organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(4-methyl­benzo­yl)-2,3-di­hydro-1H-indene-2-carboxyl­ate

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: qwjgq@163.com

(Received 29 December 2012; accepted 28 February 2013; online 6 March 2013)

The title compound, C20H20O3, contains two fused rings with a quaternary carbon centre connecting p-toluoyl and eth­oxy­carbonyl groups. The dihedral angle between the fused benzene ring and the three-C-atom plane (derived from O=C—C—C=O) is 82.5 (4)°, whereas the dihedral angle between the planes of the benzene rings is 53.4 (2)°. In the crystal, molecules are linked via C—H⋯Oester hydrogen bonds, forming chains propagating along [010].

Related literature

For the preparation and crystal engineering studies of the title compound, see: Singh & Paul (2006[Singh, P. & Paul, K. (2006). J. Heterocycl. Chem. 43, 607-611.]); Wang & Wu (2012[Wang, J. & Wu, A. (2012). Org. Lett. 14, 6060-6063.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20O3

  • Mr = 308.37

  • Monoclinic, P 21 /c

  • a = 8.1957 (14) Å

  • b = 6.1287 (10) Å

  • c = 32.995 (5) Å

  • β = 93.014 (3)°

  • V = 1655.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.990, Tmax = 0.992

  • 11945 measured reflections

  • 3241 independent reflections

  • 2482 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.187

  • S = 1.09

  • 3241 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.60 3.357 (3) 139
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT(Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title molecule (I)(Fig.1) was synthesized in a mixture of 1,4-dibromo-2,3- bis(bromomethyl)benzene (1.0 mmol), ethyl 3-oxo-3-(p-tolyl)propanoate (1.0 mmol) and Cs2CO3 (2 mmol) in DMSO (5 ml). The mixture was stirred at 40° for 30 min until almost full conversion of the substrates by TLC analysis. The resulting mixture was dropped into 100 ml 1 M HCl (aq) and extracted with EtOAc 3 times (3 times 50 ml). The organic extract was dried with Na2SO4, filtered and concentrated. The crude product was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc=50/1) to afford the product as a white solid.

Related literature top

For the preparation and crystal engineering studies of the title compound, see: Singh & Paul (2006); Wang & Wu (2012).

Experimental top

The title compound was synthesized according to the reported method (Singh et al.; 2006 and Wang et al.; 2012). The ethyl 3-oxo-3-(p-tolyl)propanoate reacts with 1,2-bis(halomethyl)benzene to obtain the title compound via a two-step C-alkylation process. Crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a acetic ether solution of the title compound (I) at 293 K.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT(Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probalility level.
Ethyl 2-(4-methylbenzoyl)-2,3-dihydro-1H-indene-2-carboxylate top
Crystal data top
C20H20O3F(000) = 656
Mr = 308.37Dx = 1.238 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3624 reflections
a = 8.1957 (14) Åθ = 2.5–24.5°
b = 6.1287 (10) ŵ = 0.08 mm1
c = 32.995 (5) ÅT = 298 K
β = 93.014 (3)°Block, colourless
V = 1655.0 (5) Å30.12 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3241 independent reflections
Radiation source: fine-focus sealed tube2482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1010
Tmin = 0.990, Tmax = 0.992k = 77
11945 measured reflectionsl = 4036
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1176P)2 + 0.1336P]
where P = (Fo2 + 2Fc2)/3
3241 reflections(Δ/σ)max = 0.008
210 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H20O3V = 1655.0 (5) Å3
Mr = 308.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1957 (14) ŵ = 0.08 mm1
b = 6.1287 (10) ÅT = 298 K
c = 32.995 (5) Å0.12 × 0.10 × 0.10 mm
β = 93.014 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3241 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2482 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.992Rint = 0.025
11945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.09Δρmax = 0.27 e Å3
3241 reflectionsΔρmin = 0.25 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7866 (3)0.2221 (4)0.25704 (6)0.0666 (6)
H10.84210.26680.28090.080*
C20.8114 (3)0.0156 (4)0.24231 (7)0.0693 (6)
H20.88600.07650.25590.083*
C30.7266 (2)0.0567 (3)0.20748 (6)0.0555 (5)
H30.74240.19720.19780.067*
C40.6182 (2)0.0832 (3)0.18736 (5)0.0463 (4)
C50.5970 (2)0.2939 (3)0.20139 (5)0.0452 (4)
C60.6805 (2)0.3627 (3)0.23682 (6)0.0552 (5)
H60.66470.50270.24670.066*
C70.4828 (3)0.4205 (3)0.17361 (7)0.0626 (6)
H7A0.54060.53550.16020.075*
H7B0.39630.48540.18850.075*
C80.5092 (3)0.0359 (3)0.15049 (7)0.0655 (6)
H8A0.43580.08400.15560.079*
H8B0.57320.00150.12760.079*
C90.4114 (2)0.2508 (3)0.14203 (6)0.0514 (5)
C100.2314 (3)0.2265 (3)0.14927 (6)0.0555 (5)
C110.0233 (3)0.4180 (4)0.14107 (7)0.0726 (7)
H11A0.04340.42370.16980.087*
H11B0.07980.29220.12930.087*
C120.0820 (3)0.6211 (5)0.12057 (9)0.0863 (8)
H12A0.03030.74490.13360.129*
H12B0.19830.63240.12220.129*
H12C0.05540.61730.09260.129*
C130.4316 (2)0.3270 (3)0.09827 (6)0.0516 (5)
C140.3593 (2)0.1945 (3)0.06402 (6)0.0513 (5)
C150.3657 (3)0.2784 (4)0.02492 (7)0.0676 (6)
H150.41230.41470.02120.081*
C160.3042 (3)0.1633 (5)0.00819 (7)0.0791 (7)
H160.30930.22360.03400.095*
C170.2350 (3)0.0398 (5)0.00395 (7)0.0705 (7)
C180.2282 (3)0.1239 (4)0.03492 (7)0.0665 (6)
H180.18190.26070.03850.080*
C190.2881 (2)0.0102 (3)0.06837 (6)0.0578 (5)
H190.28110.07030.09410.069*
C200.1698 (4)0.1689 (6)0.04011 (8)0.1051 (11)
H20A0.23980.29160.04420.158*
H20B0.16640.07770.06380.158*
H20C0.06160.21960.03540.158*
O10.1677 (3)0.0787 (3)0.16597 (5)0.0896 (6)
O20.15098 (16)0.4028 (2)0.13532 (4)0.0625 (4)
O30.5094 (2)0.4910 (3)0.09153 (5)0.0775 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0753 (13)0.0748 (15)0.0488 (11)0.0053 (11)0.0071 (9)0.0038 (10)
C20.0733 (13)0.0787 (15)0.0548 (12)0.0152 (12)0.0078 (10)0.0051 (11)
C30.0662 (12)0.0488 (11)0.0516 (11)0.0107 (9)0.0038 (9)0.0000 (8)
C40.0530 (9)0.0411 (9)0.0452 (9)0.0012 (7)0.0056 (7)0.0007 (7)
C50.0496 (9)0.0402 (9)0.0465 (10)0.0029 (7)0.0097 (7)0.0031 (7)
C60.0675 (11)0.0487 (11)0.0502 (11)0.0103 (9)0.0109 (9)0.0092 (8)
C70.0749 (13)0.0380 (10)0.0738 (14)0.0074 (9)0.0077 (10)0.0111 (9)
C80.0928 (15)0.0363 (10)0.0649 (13)0.0133 (9)0.0206 (11)0.0072 (9)
C90.0586 (10)0.0358 (9)0.0589 (11)0.0047 (8)0.0059 (8)0.0017 (8)
C100.0712 (12)0.0477 (11)0.0480 (10)0.0093 (9)0.0066 (9)0.0021 (8)
C110.0517 (11)0.1032 (19)0.0637 (13)0.0118 (11)0.0122 (9)0.0123 (13)
C120.0489 (12)0.108 (2)0.1017 (19)0.0111 (12)0.0005 (11)0.0099 (16)
C130.0441 (9)0.0453 (10)0.0659 (12)0.0038 (8)0.0074 (8)0.0053 (9)
C140.0455 (9)0.0539 (11)0.0550 (11)0.0080 (8)0.0078 (7)0.0051 (8)
C150.0675 (12)0.0726 (14)0.0641 (13)0.0099 (11)0.0151 (10)0.0132 (11)
C160.0814 (15)0.104 (2)0.0525 (13)0.0238 (15)0.0096 (11)0.0089 (13)
C170.0571 (11)0.0984 (18)0.0555 (13)0.0277 (12)0.0020 (9)0.0150 (12)
C180.0634 (12)0.0707 (14)0.0649 (13)0.0048 (10)0.0021 (9)0.0147 (11)
C190.0625 (11)0.0587 (12)0.0521 (11)0.0014 (9)0.0013 (8)0.0008 (9)
C200.097 (2)0.146 (3)0.0700 (16)0.0411 (19)0.0142 (14)0.0384 (17)
O10.1113 (14)0.0733 (11)0.0858 (13)0.0225 (10)0.0211 (10)0.0235 (9)
O20.0509 (8)0.0652 (9)0.0725 (9)0.0009 (6)0.0132 (6)0.0094 (7)
O30.0783 (10)0.0644 (9)0.0909 (12)0.0230 (8)0.0139 (9)0.0072 (8)
Geometric parameters (Å, º) top
C1—C61.372 (3)C11—C121.484 (4)
C1—C21.374 (3)C11—H11A0.9700
C1—H10.9300C11—H11B0.9700
C2—C31.384 (3)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.379 (3)C12—H12C0.9600
C3—H30.9300C13—O31.216 (2)
C4—C51.385 (2)C13—C141.489 (3)
C4—C81.499 (3)C14—C151.392 (3)
C5—C61.389 (3)C14—C191.395 (3)
C5—C71.493 (3)C15—C161.374 (4)
C6—H60.9300C15—H150.9300
C7—C91.564 (3)C16—C171.378 (4)
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700C17—C181.386 (3)
C8—C91.559 (3)C17—C201.506 (3)
C8—H8A0.9700C18—C191.374 (3)
C8—H8B0.9700C18—H180.9300
C9—C101.514 (3)C19—H190.9300
C9—C131.535 (3)C20—H20A0.9600
C10—O11.195 (2)C20—H20B0.9600
C10—O21.335 (3)C20—H20C0.9600
C11—O21.454 (2)
C6—C1—C2120.55 (19)O2—C11—H11A110.3
C6—C1—H1119.7C12—C11—H11A110.3
C2—C1—H1119.7O2—C11—H11B110.3
C1—C2—C3120.7 (2)C12—C11—H11B110.3
C1—C2—H2119.6H11A—C11—H11B108.6
C3—C2—H2119.6C11—C12—H12A109.5
C4—C3—C2118.89 (19)C11—C12—H12B109.5
C4—C3—H3120.6H12A—C12—H12B109.5
C2—C3—H3120.6C11—C12—H12C109.5
C3—C4—C5120.47 (17)H12A—C12—H12C109.5
C3—C4—C8127.69 (17)H12B—C12—H12C109.5
C5—C4—C8111.81 (16)O3—C13—C14120.20 (19)
C4—C5—C6119.98 (18)O3—C13—C9120.44 (18)
C4—C5—C7111.40 (16)C14—C13—C9119.33 (16)
C6—C5—C7128.61 (17)C15—C14—C19117.6 (2)
C1—C6—C5119.33 (19)C15—C14—C13117.97 (19)
C1—C6—H6120.3C19—C14—C13124.38 (17)
C5—C6—H6120.3C16—C15—C14121.1 (2)
C5—C7—C9105.30 (15)C16—C15—H15119.4
C5—C7—H7A110.7C14—C15—H15119.4
C9—C7—H7A110.7C15—C16—C17121.3 (2)
C5—C7—H7B110.7C15—C16—H16119.4
C9—C7—H7B110.7C17—C16—H16119.4
H7A—C7—H7B108.8C16—C17—C18117.8 (2)
C4—C8—C9105.09 (15)C16—C17—C20121.6 (3)
C4—C8—H8A110.7C18—C17—C20120.5 (3)
C9—C8—H8A110.7C19—C18—C17121.6 (2)
C4—C8—H8B110.7C19—C18—H18119.2
C9—C8—H8B110.7C17—C18—H18119.2
H8A—C8—H8B108.8C18—C19—C14120.5 (2)
C10—C9—C13109.40 (15)C18—C19—H19119.8
C10—C9—C8112.61 (16)C14—C19—H19119.8
C13—C9—C8110.23 (16)C17—C20—H20A109.5
C10—C9—C7107.08 (16)C17—C20—H20B109.5
C13—C9—C7111.68 (16)H20A—C20—H20B109.5
C8—C9—C7105.78 (15)C17—C20—H20C109.5
O1—C10—O2123.5 (2)H20A—C20—H20C109.5
O1—C10—C9126.9 (2)H20B—C20—H20C109.5
O2—C10—C9109.51 (15)C10—O2—C11118.56 (16)
O2—C11—C12106.95 (18)
C6—C1—C2—C31.9 (3)C8—C9—C10—O2169.98 (16)
C1—C2—C3—C41.0 (3)C7—C9—C10—O274.16 (19)
C2—C3—C4—C51.2 (3)C10—C9—C13—O3124.95 (19)
C2—C3—C4—C8177.0 (2)C8—C9—C13—O3110.7 (2)
C3—C4—C5—C62.5 (3)C7—C9—C13—O36.6 (2)
C8—C4—C5—C6176.01 (18)C10—C9—C13—C1456.9 (2)
C3—C4—C5—C7176.28 (18)C8—C9—C13—C1467.4 (2)
C8—C4—C5—C75.2 (2)C7—C9—C13—C14175.30 (15)
C2—C1—C6—C50.6 (3)O3—C13—C14—C158.0 (3)
C4—C5—C6—C11.6 (3)C9—C13—C14—C15173.84 (16)
C7—C5—C6—C1176.9 (2)O3—C13—C14—C19170.76 (19)
C4—C5—C7—C97.9 (2)C9—C13—C14—C197.4 (3)
C6—C5—C7—C9173.47 (17)C19—C14—C15—C160.1 (3)
C3—C4—C8—C9178.54 (18)C13—C14—C15—C16178.77 (18)
C5—C4—C8—C90.2 (2)C14—C15—C16—C170.4 (3)
C4—C8—C9—C10112.09 (18)C15—C16—C17—C180.5 (3)
C4—C8—C9—C13125.43 (18)C15—C16—C17—C20179.0 (2)
C4—C8—C9—C74.5 (2)C16—C17—C18—C190.0 (3)
C5—C7—C9—C10112.94 (18)C20—C17—C18—C19179.4 (2)
C5—C7—C9—C13127.31 (17)C17—C18—C19—C140.5 (3)
C5—C7—C9—C87.4 (2)C15—C14—C19—C180.6 (3)
C13—C9—C10—O1135.3 (2)C13—C14—C19—C18178.23 (18)
C8—C9—C10—O112.4 (3)O1—C10—O2—C110.7 (3)
C7—C9—C10—O1103.5 (2)C9—C10—O2—C11176.98 (16)
C13—C9—C10—O247.0 (2)C12—C11—O2—C10176.51 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O30.972.282.762 (3)110
C8—H8A···O10.972.452.883 (3)107
C1—H1···O1i0.932.603.357 (3)139
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H20O3
Mr308.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.1957 (14), 6.1287 (10), 32.995 (5)
β (°) 93.014 (3)
V3)1655.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.990, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
11945, 3241, 2482
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.187, 1.09
No. of reflections3241
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT(Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.603.357 (3)139
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Central China Normal University for financial support and thank Dr Xiang-Gao Meng for the X-ray data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P. & Paul, K. (2006). J. Heterocycl. Chem. 43, 607–611.  CrossRef CAS Google Scholar
First citationWang, J. & Wu, A. (2012). Org. Lett. 14, 6060–6063.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds