organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o521-o522

(1S,3R,8R,9R,10S)-2,2-Di­bromo-3,7,7,10-tetra­methyl-9β,10β-ep­­oxy-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]dodeca­ne

aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité "Unité Associée au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Avenue Ibn Battouta, BP 1014 Rabat, Morocco
*Correspondence e-mail: berraho@uca.ma

(Received 2 March 2013; accepted 3 March 2013; online 9 March 2013)

The title compound, C16H24Br2O, was synthesized from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzocyclo­heptene), which was isolated from the essential oil of the Atlas cedar (Cedrus atlantica). The mol­ecule contains fused six- and seven-membered rings, each linked to a three-membered ring. The six-membered ring has a half-chair conformation, while the seven-membered ring displays a chair conformation. The dihedral angle between the mean planes through the six- and seven-membered rings is 39.55 (12)°. The two three-membered rings, linked to the six- and seven-membered rings, are nearly perpendicular to the six-membered ring, making dihedral angles of 78.6 (2) and 80.5 (2)°, respectively. The absolute structure was established unambiguously from anomalous dispersion effects. In the crystal, each mol­ecule is linked to its symmetry-equivalent partner by C—H⋯O hydrogen bonds, forming zigzag chains parallel to [100].

Related literature

For the isolation of β-himachalene, see: Joseph & Dev (1968[Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841-3859.]); Plattier & Teisseire (1974[Plattier, M. & Teisseire, P. (1974). Recherche, 19, 131-144.]). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998[Lassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641-2651.]); Chekroun et al. (2000[Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431-4434.]); El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Sbai et al. (2002[Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518-o520.]); Dakir et al. (2004[Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001-2008.]). For its biological activity, see: Daoubi et al. (2004[Daoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]). For ring puckering calculations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a similar structure, see: Benharref et al. (2010[Benharref, A., El Ammari, L., Avignant, D., Oudahmane, A. & Berraho, M. (2010). Acta Cryst. E66, o3125.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24Br2O

  • Mr = 392.17

  • Orthorhombic, P 21 21 21

  • a = 7.9772 (4) Å

  • b = 12.8562 (7) Å

  • c = 16.1719 (8) Å

  • V = 1658.53 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.88 mm−1

  • T = 296 K

  • 0.41 × 0.32 × 0.27 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.407, Tmax = 0.747

  • 15200 measured reflections

  • 4637 independent reflections

  • 3298 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.074

  • S = 1.02

  • 4637 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 1998 Friedel pairs

  • Flack parameter: 0.014 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.98 2.53 3.391 (3) 146
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpenes hydrocarbons, among which is found the compound, β-himachalene (Joseph & Dev, 1968; Plattier & Teisseire, 1974). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Lassaba et al., 1998; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). Thus the action of one equivalent of dibromocabene, generated in situ from bromoform in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, on β-himachalene produces only (1S,3R,8R)-2,2-dibromo-3,7,7,10- tetramethyltricyclo[6.4.0.01,3]dodec-9-ene (El Jamili et al., 2002). Treatment of the latter by one equivalent of m-chloroperbenzoic acid (m-CPBA) gives a mixture of two diastereoisomers: (1S,3R,8R,9S,10R)-2,2-dibromo-9α,10α-epoxy- 3,7,7,10- tetramethyltricyclo-[6.4.0.01,3]dodecane (X) and its isomer (1S,3R,8R,9R,10S)-2,2-dibromo)- 9β,10β-epoxy-3,7,7,10-Tetramethyltricyclo-[6.4.0.01,3]dodecane (Y) in an over-all yield of 65% and 15/85 ratio. By single-crystal X-ray diffraction analysis, we have determined the absolute configuration of Y and we deduced that from its isomer X.

The molecule contains a fused six- and seven-membered rings, which is fused to two three-membered rings as shown in Fig.1. The six-membered ring has a half chair conformation as indicated by the total puckering amplitude QT = 0.520 (3) Å and spherical polar angle θ = 53.6 (3)° with ϕ2 = -97.9 (4)°, whereas the seven-membered ring displays a chair conformation with QT = 0.7961 (3) Å, θ2 = 32.4 (2)°, ϕ2 = -51.9 (4)° and ϕ3 = -78.7 (2)° (Cremer & Pople, 1975). The dihedral angle between the six and seven-membered rings is 59.3 (2)°. The three-membered rings (C1C2C3) and (C9O1C10) are nearly perpendicular to the six-membered ring (C1C8C9C11C12C13) with a dihedral angle of 78.6 (2)° and 80.5 (2)°, respectively. Owing to the presence of Br atoms, the absolute configuration could be fully confirmed from anomalous dispersion effects, by refining the Flack parameter (Flack & Bernardinelli (2000)) as C1(S), C3(R), C8(R), C9(S), and C10(R).

In the crystal, each molecule is linked to its symmetry equivalent partner by C9–H9···O1 non classic hydrogen-bond as shown in Fig.2 and Table 2. The present structure is similar to that of C16H24OCl2 published, in a previous work, by Benharref et al. (2010).

Related literature top

For the isolation of β-himachalene, see: Joseph & Dev (1968); Plattier & Teisseire (1974). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998); Chekroun et al. (2000); El Jamili et al. (2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004). For ring puckering calculations, see: Cremer & Pople (1975). For a similar structure, see: Benharref et al. (2010).

Experimental top

For the synthesis of compounds (1S,3R,8S,9S,10R)-2,2-dibromo-9α,10α-epoxy- 3,7,7,10-tetramethyltricyclo [6.4.0.01,3]dodecane (X) and its isomer (1S,3R,8S,9R,10S)-2,2-dibromo-9β,10β-epoxy-3,7,7,10-tetramethyltricyclo [6.4.0.01,3]dodecane (Y), a stoichiometric quantity of m-chloroperbenzoic acid (m-CPBA) was added to a 250 ml flask containing a solution of (1S,3R,8S)-2,2-dibromo-3,7,7,10- tetramethyltricyclo[6,4,0,01,3] dodec-9-ene (2 g, 5.3 mmol) in dichloromethane (100 ml). The reaction mixture was stirred at ambient temperature for 2 h, then treated with a 10% solution of sodium hydrogencarbonate. The aqueous phase was extracted with dichloromethane and the organic phases were dried and concentrated.The residue obtained was chromatographed on silica gel column impregnated with silver nitrate (10%) with a mixture of hexane - ethyl acetate (98–2) used as eluent. The two diastereoisomers: (1S,3R,8R,9S,10R)-2,2-dibromo-9α,10α-epoxy- 3,7,7,10-tetramethyltricyclo-[6.4.0.01,3]dodecane (X) and its isomer (1S,3R,8R,9R,10S)-2,2-dibromo)-9β,10β-epoxy-3,7,7,10-Tetramethyl tricyclo-[6.4.0.01,3]dodecane (Y) were obtained by this procedure in a 15/85 ratio and a combined yield of 65% (1.35 g; 3.4 mmol). The title compound (isomer Y) was recrystallized from hexane.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl). The space group is not centro symmetric and the polar axis restraint is generated automatically by SHELXL program. The Friedel opposites reflections are not merged.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecule and its symmetry partner linked by C9–H9···O1 non classic hydrogen bond. Symmetry codes: (i) 1 + x, -1 + y, z.
(1S,3R,8R,9R,10S)-2,2-Dibromo-3,7,7,10-tetramethyl-9β,10β-epoxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecane top
Crystal data top
C16H24Br2OF(000) = 792
Mr = 392.17Dx = 1.571 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2ac 2abCell parameters from 4637 reflections
a = 7.9772 (4) Åθ = 2.9–29.6°
b = 12.8562 (7) ŵ = 4.88 mm1
c = 16.1719 (8) ÅT = 296 K
V = 1658.53 (15) Å3Block, colourless
Z = 40.41 × 0.32 × 0.27 mm
Data collection top
Bruker X8 APEX
diffractometer
4637 independent reflections
Radiation source: fine-focus sealed tube3298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 29.6°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1111
Tmin = 0.407, Tmax = 0.747k = 1715
15200 measured reflectionsl = 2214
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0307P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.41 e Å3
4637 reflectionsΔρmin = 0.46 e Å3
173 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0016 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack & Bernardinelli (2000), 1998 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.014 (10)
Crystal data top
C16H24Br2OV = 1658.53 (15) Å3
Mr = 392.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.9772 (4) ŵ = 4.88 mm1
b = 12.8562 (7) ÅT = 296 K
c = 16.1719 (8) Å0.41 × 0.32 × 0.27 mm
Data collection top
Bruker X8 APEX
diffractometer
4637 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
3298 reflections with I > 2σ(I)
Tmin = 0.407, Tmax = 0.747Rint = 0.036
15200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.41 e Å3
S = 1.02Δρmin = 0.46 e Å3
4637 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 1998 Friedel pairs
173 parametersAbsolute structure parameter: 0.014 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4959 (3)0.9764 (2)0.00560 (15)0.0325 (5)
C20.6592 (3)0.9395 (2)0.04293 (16)0.0404 (6)
C30.5934 (3)0.8863 (2)0.03369 (19)0.0448 (7)
C40.6887 (4)0.9048 (3)0.1148 (2)0.0587 (9)
H4A0.75620.84390.12700.070*
H4B0.76410.96330.10760.070*
C50.5722 (4)0.9266 (3)0.1883 (2)0.0676 (11)
H5A0.63000.90890.23920.081*
H5B0.47410.88240.18410.081*
C60.5167 (4)1.0390 (3)0.19240 (18)0.0596 (9)
H6A0.46191.04910.24540.072*
H6B0.61691.08160.19270.072*
C70.3993 (3)1.0825 (2)0.12543 (16)0.0433 (7)
C80.4885 (3)1.0819 (2)0.03933 (15)0.0316 (5)
H80.60551.10040.05060.038*
C90.4239 (3)1.1658 (2)0.01801 (16)0.0374 (6)
H90.48071.23300.01240.045*
O10.2442 (2)1.17299 (17)0.03278 (13)0.0503 (5)
C100.3546 (3)1.1457 (2)0.10036 (16)0.0454 (7)
C110.3355 (3)1.0354 (3)0.12860 (17)0.0540 (8)
H11A0.22981.02840.15770.065*
H11B0.42471.01930.16730.065*
C120.3405 (3)0.9577 (2)0.05873 (17)0.0434 (6)
H12A0.24050.96480.02510.052*
H12B0.34300.88770.08100.052*
C130.5257 (5)0.7765 (3)0.0288 (3)0.0738 (11)
H13A0.49020.75450.08280.111*
H13B0.43200.77470.00840.111*
H13C0.61190.73070.00900.111*
C140.3664 (5)1.1961 (3)0.1496 (2)0.0664 (9)
H14A0.29321.22750.10970.100*
H14B0.31491.19840.20320.100*
H14C0.47071.23330.15110.100*
C150.2311 (3)1.0239 (3)0.12733 (19)0.0626 (9)
H15A0.24920.95230.11290.094*
H15B0.18391.02790.18180.094*
H15C0.15521.05480.08840.094*
C160.3686 (5)1.2270 (3)0.1671 (2)0.0763 (11)
H16A0.44491.20340.20900.115*
H16B0.26021.23870.19130.115*
H16C0.40941.29070.14360.115*
Br10.85914 (3)1.02421 (3)0.041525 (19)0.05303 (11)
Br20.66225 (4)0.86201 (3)0.14535 (2)0.07179 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0318 (11)0.0302 (14)0.0355 (13)0.0019 (12)0.0017 (10)0.0015 (12)
C20.0370 (12)0.0395 (15)0.0446 (14)0.0013 (12)0.0010 (13)0.0059 (12)
C30.0425 (14)0.0336 (17)0.0584 (17)0.0003 (11)0.0005 (13)0.0066 (14)
C40.0548 (17)0.059 (2)0.0627 (19)0.0102 (15)0.0065 (15)0.0287 (17)
C50.074 (2)0.086 (3)0.0422 (17)0.001 (2)0.0017 (16)0.0345 (18)
C60.0609 (18)0.088 (3)0.0302 (14)0.002 (2)0.0040 (12)0.0032 (16)
C70.0497 (15)0.0508 (19)0.0295 (13)0.0009 (13)0.0044 (11)0.0007 (12)
C80.0321 (11)0.0323 (14)0.0303 (12)0.0011 (10)0.0037 (11)0.0021 (11)
C90.0376 (12)0.0331 (17)0.0415 (15)0.0005 (11)0.0017 (11)0.0021 (12)
O10.0408 (9)0.0570 (14)0.0532 (12)0.0160 (9)0.0026 (9)0.0053 (11)
C100.0388 (13)0.0579 (19)0.0397 (14)0.0083 (15)0.0041 (13)0.0110 (13)
C110.0461 (15)0.075 (2)0.0411 (15)0.0023 (17)0.0126 (13)0.0073 (15)
C120.0327 (12)0.0433 (17)0.0543 (16)0.0012 (13)0.0049 (12)0.0120 (13)
C130.066 (2)0.033 (2)0.123 (4)0.0004 (16)0.013 (2)0.007 (2)
C140.079 (2)0.071 (2)0.0487 (17)0.011 (2)0.0039 (19)0.0207 (17)
C150.0542 (16)0.090 (3)0.0436 (16)0.0074 (19)0.0102 (13)0.0064 (19)
C160.076 (2)0.089 (3)0.064 (2)0.012 (2)0.0117 (19)0.039 (2)
Br10.03457 (13)0.0605 (2)0.06396 (19)0.00414 (15)0.00528 (13)0.00561 (16)
Br20.0688 (2)0.0793 (3)0.0673 (2)0.0137 (2)0.00527 (18)0.03512 (19)
Geometric parameters (Å, º) top
C1—C21.512 (3)C9—O11.457 (3)
C1—C121.527 (3)C9—C101.465 (4)
C1—C31.533 (4)C9—H90.9800
C1—C81.540 (4)O1—C101.447 (3)
C2—C31.510 (4)C10—C111.498 (4)
C2—Br11.931 (3)C10—C161.507 (4)
C2—Br21.933 (3)C11—C121.508 (4)
C3—C131.513 (5)C11—H11A0.9700
C3—C41.534 (4)C11—H11B0.9700
C4—C51.535 (5)C12—H12A0.9700
C4—H4A0.9700C12—H12B0.9700
C4—H4B0.9700C13—H13A0.9600
C5—C61.512 (6)C13—H13B0.9600
C5—H5A0.9700C13—H13C0.9600
C5—H5B0.9700C14—H14A0.9600
C6—C71.537 (4)C14—H14B0.9600
C6—H6A0.9700C14—H14C0.9600
C6—H6B0.9700C15—H15A0.9600
C7—C141.534 (5)C15—H15B0.9600
C7—C151.540 (4)C15—H15C0.9600
C7—C81.564 (3)C16—H16A0.9600
C8—C91.513 (4)C16—H16B0.9600
C8—H80.9800C16—H16C0.9600
C2—C1—C12115.2 (2)O1—C9—C8118.8 (2)
C2—C1—C359.43 (18)C10—C9—C8124.1 (2)
C12—C1—C3121.8 (2)O1—C9—H9114.5
C2—C1—C8119.8 (2)C10—C9—H9114.5
C12—C1—C8111.9 (2)C8—C9—H9114.5
C3—C1—C8119.3 (2)C10—O1—C960.61 (16)
C3—C2—C160.96 (18)O1—C10—C960.03 (16)
C3—C2—Br1122.22 (19)O1—C10—C11113.5 (2)
C1—C2—Br1122.02 (19)C9—C10—C11118.8 (2)
C3—C2—Br2118.3 (2)O1—C10—C16114.7 (3)
C1—C2—Br2120.94 (17)C9—C10—C16120.1 (3)
Br1—C2—Br2106.89 (12)C11—C10—C16116.5 (3)
C2—C3—C13120.3 (3)C10—C11—C12113.3 (2)
C2—C3—C159.61 (18)C10—C11—H11A108.9
C13—C3—C1120.1 (3)C12—C11—H11A108.9
C2—C3—C4117.3 (2)C10—C11—H11B108.9
C13—C3—C4111.4 (3)C12—C11—H11B108.9
C1—C3—C4119.3 (3)H11A—C11—H11B107.7
C3—C4—C5113.0 (3)C11—C12—C1109.8 (2)
C3—C4—H4A109.0C11—C12—H12A109.7
C5—C4—H4A109.0C1—C12—H12A109.7
C3—C4—H4B109.0C11—C12—H12B109.7
C5—C4—H4B109.0C1—C12—H12B109.7
H4A—C4—H4B107.8H12A—C12—H12B108.2
C6—C5—C4112.7 (3)C3—C13—H13A109.5
C6—C5—H5A109.0C3—C13—H13B109.5
C4—C5—H5A109.0H13A—C13—H13B109.5
C6—C5—H5B109.0C3—C13—H13C109.5
C4—C5—H5B109.0H13A—C13—H13C109.5
H5A—C5—H5B107.8H13B—C13—H13C109.5
C5—C6—C7119.7 (3)C7—C14—H14A109.5
C5—C6—H6A107.4C7—C14—H14B109.5
C7—C6—H6A107.4H14A—C14—H14B109.5
C5—C6—H6B107.4C7—C14—H14C109.5
C7—C6—H6B107.4H14A—C14—H14C109.5
H6A—C6—H6B106.9H14B—C14—H14C109.5
C14—C7—C6105.7 (3)C7—C15—H15A109.5
C14—C7—C15108.2 (3)C7—C15—H15B109.5
C6—C7—C15109.8 (3)H15A—C15—H15B109.5
C14—C7—C8108.1 (2)C7—C15—H15C109.5
C6—C7—C8110.4 (2)H15A—C15—H15C109.5
C15—C7—C8114.3 (2)H15B—C15—H15C109.5
C9—C8—C1110.6 (2)C10—C16—H16A109.5
C9—C8—C7112.7 (2)C10—C16—H16B109.5
C1—C8—C7116.3 (2)H16A—C16—H16B109.5
C9—C8—H8105.4C10—C16—H16C109.5
C1—C8—H8105.4H16A—C16—H16C109.5
C7—C8—H8105.4H16B—C16—H16C109.5
O1—C9—C1059.36 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.982.533.391 (3)146
Symmetry code: (i) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaC16H24Br2O
Mr392.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.9772 (4), 12.8562 (7), 16.1719 (8)
V3)1658.53 (15)
Z4
Radiation typeMo Kα
µ (mm1)4.88
Crystal size (mm)0.41 × 0.32 × 0.27
Data collection
DiffractometerBruker X8 APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.407, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
15200, 4637, 3298
Rint0.036
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.074, 1.02
No. of reflections4637
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.46
Absolute structureFlack & Bernardinelli (2000), 1998 Friedel pairs
Absolute structure parameter0.014 (10)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.982.533.391 (3)146
Symmetry code: (i) x+1/2, y+5/2, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBenharref, A., El Ammari, L., Avignant, D., Oudahmane, A. & Berraho, M. (2010). Acta Cryst. E66, o3125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008.  Web of Science CrossRef CAS Google Scholar
First citationDaoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3859.  CrossRef CAS Web of Science Google Scholar
First citationLassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641–2651.  Web of Science CrossRef CAS Google Scholar
First citationPlattier, M. & Teisseire, P. (1974). Recherche, 19, 131–144.  CAS Google Scholar
First citationSbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o521-o522
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds