organic compounds
(1S,3R,8R,9R,10S)-2,2-Dibromo-3,7,7,10-tetramethyl-9β,10β-epoxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecane
aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité "Unité Associée au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Avenue Ibn Battouta, BP 1014 Rabat, Morocco
*Correspondence e-mail: berraho@uca.ma
The title compound, C16H24Br2O, was synthesized from β-himachalene (3,5,5,9-tetramethyl-2,4a,5,6,7,8-hexahydro-1H-benzocycloheptene), which was isolated from the essential oil of the Atlas cedar (Cedrus atlantica). The molecule contains fused six- and seven-membered rings, each linked to a three-membered ring. The six-membered ring has a half-chair conformation, while the seven-membered ring displays a chair conformation. The dihedral angle between the mean planes through the six- and seven-membered rings is 39.55 (12)°. The two three-membered rings, linked to the six- and seven-membered rings, are nearly perpendicular to the six-membered ring, making dihedral angles of 78.6 (2) and 80.5 (2)°, respectively. The was established unambiguously from effects. In the crystal, each molecule is linked to its symmetry-equivalent partner by C—H⋯O hydrogen bonds, forming zigzag chains parallel to [100].
Related literature
For the isolation of β-himachalene, see: Joseph & Dev (1968); Plattier & Teisseire (1974). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998); Chekroun et al. (2000); El Jamili et al. (2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004). For ring puckering calculations, see: Cremer & Pople (1975). For a similar structure, see: Benharref et al. (2010).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813006077/fj2620sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813006077/fj2620Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813006077/fj2620Isup3.cml
For the synthesis of compounds (1S,3R,8S,9S,10R)-2,2-dibromo-9α,10α-epoxy- 3,7,7,10-tetramethyltricyclo [6.4.0.01,3]dodecane (X) and its isomer (1S,3R,8S,9R,10S)-2,2-dibromo-9β,10β-epoxy-3,7,7,10-tetramethyltricyclo [6.4.0.01,3]dodecane (Y), a stoichiometric quantity of m-chloroperbenzoic acid (m-CPBA) was added to a 250 ml flask containing a solution of (1S,3R,8S)-2,2-dibromo-3,7,7,10- tetramethyltricyclo[6,4,0,01,3] dodec-9-ene (2 g, 5.3 mmol) in dichloromethane (100 ml). The reaction mixture was stirred at ambient temperature for 2 h, then treated with a 10% solution of sodium hydrogencarbonate. The aqueous phase was extracted with dichloromethane and the organic phases were dried and concentrated.The residue obtained was chromatographed on silica gel column impregnated with silver nitrate (10%) with a mixture of hexane - ethyl acetate (98–2) used as The two (1S,3R,8R,9S,10R)-2,2-dibromo-9α,10α-epoxy- 3,7,7,10-tetramethyltricyclo-[6.4.0.01,3]dodecane (X) and its isomer (1S,3R,8R,9R,10S)-2,2-dibromo)-9β,10β-epoxy-3,7,7,10-Tetramethyl tricyclo-[6.4.0.01,3]dodecane (Y) were obtained by this procedure in a 15/85 ratio and a combined yield of 65% (1.35 g; 3.4 mmol). The title compound (isomer Y) was recrystallized from hexane.
All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl). The
is not centro symmetric and the polar axis restraint is generated automatically by SHELXL program. The Friedel opposites reflections are not merged.Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).C16H24Br2O | F(000) = 792 |
Mr = 392.17 | Dx = 1.571 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: p 2ac 2ab | Cell parameters from 4637 reflections |
a = 7.9772 (4) Å | θ = 2.9–29.6° |
b = 12.8562 (7) Å | µ = 4.88 mm−1 |
c = 16.1719 (8) Å | T = 296 K |
V = 1658.53 (15) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.32 × 0.27 mm |
Bruker X8 APEX diffractometer | 4637 independent reflections |
Radiation source: fine-focus sealed tube | 3298 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ϕ and ω scans | θmax = 29.6°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −11→11 |
Tmin = 0.407, Tmax = 0.747 | k = −17→15 |
15200 measured reflections | l = −22→14 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0307P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.074 | (Δ/σ)max = 0.001 |
S = 1.02 | Δρmax = 0.41 e Å−3 |
4637 reflections | Δρmin = −0.46 e Å−3 |
173 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0016 (5) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack & Bernardinelli (2000), 1998 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.014 (10) |
C16H24Br2O | V = 1658.53 (15) Å3 |
Mr = 392.17 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.9772 (4) Å | µ = 4.88 mm−1 |
b = 12.8562 (7) Å | T = 296 K |
c = 16.1719 (8) Å | 0.41 × 0.32 × 0.27 mm |
Bruker X8 APEX diffractometer | 4637 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 3298 reflections with I > 2σ(I) |
Tmin = 0.407, Tmax = 0.747 | Rint = 0.036 |
15200 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.074 | Δρmax = 0.41 e Å−3 |
S = 1.02 | Δρmin = −0.46 e Å−3 |
4637 reflections | Absolute structure: Flack & Bernardinelli (2000), 1998 Friedel pairs |
173 parameters | Absolute structure parameter: 0.014 (10) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4959 (3) | 0.9764 (2) | 0.00560 (15) | 0.0325 (5) | |
C2 | 0.6592 (3) | 0.9395 (2) | 0.04293 (16) | 0.0404 (6) | |
C3 | 0.5934 (3) | 0.8863 (2) | −0.03369 (19) | 0.0448 (7) | |
C4 | 0.6887 (4) | 0.9048 (3) | −0.1148 (2) | 0.0587 (9) | |
H4A | 0.7562 | 0.8439 | −0.1270 | 0.070* | |
H4B | 0.7641 | 0.9633 | −0.1076 | 0.070* | |
C5 | 0.5722 (4) | 0.9266 (3) | −0.1883 (2) | 0.0676 (11) | |
H5A | 0.6300 | 0.9089 | −0.2392 | 0.081* | |
H5B | 0.4741 | 0.8824 | −0.1841 | 0.081* | |
C6 | 0.5167 (4) | 1.0390 (3) | −0.19240 (18) | 0.0596 (9) | |
H6A | 0.4619 | 1.0491 | −0.2454 | 0.072* | |
H6B | 0.6169 | 1.0816 | −0.1927 | 0.072* | |
C7 | 0.3993 (3) | 1.0825 (2) | −0.12543 (16) | 0.0433 (7) | |
C8 | 0.4885 (3) | 1.0819 (2) | −0.03933 (15) | 0.0316 (5) | |
H8 | 0.6055 | 1.1004 | −0.0506 | 0.038* | |
C9 | 0.4239 (3) | 1.1658 (2) | 0.01801 (16) | 0.0374 (6) | |
H9 | 0.4807 | 1.2330 | 0.0124 | 0.045* | |
O1 | 0.2442 (2) | 1.17299 (17) | 0.03278 (13) | 0.0503 (5) | |
C10 | 0.3546 (3) | 1.1457 (2) | 0.10036 (16) | 0.0454 (7) | |
C11 | 0.3355 (3) | 1.0354 (3) | 0.12860 (17) | 0.0540 (8) | |
H11A | 0.2298 | 1.0284 | 0.1577 | 0.065* | |
H11B | 0.4247 | 1.0193 | 0.1673 | 0.065* | |
C12 | 0.3405 (3) | 0.9577 (2) | 0.05873 (17) | 0.0434 (6) | |
H12A | 0.2405 | 0.9648 | 0.0251 | 0.052* | |
H12B | 0.3430 | 0.8877 | 0.0810 | 0.052* | |
C13 | 0.5257 (5) | 0.7765 (3) | −0.0288 (3) | 0.0738 (11) | |
H13A | 0.4902 | 0.7545 | −0.0828 | 0.111* | |
H13B | 0.4320 | 0.7747 | 0.0084 | 0.111* | |
H13C | 0.6119 | 0.7307 | −0.0090 | 0.111* | |
C14 | 0.3664 (5) | 1.1961 (3) | −0.1496 (2) | 0.0664 (9) | |
H14A | 0.2932 | 1.2275 | −0.1097 | 0.100* | |
H14B | 0.3149 | 1.1984 | −0.2032 | 0.100* | |
H14C | 0.4707 | 1.2333 | −0.1511 | 0.100* | |
C15 | 0.2311 (3) | 1.0239 (3) | −0.12733 (19) | 0.0626 (9) | |
H15A | 0.2492 | 0.9523 | −0.1129 | 0.094* | |
H15B | 0.1839 | 1.0279 | −0.1818 | 0.094* | |
H15C | 0.1552 | 1.0548 | −0.0884 | 0.094* | |
C16 | 0.3686 (5) | 1.2270 (3) | 0.1671 (2) | 0.0763 (11) | |
H16A | 0.4449 | 1.2034 | 0.2090 | 0.115* | |
H16B | 0.2602 | 1.2387 | 0.1913 | 0.115* | |
H16C | 0.4094 | 1.2907 | 0.1436 | 0.115* | |
Br1 | 0.85914 (3) | 1.02421 (3) | 0.041525 (19) | 0.05303 (11) | |
Br2 | 0.66225 (4) | 0.86201 (3) | 0.14535 (2) | 0.07179 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0318 (11) | 0.0302 (14) | 0.0355 (13) | −0.0019 (12) | 0.0017 (10) | −0.0015 (12) |
C2 | 0.0370 (12) | 0.0395 (15) | 0.0446 (14) | 0.0013 (12) | −0.0010 (13) | 0.0059 (12) |
C3 | 0.0425 (14) | 0.0336 (17) | 0.0584 (17) | 0.0003 (11) | −0.0005 (13) | −0.0066 (14) |
C4 | 0.0548 (17) | 0.059 (2) | 0.0627 (19) | 0.0102 (15) | 0.0065 (15) | −0.0287 (17) |
C5 | 0.074 (2) | 0.086 (3) | 0.0422 (17) | −0.001 (2) | 0.0017 (16) | −0.0345 (18) |
C6 | 0.0609 (18) | 0.088 (3) | 0.0302 (14) | −0.002 (2) | −0.0040 (12) | −0.0032 (16) |
C7 | 0.0497 (15) | 0.0508 (19) | 0.0295 (13) | −0.0009 (13) | −0.0044 (11) | −0.0007 (12) |
C8 | 0.0321 (11) | 0.0323 (14) | 0.0303 (12) | −0.0011 (10) | 0.0037 (11) | 0.0021 (11) |
C9 | 0.0376 (12) | 0.0331 (17) | 0.0415 (15) | 0.0005 (11) | 0.0017 (11) | −0.0021 (12) |
O1 | 0.0408 (9) | 0.0570 (14) | 0.0532 (12) | 0.0160 (9) | 0.0026 (9) | −0.0053 (11) |
C10 | 0.0388 (13) | 0.0579 (19) | 0.0397 (14) | 0.0083 (15) | 0.0041 (13) | −0.0110 (13) |
C11 | 0.0461 (15) | 0.075 (2) | 0.0411 (15) | 0.0023 (17) | 0.0126 (13) | 0.0073 (15) |
C12 | 0.0327 (12) | 0.0433 (17) | 0.0543 (16) | −0.0012 (13) | 0.0049 (12) | 0.0120 (13) |
C13 | 0.066 (2) | 0.033 (2) | 0.123 (4) | −0.0004 (16) | −0.013 (2) | −0.007 (2) |
C14 | 0.079 (2) | 0.071 (2) | 0.0487 (17) | 0.011 (2) | −0.0039 (19) | 0.0207 (17) |
C15 | 0.0542 (16) | 0.090 (3) | 0.0436 (16) | −0.0074 (19) | −0.0102 (13) | −0.0064 (19) |
C16 | 0.076 (2) | 0.089 (3) | 0.064 (2) | 0.012 (2) | 0.0117 (19) | −0.039 (2) |
Br1 | 0.03457 (13) | 0.0605 (2) | 0.06396 (19) | −0.00414 (15) | −0.00528 (13) | −0.00561 (16) |
Br2 | 0.0688 (2) | 0.0793 (3) | 0.0673 (2) | 0.0137 (2) | −0.00527 (18) | 0.03512 (19) |
C1—C2 | 1.512 (3) | C9—O1 | 1.457 (3) |
C1—C12 | 1.527 (3) | C9—C10 | 1.465 (4) |
C1—C3 | 1.533 (4) | C9—H9 | 0.9800 |
C1—C8 | 1.540 (4) | O1—C10 | 1.447 (3) |
C2—C3 | 1.510 (4) | C10—C11 | 1.498 (4) |
C2—Br1 | 1.931 (3) | C10—C16 | 1.507 (4) |
C2—Br2 | 1.933 (3) | C11—C12 | 1.508 (4) |
C3—C13 | 1.513 (5) | C11—H11A | 0.9700 |
C3—C4 | 1.534 (4) | C11—H11B | 0.9700 |
C4—C5 | 1.535 (5) | C12—H12A | 0.9700 |
C4—H4A | 0.9700 | C12—H12B | 0.9700 |
C4—H4B | 0.9700 | C13—H13A | 0.9600 |
C5—C6 | 1.512 (6) | C13—H13B | 0.9600 |
C5—H5A | 0.9700 | C13—H13C | 0.9600 |
C5—H5B | 0.9700 | C14—H14A | 0.9600 |
C6—C7 | 1.537 (4) | C14—H14B | 0.9600 |
C6—H6A | 0.9700 | C14—H14C | 0.9600 |
C6—H6B | 0.9700 | C15—H15A | 0.9600 |
C7—C14 | 1.534 (5) | C15—H15B | 0.9600 |
C7—C15 | 1.540 (4) | C15—H15C | 0.9600 |
C7—C8 | 1.564 (3) | C16—H16A | 0.9600 |
C8—C9 | 1.513 (4) | C16—H16B | 0.9600 |
C8—H8 | 0.9800 | C16—H16C | 0.9600 |
C2—C1—C12 | 115.2 (2) | O1—C9—C8 | 118.8 (2) |
C2—C1—C3 | 59.43 (18) | C10—C9—C8 | 124.1 (2) |
C12—C1—C3 | 121.8 (2) | O1—C9—H9 | 114.5 |
C2—C1—C8 | 119.8 (2) | C10—C9—H9 | 114.5 |
C12—C1—C8 | 111.9 (2) | C8—C9—H9 | 114.5 |
C3—C1—C8 | 119.3 (2) | C10—O1—C9 | 60.61 (16) |
C3—C2—C1 | 60.96 (18) | O1—C10—C9 | 60.03 (16) |
C3—C2—Br1 | 122.22 (19) | O1—C10—C11 | 113.5 (2) |
C1—C2—Br1 | 122.02 (19) | C9—C10—C11 | 118.8 (2) |
C3—C2—Br2 | 118.3 (2) | O1—C10—C16 | 114.7 (3) |
C1—C2—Br2 | 120.94 (17) | C9—C10—C16 | 120.1 (3) |
Br1—C2—Br2 | 106.89 (12) | C11—C10—C16 | 116.5 (3) |
C2—C3—C13 | 120.3 (3) | C10—C11—C12 | 113.3 (2) |
C2—C3—C1 | 59.61 (18) | C10—C11—H11A | 108.9 |
C13—C3—C1 | 120.1 (3) | C12—C11—H11A | 108.9 |
C2—C3—C4 | 117.3 (2) | C10—C11—H11B | 108.9 |
C13—C3—C4 | 111.4 (3) | C12—C11—H11B | 108.9 |
C1—C3—C4 | 119.3 (3) | H11A—C11—H11B | 107.7 |
C3—C4—C5 | 113.0 (3) | C11—C12—C1 | 109.8 (2) |
C3—C4—H4A | 109.0 | C11—C12—H12A | 109.7 |
C5—C4—H4A | 109.0 | C1—C12—H12A | 109.7 |
C3—C4—H4B | 109.0 | C11—C12—H12B | 109.7 |
C5—C4—H4B | 109.0 | C1—C12—H12B | 109.7 |
H4A—C4—H4B | 107.8 | H12A—C12—H12B | 108.2 |
C6—C5—C4 | 112.7 (3) | C3—C13—H13A | 109.5 |
C6—C5—H5A | 109.0 | C3—C13—H13B | 109.5 |
C4—C5—H5A | 109.0 | H13A—C13—H13B | 109.5 |
C6—C5—H5B | 109.0 | C3—C13—H13C | 109.5 |
C4—C5—H5B | 109.0 | H13A—C13—H13C | 109.5 |
H5A—C5—H5B | 107.8 | H13B—C13—H13C | 109.5 |
C5—C6—C7 | 119.7 (3) | C7—C14—H14A | 109.5 |
C5—C6—H6A | 107.4 | C7—C14—H14B | 109.5 |
C7—C6—H6A | 107.4 | H14A—C14—H14B | 109.5 |
C5—C6—H6B | 107.4 | C7—C14—H14C | 109.5 |
C7—C6—H6B | 107.4 | H14A—C14—H14C | 109.5 |
H6A—C6—H6B | 106.9 | H14B—C14—H14C | 109.5 |
C14—C7—C6 | 105.7 (3) | C7—C15—H15A | 109.5 |
C14—C7—C15 | 108.2 (3) | C7—C15—H15B | 109.5 |
C6—C7—C15 | 109.8 (3) | H15A—C15—H15B | 109.5 |
C14—C7—C8 | 108.1 (2) | C7—C15—H15C | 109.5 |
C6—C7—C8 | 110.4 (2) | H15A—C15—H15C | 109.5 |
C15—C7—C8 | 114.3 (2) | H15B—C15—H15C | 109.5 |
C9—C8—C1 | 110.6 (2) | C10—C16—H16A | 109.5 |
C9—C8—C7 | 112.7 (2) | C10—C16—H16B | 109.5 |
C1—C8—C7 | 116.3 (2) | H16A—C16—H16B | 109.5 |
C9—C8—H8 | 105.4 | C10—C16—H16C | 109.5 |
C1—C8—H8 | 105.4 | H16A—C16—H16C | 109.5 |
C7—C8—H8 | 105.4 | H16B—C16—H16C | 109.5 |
O1—C9—C10 | 59.36 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O1i | 0.98 | 2.53 | 3.391 (3) | 146 |
Symmetry code: (i) x+1/2, −y+5/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C16H24Br2O |
Mr | 392.17 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 296 |
a, b, c (Å) | 7.9772 (4), 12.8562 (7), 16.1719 (8) |
V (Å3) | 1658.53 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.88 |
Crystal size (mm) | 0.41 × 0.32 × 0.27 |
Data collection | |
Diffractometer | Bruker X8 APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.407, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15200, 4637, 3298 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.694 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.074, 1.02 |
No. of reflections | 4637 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.46 |
Absolute structure | Flack & Bernardinelli (2000), 1998 Friedel pairs |
Absolute structure parameter | 0.014 (10) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O1i | 0.98 | 2.53 | 3.391 (3) | 146 |
Symmetry code: (i) x+1/2, −y+5/2, −z. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Benharref, A., El Ammari, L., Avignant, D., Oudahmane, A. & Berraho, M. (2010). Acta Cryst. E66, o3125. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008. Web of Science CrossRef CAS Google Scholar
Daoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932. Web of Science CrossRef PubMed CAS Google Scholar
El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148. Web of Science CrossRef CAS IUCr Journals Google Scholar
Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3859. CrossRef CAS Web of Science Google Scholar
Lassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641–2651. Web of Science CrossRef CAS Google Scholar
Plattier, M. & Teisseire, P. (1974). Recherche, 19, 131–144. CAS Google Scholar
Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpenes hydrocarbons, among which is found the compound, β-himachalene (Joseph & Dev, 1968; Plattier & Teisseire, 1974). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Lassaba et al., 1998; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). Thus the action of one equivalent of dibromocabene, generated in situ from bromoform in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, on β-himachalene produces only (1S,3R,8R)-2,2-dibromo-3,7,7,10- tetramethyltricyclo[6.4.0.01,3]dodec-9-ene (El Jamili et al., 2002). Treatment of the latter by one equivalent of m-chloroperbenzoic acid (m-CPBA) gives a mixture of two diastereoisomers: (1S,3R,8R,9S,10R)-2,2-dibromo-9α,10α-epoxy- 3,7,7,10- tetramethyltricyclo-[6.4.0.01,3]dodecane (X) and its isomer (1S,3R,8R,9R,10S)-2,2-dibromo)- 9β,10β-epoxy-3,7,7,10-Tetramethyltricyclo-[6.4.0.01,3]dodecane (Y) in an over-all yield of 65% and 15/85 ratio. By single-crystal X-ray diffraction analysis, we have determined the absolute configuration of Y and we deduced that from its isomer X.
The molecule contains a fused six- and seven-membered rings, which is fused to two three-membered rings as shown in Fig.1. The six-membered ring has a half chair conformation as indicated by the total puckering amplitude QT = 0.520 (3) Å and spherical polar angle θ = 53.6 (3)° with ϕ2 = -97.9 (4)°, whereas the seven-membered ring displays a chair conformation with QT = 0.7961 (3) Å, θ2 = 32.4 (2)°, ϕ2 = -51.9 (4)° and ϕ3 = -78.7 (2)° (Cremer & Pople, 1975). The dihedral angle between the six and seven-membered rings is 59.3 (2)°. The three-membered rings (C1C2C3) and (C9O1C10) are nearly perpendicular to the six-membered ring (C1C8C9C11C12C13) with a dihedral angle of 78.6 (2)° and 80.5 (2)°, respectively. Owing to the presence of Br atoms, the absolute configuration could be fully confirmed from anomalous dispersion effects, by refining the Flack parameter (Flack & Bernardinelli (2000)) as C1(S), C3(R), C8(R), C9(S), and C10(R).
In the crystal, each molecule is linked to its symmetry equivalent partner by C9–H9···O1 non classic hydrogen-bond as shown in Fig.2 and Table 2. The present structure is similar to that of C16H24OCl2 published, in a previous work, by Benharref et al. (2010).