. of reflections | 3303 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.23 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.95 | 2.38 | 3.322 (3) | 170 |
C7—H7···O3ii | 0.95 | 2.56 | 3.491 (3) | 166 |
C9—H9···O4iii | 0.95 | 2.42 | 3.355 (3) | 167 |
C13—H13···O3iv | 0.95 | 2.53 | 3.382 (3) | 149 |
C16—H16···O2v | 0.95 | 2.46 | 3.378 (3) | 163 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1/2, −y+3/2, z−1/2; (iii) −x+5/2, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z. |
Acknowledgements
We thank the University of KwaZulu-Natal and the South Africa Research Chairs initiative of the Department of Science and Technology for financial support and the National Research Foundation of South Africa for a bursary for KG.
References
Abegaz, B. M., Mutanyatta-Comar, J. & Nindi, M. (2007). Nat. Prod. Commun. 2, 475–498. CAS Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desideri, N., Bolasco, A., Fioravanti, R., Proietti Monaco, L., Orallo, F., Yáñez, M., Ortuso, F. & Alcaro, S. (2011). J. Med. Chem. 54, 2155–2164. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gopaul, K., Koorbanally, N. A., Shaikh, M., Su, H. & Ramjugernath, D. (2013). Acta Cryst. E69, o364. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1997). TWINABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Valkonen, A., Laihia, K., Kolehmainen, E., Kauppinen, R. & Perjési, P. (2012). Struct. Chem. 23, 209–217. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Homoisoflavonoids are a group of naturally occurring oxygen heterocyclic compounds, related to the flavonoids, which consists of a chromone skeleton with a benzyl or benzylidene group at C-3. In the 3-benzyl-4-chromonanone class of homoisoflavonoid, an extra methylene group exists between the phenyl group and the chromone skeleton. They are commonly synthesized by either the acid or base catalysed condensation of an aromatic aldehyde with chromanone (Desideri et al., 2011, Valkonen et al., 2012). Naturally occurring homoisoflavonoids are normally oxygenated and have shown a wide range of biological activities (Abegaz et al., 2007).
The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the 10-membered co-planar chromone ring and the nitrated phenyl ring is 86.16 (5)°. In the crystal, the inter-moclecular weak hydrogen bonds C—H···O link the molecules into a three dimentional network, as shown in Fig.2. The details of the hydrogen bonds are shown in Table 1.