organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Hy­dr­oxy­cinnamaldehyde

aDepartment of Chemistry, Kyonggi University, San 94-6, Iui-dong, Yeongtong-gu, Suwon 443-760, Republic of Korea
*Correspondence e-mail: sgkim123@kyonggi.ac.kr

(Received 26 December 2012; accepted 8 March 2013; online 16 March 2013)

The asymmetric unit of the title compound, C9H8O2, contains two independent mol­ecules, both of which are essentially planar (r.m.s. deviations = 0.0294 and 0.0284 Å). The C=C double bond is in an E conformation and the vinyl­aldehyde groups adopt extended conformations. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming infinite chains parallel to [101].

Related literature

For the synthesis of the title compound, see: Kim et al. (2004[Kim, J. H., Lee, S., Kwon, M.-G., Park, Y. S., Choi, S.-K. & Kwon, B.-M. (2004). Synth. Commun. 34, 1223-1228.]); Zeiter & Rose (2009[Zeiter, K. & Rose, C. A. (2009). J. Org. Chem. 74, 1759-1762.]). For the biological activity of 2-hy­droxy­cinnamaldehydes, see: Kwon et al. (1996[Kwon, B. M., Cho, Y. K., Lee, S. H., Nam, J. Y., Bok, S. H., Chun, S. K., Kim, J. A. & Lee, I. R. (1996). Planta Med. 62, 183-184.]); Lee et al. (1999[Lee, C. W., Hong, D. H., Han, S. B., Park, S. H., Kim, H. K., Kwon, B. M. & Kim, H. M. (1999). Planta Med. 65, 263-264.]); Ka et al. (2003[Ka, H., Park, H. J., Jung, H. J., Choi, J. W., Cho, K. S., Ha, J. & Lee, K. T. (2003). Cancer Lett. 196, 143-152.]). For applications of 2-hy­droxy­cinnamaldehydes, see: Zu et al. (2009[Zu, L., Zhang, S., Xie, H. & Wang, W. (2009). Org. Lett. 11, 1627-1630.]); Choi & Kim (2010[Choi, K.-S. & Kim, S.-G. (2010). Tetrahedron Lett. 51, 5203-5206.]); Lee & Kim (2011[Lee, Y. & Kim, S.-G. (2011). Bull. Korean Chem. Soc. 32, 311-314.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8O2

  • Mr = 148.15

  • Monoclinic, P 21 /c

  • a = 10.1192 (15) Å

  • b = 13.7078 (19) Å

  • c = 10.9891 (15) Å

  • β = 102.537 (3)°

  • V = 1488.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.40 × 0.34 × 0.29 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 10982 measured reflections

  • 3725 independent reflections

  • 1785 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.182

  • S = 0.97

  • 3725 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.84 1.90 2.7260 (19) 166
O1—H1A⋯O4ii 0.84 1.90 2.7193 (19) 166
Symmetry codes: (i) x, y+1, z-1; (ii) x+1, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-Hydroxycinnamaldehyde, isolated from the stern bark of Cinnamonum cassia, and its synthetic derivatives have been shown to inhibit on farnesyl protein transferase in vitro, as well as angiogenesis, and tumor cell growth (Kwon et al. 1996; Lee et al. 1999; Ka et al. 2003). In view of these potential applications and in continuation of our work, the structure of the title compound has been determined and the results are presented here.

X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The asymmetric unit of the title compound contains two independent molecules, A and B, with similar conformations. Both molecules are essentially planar. The r.m.s deviations of the atoms from their mean plane in molecules A and B are 0.0294 Å and 0.0284 Å, respectively. The molecule displays a trans configuration with respect to the CC double bond, and the vinylaldehyde groups adopt extended conformations as can be seen from the torsion angles C2—C7—C8—C9 = -177.1 (2)° and C11—C16—C17—C18 = 179.2 (2)°. In the crystal, the molecules are linked by intermolecular O—H···O hydrogen bonds (Table 1).

Related literature top

For the synthesis of the title compound, see: Kim et al. (2004); Zeiter & Rose (2009). For the biological activity of 2-hydroxycinnamaldehydes, see: Kwon et al. (1996); Lee et al. (1999); Ka et al. (2003). For applications of 2-hydroxycinnamaldehydes, see: Zu et al. (2009); Choi & Kim (2010); Lee & Kim (2011).

Experimental top

A solution of 2-hydroxybenzaldehyde (10.0 mmol) and vinyl acetate (11.0 mmol) in CH3CN (20 ml) was added to a stirred suspension of K2CO3 in CH3CN (30 ml). After refluxing for 48 h, the reaction mixture was poured into cold water and diluted with EtOAc. The organic layer was washed with 10% NaOH solution, and the aqueous layer was separated, acidified with 10% HCl solution, and extracted with CH2Cl2. The resultant organic layer was dried over MgSO4 and concentrated in vacuo. The dark residue was purified by silica gel chromatography to afford the title compound (Fig. 2). Crystals suitable for X-ray analysis were obtained by slow evaporation from an n-hexane/CH2Cl2 solution.

Refinement top

All H atoms were positioned geometrically (O—H = 0.84 Å and C—H = 0.95 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O). The orientations of the H atoms in the hydroxyl groups were refined using a rotating rigid group approximation.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The preparation of the title compound.
(E)-2-Hydroxycinnamaldehyde top
Crystal data top
C9H8O2F(000) = 624
Mr = 148.15Dx = 1.323 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3327 reflections
a = 10.1192 (15) Åθ = 2.4–28.3°
b = 13.7078 (19) ŵ = 0.09 mm1
c = 10.9891 (15) ÅT = 200 K
β = 102.537 (3)°Block, pale yellow
V = 1488.0 (4) Å30.40 × 0.34 × 0.29 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
1785 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 28.4°, θmin = 2.1°
ϕ and ω scansh = 1312
10982 measured reflectionsk = 1816
3725 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0927P)2]
where P = (Fo2 + 2Fc2)/3
3725 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C9H8O2V = 1488.0 (4) Å3
Mr = 148.15Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.1192 (15) ŵ = 0.09 mm1
b = 13.7078 (19) ÅT = 200 K
c = 10.9891 (15) Å0.40 × 0.34 × 0.29 mm
β = 102.537 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1785 reflections with I > 2σ(I)
10982 measured reflectionsRint = 0.041
3725 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 0.97Δρmax = 0.22 e Å3
3725 reflectionsΔρmin = 0.27 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0099 (2)0.23356 (14)0.6613 (2)0.0446 (5)
O11.00066 (17)0.13543 (10)0.66051 (15)0.0594 (5)
H1A1.05130.11210.61660.089*
C20.9346 (2)0.28553 (14)0.73291 (19)0.0407 (5)
C30.9417 (2)0.38675 (15)0.7331 (2)0.0483 (6)
H30.89150.42300.78130.058*
C41.0197 (2)0.43568 (16)0.6651 (2)0.0568 (7)
H41.02260.50490.66580.068*
C51.0941 (2)0.38336 (16)0.5954 (2)0.0526 (6)
H51.14840.41690.54840.063*
C61.0897 (2)0.28362 (15)0.5939 (2)0.0494 (6)
H61.14160.24830.54630.059*
C70.8519 (2)0.23186 (15)0.80343 (19)0.0447 (5)
H70.85120.16290.79480.054*
C80.7771 (2)0.26827 (15)0.8786 (2)0.0476 (6)
H80.77050.33690.88790.057*
C90.7067 (2)0.20404 (16)0.94542 (19)0.0475 (6)
H90.71370.13610.93070.057*
O20.63875 (17)0.22802 (11)1.01920 (14)0.0556 (5)
C100.5413 (2)1.02655 (15)0.18904 (19)0.0449 (5)
O30.50581 (16)1.12074 (10)0.16394 (15)0.0573 (5)
H3A0.55481.14500.11910.086*
C110.4817 (2)0.97679 (15)0.27481 (19)0.0437 (5)
C120.5162 (2)0.87942 (15)0.3007 (2)0.0470 (6)
H120.47560.84490.35810.056*
C130.6071 (2)0.83215 (16)0.2456 (2)0.0513 (6)
H130.63000.76590.26510.062*
C140.6654 (2)0.88235 (16)0.1606 (2)0.0545 (6)
H140.72780.85000.12120.065*
C150.6336 (2)0.97798 (16)0.1334 (2)0.0531 (6)
H150.67501.01160.07590.064*
C160.3859 (2)1.02833 (15)0.3339 (2)0.0472 (6)
H160.37241.09550.31380.057*
C170.3155 (2)0.99221 (15)0.4125 (2)0.0468 (6)
H170.32380.92530.43530.056*
C180.2269 (2)1.05456 (15)0.4629 (2)0.0498 (6)
H180.22011.12040.43530.060*
O40.15958 (16)1.03140 (10)0.53740 (14)0.0556 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0489 (13)0.0384 (11)0.0525 (13)0.0014 (9)0.0243 (11)0.0000 (9)
O10.0778 (13)0.0387 (8)0.0785 (12)0.0006 (7)0.0535 (10)0.0030 (7)
C20.0439 (13)0.0384 (11)0.0440 (12)0.0026 (9)0.0189 (10)0.0009 (9)
C30.0536 (14)0.0434 (12)0.0535 (14)0.0030 (10)0.0238 (11)0.0019 (10)
C40.0662 (17)0.0406 (12)0.0712 (17)0.0037 (11)0.0319 (14)0.0005 (11)
C50.0594 (15)0.0488 (13)0.0575 (14)0.0061 (11)0.0298 (12)0.0029 (11)
C60.0545 (15)0.0462 (12)0.0560 (14)0.0022 (10)0.0308 (12)0.0004 (10)
C70.0497 (14)0.0414 (12)0.0485 (13)0.0010 (9)0.0228 (11)0.0009 (9)
C80.0550 (15)0.0433 (12)0.0518 (13)0.0000 (10)0.0277 (12)0.0024 (10)
C90.0543 (15)0.0467 (12)0.0466 (13)0.0003 (10)0.0223 (11)0.0026 (10)
O20.0639 (11)0.0573 (10)0.0565 (10)0.0011 (8)0.0368 (9)0.0010 (7)
C100.0520 (14)0.0390 (11)0.0509 (13)0.0038 (9)0.0274 (11)0.0050 (9)
O30.0728 (12)0.0428 (9)0.0708 (11)0.0018 (7)0.0470 (9)0.0043 (7)
C110.0466 (13)0.0416 (12)0.0493 (13)0.0030 (9)0.0245 (11)0.0044 (9)
C120.0517 (14)0.0427 (12)0.0533 (13)0.0029 (10)0.0262 (11)0.0003 (10)
C130.0572 (15)0.0413 (12)0.0614 (14)0.0006 (10)0.0260 (12)0.0028 (10)
C140.0565 (15)0.0498 (13)0.0667 (15)0.0036 (11)0.0343 (13)0.0058 (11)
C150.0561 (15)0.0541 (14)0.0594 (15)0.0032 (11)0.0353 (13)0.0027 (11)
C160.0539 (15)0.0408 (11)0.0549 (13)0.0015 (10)0.0292 (12)0.0018 (10)
C170.0531 (14)0.0435 (12)0.0519 (13)0.0001 (10)0.0292 (11)0.0023 (10)
C180.0561 (15)0.0458 (13)0.0556 (14)0.0004 (10)0.0299 (12)0.0014 (10)
O40.0619 (11)0.0516 (9)0.0663 (10)0.0048 (7)0.0421 (9)0.0062 (8)
Geometric parameters (Å, º) top
C1—O11.348 (2)C10—O31.352 (2)
C1—C61.390 (3)C10—C151.392 (3)
C1—C21.403 (3)C10—C111.401 (3)
O1—H1A0.8400O3—H3A0.8400
C2—C31.389 (3)C11—C121.393 (3)
C2—C71.457 (3)C11—C161.460 (3)
C3—C41.374 (3)C12—C131.369 (3)
C3—H30.9500C12—H120.9500
C4—C51.385 (3)C13—C141.390 (3)
C4—H40.9500C13—H130.9500
C5—C61.368 (3)C14—C151.367 (3)
C5—H50.9500C14—H140.9500
C6—H60.9500C15—H150.9500
C7—C81.333 (3)C16—C171.330 (3)
C7—H70.9500C16—H160.9500
C8—C91.431 (3)C17—C181.434 (3)
C8—H80.9500C17—H170.9500
C9—O21.216 (2)C18—O41.215 (2)
C9—H90.9500C18—H180.9500
O1—C1—C6122.46 (17)O3—C10—C15122.74 (18)
O1—C1—C2117.70 (17)O3—C10—C11117.90 (17)
C6—C1—C2119.84 (19)C15—C10—C11119.4 (2)
C1—O1—H1A109.5C10—O3—H3A109.5
C3—C2—C1118.24 (18)C12—C11—C10118.56 (18)
C3—C2—C7122.64 (18)C12—C11—C16122.27 (18)
C1—C2—C7119.12 (18)C10—C11—C16119.17 (19)
C4—C3—C2121.5 (2)C13—C12—C11121.74 (19)
C4—C3—H3119.2C13—C12—H12119.1
C2—C3—H3119.2C11—C12—H12119.1
C3—C4—C5119.6 (2)C12—C13—C14119.1 (2)
C3—C4—H4120.2C12—C13—H13120.4
C5—C4—H4120.2C14—C13—H13120.4
C6—C5—C4120.3 (2)C15—C14—C13120.5 (2)
C6—C5—H5119.9C15—C14—H14119.7
C4—C5—H5119.9C13—C14—H14119.7
C5—C6—C1120.53 (19)C14—C15—C10120.73 (19)
C5—C6—H6119.7C14—C15—H15119.6
C1—C6—H6119.7C10—C15—H15119.6
C8—C7—C2127.6 (2)C17—C16—C11127.6 (2)
C8—C7—H7116.2C17—C16—H16116.2
C2—C7—H7116.2C11—C16—H16116.2
C7—C8—C9120.0 (2)C16—C17—C18119.8 (2)
C7—C8—H8120.0C16—C17—H17120.1
C9—C8—H8120.0C18—C17—H17120.1
O2—C9—C8126.3 (2)O4—C18—C17126.4 (2)
O2—C9—H9116.9O4—C18—H18116.8
C8—C9—H9116.9C17—C18—H18116.8
O1—C1—C2—C3179.1 (2)O3—C10—C11—C12179.4 (2)
C6—C1—C2—C30.5 (3)C15—C10—C11—C120.6 (3)
O1—C1—C2—C70.7 (3)O3—C10—C11—C160.6 (3)
C6—C1—C2—C7179.8 (2)C15—C10—C11—C16179.4 (2)
C1—C2—C3—C40.2 (3)C10—C11—C12—C130.6 (3)
C7—C2—C3—C4179.5 (2)C16—C11—C12—C13179.4 (2)
C2—C3—C4—C50.6 (4)C11—C12—C13—C140.7 (4)
C3—C4—C5—C60.2 (4)C12—C13—C14—C150.7 (4)
C4—C5—C6—C10.5 (4)C13—C14—C15—C100.7 (4)
O1—C1—C6—C5178.7 (2)O3—C10—C15—C14179.3 (2)
C2—C1—C6—C50.8 (3)C11—C10—C15—C140.7 (4)
C3—C2—C7—C82.3 (4)C12—C11—C16—C173.3 (4)
C1—C2—C7—C8178.0 (2)C10—C11—C16—C17176.7 (2)
C2—C7—C8—C9177.1 (2)C11—C16—C17—C18179.2 (2)
C7—C8—C9—O2177.7 (2)C16—C17—C18—O4178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.841.902.7260 (19)166
O1—H1A···O4ii0.841.902.7193 (19)166
Symmetry codes: (i) x, y+1, z1; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC9H8O2
Mr148.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.1192 (15), 13.7078 (19), 10.9891 (15)
β (°) 102.537 (3)
V3)1488.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.34 × 0.29
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10982, 3725, 1785
Rint0.041
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.182, 0.97
No. of reflections3725
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.841.902.7260 (19)165.7
O1—H1A···O4ii0.841.902.7193 (19)166.3
Symmetry codes: (i) x, y+1, z1; (ii) x+1, y1, z.
 

Acknowledgements

This work was supported by Kyonggi University Research Grant 2012.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, K.-S. & Kim, S.-G. (2010). Tetrahedron Lett. 51, 5203–5206.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKa, H., Park, H. J., Jung, H. J., Choi, J. W., Cho, K. S., Ha, J. & Lee, K. T. (2003). Cancer Lett. 196, 143–152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J. H., Lee, S., Kwon, M.-G., Park, Y. S., Choi, S.-K. & Kwon, B.-M. (2004). Synth. Commun. 34, 1223–1228.  CAS Google Scholar
First citationKwon, B. M., Cho, Y. K., Lee, S. H., Nam, J. Y., Bok, S. H., Chun, S. K., Kim, J. A. & Lee, I. R. (1996). Planta Med. 62, 183–184.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLee, C. W., Hong, D. H., Han, S. B., Park, S. H., Kim, H. K., Kwon, B. M. & Kim, H. M. (1999). Planta Med. 65, 263–264.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, Y. & Kim, S.-G. (2011). Bull. Korean Chem. Soc. 32, 311–314.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeiter, K. & Rose, C. A. (2009). J. Org. Chem. 74, 1759–1762.  Web of Science PubMed Google Scholar
First citationZu, L., Zhang, S., Xie, H. & Wang, W. (2009). Org. Lett. 11, 1627–1630.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds